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This paper discusses the dynamics of weak perturbations in a relativistic nondegenerate 
collisional plasma in the absence of chemical reactions. It is shown that, in a certain class of 
external actions, a description based on kinetic theory is equivalent to a description in 
terms of nonlocal hydrodynamics, when the constitutive relations are nonlocal in space and time. 
The hydrodynamic model consistently combines the properties of dissipativity and causality. 
The conditions are indicated for the coefficients in the constitutive relations associated with 
covariance, dissipativity and reversibility at the microscopic level (an analog of the Onsager 
relations). O 1996 American Institute of Physics. [S 1063-7761(96)015 1 1-91 

It is well known that describing dissipative processes in 
the relativistic theory based on the traditional Eckart scheme' 
and the Landau-Lifshitz scheme2 results in superluminal 
speeds of propagation of small perturbations.3 References 4 
and 5 proposed a method of going from a kinetic description 
of a relativistic gas to a hydrodynamic description in which it 
is possible to consistently combine dissipativity with causal- 
ity. The equations of hydrodynamics are nonlocal in space 
and time. The transition from kinetics to hydrodynamics is 
exact, since, for any solution of the hydrodynamic equations, 
it is possible to reconstruct the corresponding solution of the 
kinetic equation. The nonrelativistic version of this method is 
explained in Refs. 6 and 7. 

In this paper, the results of Refs. 4 and 5 are extended to 
the case of a classical relativistic collisional plasma without 
chemical reactions. In formulating the kinetic theory for a 
plasma, we use the approach and notation of Refs. 8 and 5. 

A system of measurement units is used in which the 
speed of light in vacuum c ,  Planck's constant h ,  and Boltz- 
mann's constant k equal unity. The measurement units of the 
electromagnetic quantities are defined in accordance with 
Gauss's approach. Greek indices run through the values 0, 1, 
2, 3, corresponding to a certain inertial measurement system 
xa, where x0 is time. The 4-momenta of the plasma particles 
are denoted as pa.  Latin indices a ,  b, c ,  d run through the 
values 1, 2, 3, corresponding to the spatial coordinates. The 
latin indices A and B run through the values 
0, . . . , ( K +  3),  where K is the number of components of 
the plasma. The following notation is adopted for deriva- 
tives: a,= dldxa and, Da= dldpa. The space-time indices 
are lowered and raised by means of the Minkowsky metric 
( vap) = diag( 1,- 1 ,- 1 ,- 1 ). Summation is carried out over 
repeated indices, unless otherwise specified. 

The state of the plasma at the point of space-time xa is 
characterized by the single-particle distribution function 
f =  f (xa,p8,r) ,  where the 4-momenta pa lie on the mass 
shell 

other than translational. More specifically, the parameter r  
has the component form ( i , r f ) ,  where i runs through the 
values 1, . . . , K corresponding to the labels of the compo- 
nents, while the parameter r' is associated with internal de- 
grees of freedom (for example, with vibrational or rotational 
degrees of freedom). 

The following measure is defined in pa, r  parameter 
space: 

where d v r =  ( p O )  - Idp  ' d p 2 d p 3  is the Lorentz-invariant 
measure on the hyperboloid of Eq. (I), and integration over 
the measure d,u(r)  reduces to summation over i  and integra- 
tion over a measure d [ ' ( r ' )  connected with parameter r ' .  

The distribution function is normalized so that 
~ p o f ( x a , p ~ , r ) d v ,  is the particle density of a plasma of 
sort r .  

