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This paper discusses the possibility that a short laser pulse propagating in a periodically varying 
(stratified) plasma can generate relatively low-frequency electromagnetic radiation. The 
spectral, angular, and energy characteristics of the radiation are studied. It is shown that the 
radiation at the plasma frequency is most intense when the resonance condition is satisfied, when 
the plasma-density modulation period equals the wavelength of a wake plasma wave 
excited by the pulse. O 1996 American Institute of Physics. [ S  1063-776 1 (96)01411-41 

1. INTRODUCTION 

When a short laser pulse propagates in a disperse plasma 
under the action of averaged ponderomotive forces, the elec- 
tron density of the plasma is perturbed, and a charge-density 
wave (a plasma wave) is excited.' Being potential forces, 
ponderomotive forces in the linear approximation generate 
irrotational electric fields and currents in a homogeneous 
plasma. In an inhomogeneous plasma, however, even in the 
linear approximation, a laser pulse excites rotational as well 
as irrotational electromagnetic fields. This effect was appar- 
ently explained for the first time in Ref. 2, which discussed 
the one-dimensional problem of the passage of an amplitude- 
modulated electromagnetic wave through an inhomogeneous 
plasma. It was shown that, in the neighborhood of the reso- 
nant density of the plasma, where the plasma frequency is 
close to the wave-modulation frequency, not only electro- 
static electric fields but also rotational electromagnetic fields 
are excited. This mechanism for the generation of a magnetic 
field in an inhomogeneous plasma by an amplitude- 
modulated laser beam was discussed in Ref. 3. 

It is easy to explain the physical cause of the generation 
of rotational currents by potential ponderomotive forces in 
an inhomogeneous plasma. In the linear approximation, the 
current density equals j = e N ( r ) V ,  where N ( r )  is the elec- 
tron density of the plasma in the absence of the laser pulse, 
and V is the irrotational velocity of the electrons, resulting 
from the action of the ponderomotive forces. It is obvious 
that curl j=eV X ( N V ) ,  and the rotational part of the current 
is nonzero if the density gradient is not parallel to the veloc- 
ity vector. 

In this paper, we shall consider a plasma whose density 
varies periodically in one direction (a so-called stratified 
plasma), through which a laser pulse of axisymmetric shape 
passes in the direction of the density variation. We have 
shown that, under these conditions, the electromagnetic 
fields excited by a pulse in the plasma can form a wave of 
radiation whose total energy flux in the radial direction is 
conserved in the wave zone. We have studied the spectral, 

angular, and energy characteristics of such low-frequency 
(from the viewpoint of the laser-radiation frequency) waves 
for various ratios between the plasma-density modulation pe- 
riod and the wavelength of the plasma wave excited by the 
pulse. 

It should be noted that the question of Cherenkov and 
transition radiations of a short laser pulse in a material me- 
dium have been discussed in the literature4 and have been 
studied experimenta~l~.~ Cherenkov radiation from a short 
laser pulse was also recently detected in a weakly ionized 
plasma6 created by the pulse itself. However, in the case of 
interest to us, of a fully ionized plasma, where the phase 
velocities of the electromagnetic waves exceed the velocity 
of light, Cherenkov radiation is impossible. Transition radia- 
tion is possible in principle, appearing when a pulse crosses 
a jump in the plasma density. However, the study of this 
question requires not only taking into account the reflection 
of the laser radiation from the jump, but also analyzing the 
effect of the pulse on the density jump itself. We shall not 
consider the question of the transition radiation of a laser 
pulse in the plasma in this article. 