Let W =  W ( p a , r )  be an arbitrary function of the micro- 
scopic variables. Then the following macroscopic field is de- 
fined for a known single-particle distribution function: 

Next, for any 4-vector U a  tangent to the hyperboloid of 
Eq. (1) at some point pa, the. derivative UaDaW(pa , r )  is 
defined. We recall that the tangency condition has the fol- 
lowing form: 

We define the 4-tensor of the electromagnetic field in the 
usual way: 

where E,, Bu are the 3-vectors of the electric and magnetic 
fields, respectively. Maxwell's equations for this case are 

I lapPapP= ni2(r) ,  p0>0, (1) Here the 4-current ja is the sum of the external current j> 
and the induced current ji:, : 

m ( r )  is the rest mass of the plasma particles, and r  is a 
collective parameter that characterizes degrees of freedom ja= j:, + j:, . 
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It is assumed that the total current satisfies the law of con- 
servation of electric charge, 

We shall interpret Eq. (3) as a limitation on the external 
4current j,", For example, it can be assumed that the exter- 
nal charge is determined from the equation 

We assume further that the indices i,j run through the 
values 1, . . . K, while the indices I,J run through the values 
(3 + i ) ,  i = 1 . . . ,K. If the indices i, j and the indices I,J are 
used in the same formula, their values are related by 
I = i + 3 ,  J = j + 3 .  Let us define a set of functions of the 
microscopic variables pP, r :  

where ei is the electric charge of the ith component of the 
plasma. 

The induced 4-current is computed from 

With the the Lorentz forces, accounted for, the distribu- 
tion function satisfies the kinetic equation 

Here St[fl in general is a nonlinear operator on the distribu- 
tion function, called the collision integral, and 
S = S ( x a , p P , r )  is a function of the sources, describing the 
exchange of matter, momentum, and energy between the 
plasma and the external medium. We note that Eq. (5) is 
traditionally used in kinetic theory without sources, which 
presupposes the solution of a Cauchy problem. The study of 
the reaction of the system on the sources is a component of 
the method of Refs. 4-7. In purely mathematical terms, such 
a formulation preserves the Cauchy problem. 

When plasma particles collide, the energy-momentum 
vector and the number of particles of the components are 
conserved: 

We shall assume that the set of conserved quantities J A  
is complete in the sense that, in the absence of sources and of 
an electromagnetic field, the equilibrium state is completely 
characterized by the values of (J,). The distribution function 
of the equilibrium state has the form 

The free parameters in Eq. (7) can be represented as 
follows: 

where p is the inverse temperattire, un  is the Cvelocity of 
the medium, and pi is the chemical potential of the ith com- 
ponent. The equilibrium state of Eq. (7) causes the collision 
integral to go to zero: 

St[ f,] = 0. (9) 

For this state to satisfy the complete system of equations 
for a plasma, Eqs. (2), (4), and (5), with zero sources and 
external currents, the additional condition of electrical neu- 
trality must be satisfied: 

The equations of hydrodynamics follow from Eqs (5) and 
(6): 

We now investigate the dynamics of linear perturbations 
about some equilibrium distribution f, having the form Eq. 
(7), caused by weak sources and external currents. We as- 
sume the usual representation of the distribution function 
with linearization: f  = fo( 1 + cp). Then Eq. (5) transforms to 

where L is a linear operator, defined in terms of the func- 
tional derivative of the collision integral: 

The functions cp, considered from the viewpoint of the de- 
pendence on the arguments pa, r ,  belong to the space H, 
which it is convenient to consider as a Hilbert space with the 
scalar product 

We denote by H h  the subspace spanned by the family of 
vectors J A  and by H ,  the orthogonal complement to Hh:  

The metric tensor y A B = ( J A  ,JB)  is defined in the subspace 
H h  , and can be used to lower and raise the indices A ,  B, and 
C. 

The operator L satisfies a number of conditions: 

[the result of differentiating Eq. (9) with respect to the free 
parameters]; 

(Lcp)*=Lcp* ( 1  3) 

(reality); 

(dissipativity); 

[a consequence of the conservation laws given by Eq. (6)]. 
On the subspace H,, inequality (14) transforms into a 

rigorous inequality. Equations (12) and (13) imply 
LH,,Cf/, and L+H,,cH,,. 
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We assume that the interaction of the gas particles is 
reversible in time at the microscopic level (T-invariance in 
the quantum theory of Ref. 9). We define in the function 
space H the time-reversal operator I, which satisfies the con- 
ditions 

I=[+, 12= 1, IpUl=-pa,  ~ ~ ~ l = ~ ~ .  

The integrals JA are eigenfunctions of the operator I with 
eigenfunctions -+ 1 : 

We also assume that the perturbed equilibrium distribu- 
tion is invariant with respect to time inversion: 

Then the reversibility at the microscopic level imposes on 
L the limitation 

In a wide class of cases, the operators L and I commute, and, 
therefore, instead of Eq. (17), the stronger condition L' = L 
is valid. 

For what follows, it is essential that the following equa- 
tion be satisfied: 

and, therefore, the functions @, lie within H a .  The proof of 
these equalities is given in Appendix A (see section Al) .  

We compute the linear perturbations of the 4-currents 
g,"= AQ: : 

~:=(JAP",v). (19) 

As a consequence of Eqs. (1 1) and (18), the perturbations of 
the currents satisfy the equations 

To close the problem of Eqs. (2) and (20), it is necessary 
to give constitutive relations, i.e., for example, expressions 
for the induced 4-currents ji", and the spatial hydrodynamic 
currents g:. To do this, let us study in more detail the ki- 
netic equation, Eq. (1 I). 

We assume that, for an arbitrary function g=g(xa), its 
Fourier transform gF(ka) is defined by 

Applying a Fourier transform to Eq. (1 l), we derive 

We introduce the auxiliary operators: Ph:H+Hh and 
P, :H-+H, are projectors; 1h:Hh-+H and I,:H,-+H are 
embedding operators; Ghh= PhGIh.  Goh= P,Glh, 
Gh,= PhGI,, and G,,= P,GI, . It is convenient to break 
up the desired function cp into a hydrodynamic part 
h=  Phcp and a nonhydrodynamic part a =  P,cp. When this is 
expanded in the basis in H h ,  we get the components 
h,= (J,, ,h). 

We now assume that the sources s in Eq. (1 1) as func- 
tions of the parameters pa, r belong to the space Nh and, 

consequently, that they are completely characterized by the 
components sA . This constitutes the key assumption of the 
method of Refs. 4-7. The following system of equations is 
then obtained from Eqs. (21) and (18): 

Using the last equation, we can express a F  as a function of 
h and the electric field: 

Substituting cp into Eqs. (4) and (19) and using Eq. (22). 
we can obtain a representation for the hydrodynamic 
4-currents g: and the induced currents ji", in terms of the 
components hA and the vector E,. This corresponds to the 
constitutive relations in form A of Ref. 5. In order to com- 
pute these relations in compact form, it is convenient to in- 
troduce the coefficients 

Z:,=(paJ~ ,Js), R:{= ( P ~ ~ ~ J ~  ,c,l P , ~ P J ~ ) .  

From Eqs. (19), (4), and (22), we derive the desired ex- 
pressions: 

Note that the expression for the hydrodynamic currents 
contains a term with the electric field, while the expression 
for the induced electric current depends on the hydrody- 
namic variables. This is characteristic of the electrodynamics 
of continuous media." Because the dependences of the 
quantities R:{ on the 4-dimensional wave vector k, do not 
involve polynomials, the model of Eqs. (23) and (24) is non- 
local in space and in time. The constant coefficients ZiB 
determine the reaction of the system to static actions. There- 
fore, dissipativity effects are described by the coefficient ma- 
trix R:{ .  

The matrix R:{ satisfies a number of conditions. Thus, 
because of Eq. (13), for a real 4-vector k,, 

We further assume that the theory is invariant under the 
rotation group 0(3) ,  which means that the medium is iso- 
tropic and that parity is conserved during collisions. We then 
have 

for any g E O(3). Here p is a representation of the O(3) 
group in the linear space @ of quantities of the form R:{ .  
Let us identify in @ the maximal set of linearly independent 
invariants with respect to the subgroup that conserves the 
3-vector kh : 

We choose these invariants so that 
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Then the most general representation consistent with Eq. 
(25) has the form 

a b  - nab 
RAE-IAB Xn . (26) 

Here Xn=Xn(ka) are scalar functions that satisfy the condi- 
tion 

Because of this, they are the Fourier transforms of certain 
real kernels Yn= Yn(xa): 

YnF=Xn. 