2. BASIC RELATIONSHIPS 

We consider a plasma whose density varies periodically 
along the z axis: 

N(r )  = no( 1 + a sin k,z ) .  (2.1) 

Here no is the background density, and k,  and a are, respec- 
tively, the wave number and the dimensionless density- 
modulation amplitude, which is considered small (a< 1). 
The question of creating a periodically inhomogeneous 
plasma was recently discussed in Refs. 7 in connection with 
the development of a new design for a free-electron laser (a 
so-called ripple laser). References 7 pointed out two ways to 
create a periodic structure of the plasma density. One way is 
to excite a sound wave in a neutral gas and then to ionize this 
gas by a laser pulse. The second way to create a periodic 
density lattice is to excite an ion-sound wave in the plasma. 
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We shall assume that a laser pulse with a given axisym- 
metric intensity distribution propagates along the z axis with 
group velocity v, . The low-frequency action of the pulse on 
the plasma electrons is associated with the averaged pon- 
deromotive force, which, referred to one electron, has the 
form 

where @ = m ~ i / 4  is the high-frequency potential, expressed 
in terms of the high-frequency electric field amplitude 
Eo(r,t) (VE=eEo/mwo, where wo is the frequency of the 
laser radiation, and e and m are the electron charge and 
mass). 

The linear response of the plasma to the action of the 
ponderomotive force given by Eq. (2.2) is described by the 
system of equations of electron hydrodynamics, 

and the system of Maxwell's equations, 

where V and 6n=n-N are, respectively, the velocity and 
the density perturbation of the electrons, and E and B are the 
low-frequency electric and magnetic fields. The system of 
Eqs. (2.3) and (2.4) is valid when the inequalities 1 V l ~ c  and 
SnGN are satisfied. Moreover, in this system of equations, 
the thermal motion of the electrons is neglected, which as- 
sumes that the inequality v,=cBvT is satisfied (vT is the 
thermal velocity of the electrons), and the displacement of 
the ions is neglected, which is valid when the pulsewidth is 
much less than w i '  (up; is the ion plasma frequency). As 
applied to an inhomogeneous plasma, it is necessary to make 
one more stipulation for the validity of the system of Eqs. 
(2.3) and (2.4). Because the plasma is inhomogeneous, high- 
frequency electron-density perturbations 6; can arise in it, 
along _with an associated averaged current (j) = e(6ni ) ,  
where V is the oscillator velocity of the electrons. Estimates 
show that the contribution of such a current to the generation 
of low-frequency radiation is a factor of ( w ~ T ) ~ B  1 less than 
that from the current that we have taken into account, asso- 
ciated with the action of ponderomotive forces (T  is the 
characteristic period of the low-frequency waves). 

The equations for the low-frequency electric and mag- 
netic fields follow from Eqs. (2.3) and (2.4). They are 

where CI,(r)=(4me2~(r)lm)1'2 is the local plasma fre- 
quency. Equations (2.5) and (2.6) contain the quantities 6n 
and V, which are also determined via the high-frequency 
potential: 

a2v 
--T + c2curl curl V+ L l i ( r ) ~ =  - 
dt 

We shall solve the system of Eqs. 2.5-(2.8) by pertur- 
bation theory, using the smallness of the plasma-density 
modulation amplitude ( a <  1). In the zeroth approximation, 
the plasma is considered homogeneous, and it follows from 
Eq. (2.6) that B(')=o. In this case, according to Eqs. (2.5) 
and (2.8), the electric field is determined from 

where w;=4we2nolm. A solution of the equation that sat- 
isfies the condition of the absence of electric fields in the 
plasma as t--+ - w has the form' 

dt' sin[wp(t- t1)]V@(r,r'). (2.10) 

To first order in a ,  the equations for the fields E(') and 
B('), according to Eqs. 2.5-(2.7), transform into 

where the quantity v(z) equals a sin(kj) and characterizes 
the density modulation, 

To solve Eqs. (2.1 1) and (2.12), we use a Fourier trans- 
formation in time t and in the variable r, , which defines the 
coordinate that is transverse with respect to the z axis. 

The expansion for B(') is similar. 
According to Eqs. (2.1 1) and (2.12), we find for the Fou- 

rier component of the fields 
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where 

and ex, ey , and ez are the unit vectors directed along the 
x ,  y ,  and z axes, respectively. In deriving Eqs. (2.14) and 
(2.15), we assume that the pulse has a constant given shape 
and propagates along the z axis with group velocity u,  . The 
high:frequency potential therefore depends on the variables 
r,  and 5= z-u , t ,  while the function in Eq. (2.13), taking 
into account Eq. (2.10), transforms to 

where kp= wp I u ,  . The function cpo(kl , w )  in Eqs. (2.14) 
and (2.15) is related to the Fourier component of the function 
in Eq. (2.16) by 

and is 

x e x ~ ( -  i k ~ r ~ ) ~ ( r ~  ,5 ) .  (2.17) 

The explicit form of the function given by Eq. (2.16) 
and, consequently, the function given by Eq. (2.17) depends 
on the pulse shape. Let us consider as an example an axi- 
symmetric pulse with a Gaussian shape in both the longitu- 
dinal and the transverse directions: 

where r =  dm; L and R are, respectively, the longitudi- 
nal and transverse dimensions of the pulse; and a. is the 
maximum value of the high-frequency potential, which is 
expressed in terms of the total energy W of the pulse: 

Using Eqs. (2.16) and (2.17), we find by means of Eqs. 
(2.18) and (2.19) that 

where 7= LIug is a time characterizing the pulsewidth. 
The possibility that electromagnetic waves will be emit- 

ted by a laser pulse in a stratified plasma is associated with 
the condition that the denominators k i -  k i  in Eqs. (2.14) 
and (2.15) go to zero. Let us study this condition in more 
detail. 

3. CONDITIONS FOR THE EMISSION 

The electromagnetic waves emitted by the pulse must 
satisfy the dispersion law 

where kll is the longitudinal component of the wave vector of 
the emitted wave, which must coincide with the correspond- 
ing value of the Fourier component of the radiation source 
that has the frequency w .  In our case, the radiation source is 
the rotational current that creates a pulse moving with veloc- 
ity u,=c at the periodic density variations. According to Eq. 
(2.1 1 )  or Eq. (2.12), this current is proportional to the prod- 
uct of v ( z )  and exp(iwdu,), and it is obvious that this cor- 
responds to the value of k,, = wlu, + k , .  Substituting this ex- 
pression into Eq. (3 .  l ) ,  we find the condition ki  = k i ,  which 
corresponds to the denominator in Eqs. (2.14) and (2.15) 
going to zero. 

In analyzing the relationship k i=  k i ,  we shall assume 
that w>O. Then the sign of the quantity kll determines the 
propagation direction of wave relative to the z axis. 

It is easy to convince oneself that, for u,=c,  the condi- 
tion k i=  k: can be satisfied only for k-  = k,- o l u ,  , and, in 
this case, 

w - 2 0 ,  w - w *  
k - k  - - k - = k , -  1 1 -  Z -  2 0 ,  , k r  - o r  (3.2) 

where w,= ( 1/2)krvg and w* = w,( 1 + kElk:). According to 
Eq. (3.2), k ,  is real only for frequencies that exceed w*.  

Eliminating the frequency w from Eqs. (3.2), we easily 
find the equation for the curve that bounds the emitted wave 
vectors on the ( k ,  , k,,) plane: 

Plots of this function are shown in Fig. 1 for different ratios 
of k, to k,  . 

If the angle 6 that the emitted wave makes with the z 
axis is fixed, and if a ray is drawn at this angle on the 
( k ,  , kl l )  plane, the points where it intersects the graphs of 
the function given by Eq. (3.3) determine the values of k ,  
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FIG. 1. Graphs of the functions that determine the wave vectors of the 
electromagnetic waves emitted by a laser pulse. 

and kll (and, consequently, the frequency o )  of the electro- 
magnetic waves emitted by the pulse. Several conclusions 
follow from Fig. 1. 