It will be proven below that the functions Y n  vanish outside 
the light cone of the future (causality). 

A specific form of the expansion in Eq. (26) is given in 
Appendix A (see section A2). Next, substituting Eq. (26) 
into Eq. (23) and considering the limit ka+O, we can iden- 
tify the terms that correspond to bulk and shear viscosity, 
thermal conductivity, and diffusion in the expressions for the 
spatial components of the hydrodynamic currents. The clas- 
sical transfer coefficients can thus be expressed in terms of 
scalar series of Xn . These results are given in Appendix A 
(see section A3). 

It is easy to verify that 

From this and from the condition given by the inequality 
(14), the conditions for dissipativity in nonlocal hydrody- 
namics follow: 

where the C ,  are arbitrary complex quantities. Next, the 
reciprocity relationships (an analog of the Onsager relations) 
follow from the condition in Eq. (17): 

R:{(~o ,kc) = E ~ E B E , E ~ R ! ~ ( ~ o ,  -kc). (28) 

By substituting the expansion in Eq. (26) into conditions (27) 
and (28), we can obtain the corresponding limitations on 
scalar fields. 

There are several other a priori conditions on the coef- 
ficient$ R:! associated with the possible degeneracy of the 
model. Thus, although the functions JA are linearly indepen- 
dent by definition, the set of functions JA and paJA can be 
linearly dependent. From each equality of the form 

where AA and A; are constant coefficients, it follows that 

It is easy to indicate one identity of the form of Eq. (29): 

from which follow relationships of the form of Eq. (30): 

If there are no internal degrees of freedom r ' ,  there is 
one more identity of the form of Eq. (29): 

which leads to 

There is interest in considering the Fourier transform of 
the conductivity tensor a;b the expression for which is ob- 
tained from Eq. (24), 

In accordance with the dissipativity and reciprocity con- 
ditions of Eqs. (27) and (28), aflFb is a symmetric, nonnega- 
tive complex definite matrix. The permittivity of the plasma 
can be calculated from the conductivity tensor in the usual 
way.I2 In the limit k,-+O, the expression makes it possible to 
obtain the static conductivity a, which is related to the ma- 
trix of diffusion coefficients in the usual way (section A4): 

Let us discuss the questions associated with the dissipa- 
tivity and causality of the hydrodynamic model. 

There are two aspects of causality: the causality of the 
constitutive relations given by Eqs. (23) and (24) and the 
causality of the dynamic model of Eqs. (2) and (20). To 
analyze causality, it is convenient to use the method of Ref. 
13, which is associated with analytic continuation in the vari- 
ables ka into a complex tube: 

It is easy to see that the coefficients R:$ are analytical 
functions in the tube (34). In fact, if the wave 4-vector is 
decomposed into real and imaginary parts k,= a,+ i P a  , 
then 

and the analyticity of R i g  in tube (34) follows from Eq. (14) 
and the fact that P,pY<O. Moreover, from the same reason, 
for any set of complex quantities cA, the inequality 

is satisfied in the tube (34). 
Thus, the coefficient functions R:! are analytical in the 

tube (34) and are continuous on its boundary. It immediately 
follows from thisI3 that these functions are the Fourier trans- 
forms of certain inheritance-nonlocality kernels that go to 
zero outside the light cone: 

This means that the constitutive relations given by Eqs. 
(23) and (24) satisfy relativistic causality. 
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We now consider the propagation of the signal from an 
event that occurred at the space-time point xa=O when ex- 
ternal electric currents are absent. Then, from Eqs. (20) and 
(2), we have the system of equations 

ik,g,",= s, , (37) 

&,hrikbEcFz - ikOBoF, ikoBaF=O, (38) 