For plasma-density modulations with a length that ex- 
ceeds the length of a plasma wave excited by a pulse 
(kp> k, or op>2w,), waves are emitted only in the angle 
interval O< d 2  (forward), and their frequencies exceed 
2wr. An interesting feature of this case is the possibility of 
emitting waves with two different frequencies at the same 
angle. Using Eq. (3.2) for k,, it is easy to find the relation- 
ship between the frequency and the angle 8: 

When the inequality kp> k, is satisfied, there is a maxi- 
mum angle of emission On= arcsin(krlkp) (see Fig. I), which 
corresponds to the frequency on = wil20,. The minus sign 
in Eq. (3.4) corresponds to the frequency interval 
w*< w< o n ,  while the plus sign corresponds to w>wn. 
Figure 2a shows how the radiation frequency depends on 
angle 0. 

For shorter-wavelength modulation of the plasma den- 
sity (k,< k,), there is a one-to-one relationship between the 
angle 0 and radiation frequency w (see Fig. 2b), but the 
waves can be emitted either forward (O< ~ 1 2 )  or backward 
( O> ~ 1 2 )  with respect to the pulse-propagation direction. 
The waves are emitted forward with higher frequencies 
( W >  2 w,), and backward with lower frequencies 
(o*  < o < 2  or).  The wave emitted directly backwards 
(B= T) has frequency o*. 

Under resonance conditions (kp=kr), only forward 
emission is possible (O<O<n/2), and the radiation fre- 
quency increases as the angle B decreases (Fig. 2b). 

In concluding this section, we point out that the mini- 
mum emitted frequency w* depends on the ratio k,lk, but 
always exceeds the plasma frequency o,,  except for the 
resonant case. Figure 3 shows how w*/o,, depends on 
k, lk, and indicates the curve that separates the frequency 
region of the waves emitted forward (0< O< n12) and back- 
ward ( ~ / 2 <  B< T). 

FIG. 2. Frequency o of an emitted wave vs its propagation angle 0 relative 
to the direction of motion of the pulse: (a) large-scale density modulations 
(kp>k, ) ,  (b) small-scale density modulations (kp<k,) ,  (c) resonance 
(k,=k,) .  

4. SPECTRAL CHARACTERISTICS OF THE EMISSION 

Let us consider the time-integrated energy flux density 
of the radiation at a certain point of space: 

+m C 
P(r) = dt-E(r,t) X B(r,t). I-. 4 n  

Expanding the fields in a Fourier expansion in time and 
using the relationships ( o r )  = E - o r )  and 
B*(o,r) = B( - w,r), which follow from the condition that 
they are real, we write Eq. (4.1) in the form 

p(r)  = p(w,r), (4.2) 
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dM i n a e o j w  e-,,2214e - 
~ ( l ) ( w , r ) =  

2rnc2wEwei , d r '  (4.7) 

where e , ,  e,  , and e,  are the unit vectors in a cylindrical 
coordinate system; and 

J"o:, o;:* k y 2  
- - -- 

X 

FIG. 3. Minimum frequency of  the waves emitted by a pulse vs  the ratio 
between the wavelength of the plasma wave and the density-modulation 
length. The dashes indicate the frequency emitted at an angle of @= ~ 1 2 .  

where p(w,r)  is the time-integrated spectral energy-flux den- 
sity of the radiation: 

C 
p (w , r )=  - - -z{E(o ,r)~B*(w,r)+E*(w,r)~B(o ,r) ) .  

8~ 
(4.3) 

To compute the quantities entering into Eq. (4.3), we use 
Eqs. (2.14) and (2.15), into which we substitute Eq. (2.20), 
which is valid for an axisymmetric pulse of Gaussian shape: 

Taking into account in Eqs. (4.4) and (4.5) the contribu- 
tion from the pole ka=k2 and estimating it by the saddle- 
point method, we find the following expressions for the 
fields when r%R holds: 

2 ~ a e w , , W  2 214 J dM 
~ ( ' ) ( u , r ) =  2 m c o ~ 0 2 e ~  * dr -(,,.- dz -e.%), ' dr 

(4.6) 

x O(w- o * ) ,  (4.8) 

where B(z) is the Heaviside step function: O(z)= 1 for 
z > 0  and 8 ( z ) = 0  for z<0 .  