Here s, is a set of numbers that characterizes the past event. 
We assume that the source does not disturb the electrical 
neutrality: 

In consequence of 

the consistency condition, Eq. (3), of Maxwell's equations, 
Eqs. (38) and (39), automatically follows from Eqs. (37) and 
(40). Since there is no magnetic field in the constitutive re- 
lations, Eqs. (23) and (24), it is sufficient to study the system 
of equations (37) and the equation for the electric field fol- 
lowing from Eqs. (38) and (39): 

We shall interpret Eqs. (37) and (41) as a system of 
linear equations for the set of unknown values h ; ,  EUF of 
the form 

where A = (A,,)  is the matrix of the system. It can be seen 
that, because of the inequality (35) in tube (34), the inequal- 
ity 

is satisfied for any nonzero set of numbers Cn. 
Thus, the solution y=A- 'z  of the system of Eqs. (42) is 

determined and analytical in the tube (34). Then, according 
to Ref. 13, in real space-time, the perturbations of the hy- 
drodynamic quantities and the electromagnetic field go to 
zero outside the light cone given by the inequalities (36). The 
relativistic causality of the model has been proven. 

Now let us consider the dynamics of the free plasma 
oscillations. As a condition for the existence of a nontrivial 
solution of the homogeneous Eqs. (42), we obtain the disper- 
sion relation 

det A=0. (44) 

We shall assume that a real wave 3-vector k, is given. 
Then Eq. (44) gives the set of frequencies ko of the normal 
modes of the plasma as a function of the wave number. As a 
consequence of the inequality (43), solutions with 
Imk0<O, corresponding to exponentially increasing modes, 
are afirtiori absent. Since the eigenfrequencies ko are asso- 
ciated with the wave number by an analytical dependence, it 

is possible for the imaginary part, Imko, to go to zero only 
for discrete values of the wave number. In general, the nor- 
mal vibrations of the plasma damp out exponentially. This 
implies that the hydrodynamic model is dissipative. 

A nonlocal dissipative hydrodynamic model of a relativ- 
istic plasma has thus been constructed. The transition from 
the kinetic theory to hydrodynamics in the class of sources 
under consideration is exact, since, by solving the self- 
consistent problem for the electromagnetic field and the hy- 
drodynamic variables given by Eqs. (2), (20), (23), and (24), 
it is possible to reconstruct the distribution function [see Eq. 
(22)l. Note that, at a qualitative level, the causality of the 
hydrodynamic model proven above is a direct consequence 
of the possibility of the inverse transition to kinetic theory. In 
fact, if hydrodynamics allowed a process with superluminal 
signal velocity, it would be possible to find a corresponding 
process in kinetic theory. The latter contradicts the causality 
of relativistic kinetic theory.' 

The method explained here of going to nonlocal hydro- 
dynamics can also be used in the case of a no~elativistic 
plasma. The procedure of such a transition is briefly ex- 
plained in Ref. 14. 

Of course, the proposed hydrodynamic model can be 
used to solve specific problems only if the nonlocality ker- 
nels are known explicitly. Two approaches are possible here. 

First, it is possible to attempt to compute the resolvent 
operator G,-,' in explicit form from a given collision integral, 
and then to determine the coefficients R,"{. This is the direct 
method. It is hard to implement because, for all the collision 
integrals that are of interest in practice, the operator G,' 
cannot be represented by an analytical expression. However, 
there is usually a numerical method of solving the problem 
by means of which the matrix elements of the resolvent op- 
erator are calculated numerically to any required accuracy 
and for any wave 4-vectors k,. Certain features of the cor- 
responding algorithms are explained in Ref. 15. 

Second, a phenomenological approach is possible, in 
which model expressions are used for the kernels, with a set 
of free parameters. The values of the latter are chosen from 
comparison with experiment. Such a method of solving the 
problem is widely used in all areas of physics and mechanics 
where, on one hand, it is impossible to do without the ker- 
nels, while, on the other hand, the procedure of computing 
the kernels from first principles (plasticity, turbulence, non- 
perturbative nonlinear quantum field theory) is unknown. In 
this case, the model kernels must exactly satisfy the a priori 
relationships obtained in the rigorous theory. 

In each specific problem of plasma physics, the range of 
frequencies and of wave numbers of interest is usually 
known. Using a hierarchy of interaction processes between 
the plasma components (corresponding to the hierarchy of 
the relaxation times), in several cases, it is possible in a 
given region of values of 4-vectors k, to consider certain 
nonlocality kernels trivial, i.e., constant in momentum space 
or a delta-function in space-time. The resulting hydrody- 
namic models are less general than is the exact model of Eqs. 
(2), (201, (231, and (24). 

The situation in which the distribution function differs 
only slightly from the equilibrium function was considered 
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above. The nonlocal hydrodynamic description of a plasma 
can also be extended to the strongly nonequilibrium case. 
The detailed theory lies outside the limits of this paper, and 
only the main ideas will be indicated here. An arbitrary dis- 
tribution function can be represented as 

where f h  is the local-equilibrium distribution function, un- 
ambiguously determined by the condition 

We assume that the sources in Eq. (5) belong to the class of 
variations of the local-equilibrium distribution f h .  In com- 
plete analogy with the linear case, it is possible to transform 
exactly from a kinetic to a hydrodynamic description. The 
constitutive relations will have the form of complex nonlin- 
ear functionals of the electromagnetic field and of the quan- 
tities Q! . The procedure for computing these functionals has 
not been fully developed. 

APPENDIX A: 

1. Proof of Eq. (18) 

Because of the conditions given by Eq. (16) for the equi- 
librium state f o ,  the parameters in Eqs. (8) satisfy the 
supplementary condition uu=O; i.e., f o  is a rest state. It is 
easy to see that Eq. (18) is satisfied for the case in which 
A # a by making the replacement pa+ - p a  in the integral 
when computing the scalar product. Now let A =a .  In the 
subsequent formulas, the summation over a is not carried 
out. Using integration by parts, we get 

The last expression equals zero because of Eq. (10). 

2. Finding an explicit representation of Eq. (26) 

It is technically more convenient to analyze the coeffi- 
cient matrix 

We note the obvious symmetry conditions, 

R a y ~ p ~ = R y a l P B  9 R a ~ ~ P y = R a ~ l y p .  ('41) 

Because of Eqs. (28) and (Al), it is sufficient to consider 
the following quantities: Roo lOO,  R m l o a ,  RooIub ,  RooIo1,  

ROO~ul 9 Roolob 7 R ~ u l b c  7 R ~ u ( ~ l  9 R ~ u l h l ,  Ruhlcd 9 Rublo/ 9 

R u b l c l ,  R o ~ ~ o J ,  Ro l luJ ,  and R u l l h J .  We have, S U C C ~ S S ~ V ~ ~ ~ ,  

We should point out certain consequences of the condi- 
tions given by inequalities (27), where A = kaku : 

3. The classical transport coefficients 

The connection of the scalar kernels with the classical 
transport coefficients was studied in detail in Ref. 5. In this 
paper, Eckhart's definition' (in terms of the total particle 
flux) was used for the velocity of the medium. If the notation 
of this paper is compared with that of Ref. 5, the following 
expressions are obtained for the thermal conductivity K and 
the coefficients of shear viscosity vs and bulk viscosity 
vv: 

K = ( P O ) ~ ~ ~ I , ~ = O ,  

The nonnegative right-hand sides in these equations fol- 
low from Eqs. (A2) and (A3). If there are no internal degrees 
of freedom and Eqs. (32) are consequently valid, the corre- 
sponding conditions on the scalar kernels lead to the well- 
known result 77v=0.'1 If it is assumed that the diffusive 
fluxes are generated by gradients of the chemical potentials, 
using the results of Ref. 5 ,  we again obtain the matrix of 
diffusion coefficients: 

According to Eqs. (28), (31), and (A2), this matrix is 
symmetric and positive definite and obeys the equations 
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