Substituting Eqs. (4.6) and (4.7) into Eq. (4.3), we get 

where k = ( w l c ) &  is the wave number of the emitted 
wave. Comparing the expression in parentheses on the right- 
hand side of Eq. (4.9) with Eqs. 3.2, we see that, as expected, 
the vector p coincides in direction with the vector k, and we 
have p=pWk,  where 

The quantity p ( o , r )  determines the spectral density of the 
time-integrated energy flux of the radiation at a point located 
a large distance r ( r S R )  from the z axis, along which the 
pulse propagates. 

In order to analyze the function given by Eq. (4.10), we 
introduce the dimensionless frequency x = w/  w * and the fol- 
lowing dimensionless parameters: 

which characterize, respectively, the duration of the pulse 
(the longitudinal dimension), the width of the pulse, and the 
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FIG. 4. Normalized spectral energy-flux density of the radiation vs dimen- 
sionless frequency [o*=w, ( l+ki lkS) ]  for a short laser pulse 
( ( I  = w * ~ /  fie I ) with different widths: I-narrow pulse 
( h = ~ \ I m < l ) ,  2-wide pulse ( h B  I) .  

ratio between the modulation length of the plasma density 
and the wavelength of the plasma wave. Equation (4.10) then 
transforms to 

where 

The greatest interest is in the frequency x, at which 
function I(x)  has a maximum. The condition dlldx=O gives 
the following equation for determining x, : 

In the two limiting cases k r 9 k p  and k r 4 k , ,  we have 
d2< 1, and Eq. (4.13) simplifies to 

For short laser pulses [ a  = w* r/ &= ( o , r /  &) 
X ( 1 + k;l k;) 4 1 ] with small transverse dimensions 
( 6 4  1 ), the solution of Eq. (4.14) approximately equals 

In this case, according to Eq. (4.12), we have 
1 ( ~ , ~ ) = 0 . 3 2 5  . . . . Thus, for fairly short laser pulses like 
these with relatively small transverse dimensions, the wave 
whose frequency satisfies the condition given by Eq. (4.15) 
has the maximum amplitude. Figure 4a shows the function 
I (x )  for such short and narrow pulses. 

As the transverse dimension (parameter b )  of a short 
laser pulse ( a 4  1 ) increases, the maximum of function 
I (x )  is displaced toward the value x,,= I, and in the limit 
b  + I it reaches 

The emission intensity in this case decreases, and the fre- 
quency region narrows (Fig. 4b). 

Increasing the pulse duration to a value r  that satisfies 
the inequality w * ~ 9  fi causes the radiation intensity to de- 
crease sharply. 

From the dimensionless estimates obtained above, which 
are valid for both large-scale ( k r 4 k , )  and small-scale 
(k,%k,) density modulation, quite different conclusions fol- 
low in dimensional form for these limiting cases. Thus, in 
the limit k ,4kr  (small-scale density modulation), the maxi- 
mum spectral density given by Eq. (4.10) reaches a fre- 
quency w,= (2/3)kru,,  which, according to Eq. (3.4), cor- 
responds to the angle 8 = 2 ~ / 3  (backward emission). In the 
case of large-scale density modulation (k ,Sk , ) ,  we have 
om= wi /3wr ,  and the wave propagates almost directly for- 
ward, at the small angle 8-- w , /  f i w ,  with respect to the 
direction of motion of the pulse. 

Let us now consider the resonant case, in which the 
density-modulation length coincides with the wavelength of 
the plasma wave ( k p =  k ,  , d =  1 ) and w* = w, = k,u,. Equa- 
tion (4.13) then has no solutions for real x ,  and the function 
given in Eq. (4.12) in the region x> 1 monotonically de- 
creases with increasing x, while it has a singularity for 
x+ 1 [ I ( x )  LX ( x -  I ) - ~ ] .  However, in the limit x+ 1, or 
w+ w, , the Fourier component E(' ) (w , r )  of the emitted 
field, given by Eq. (4.4), which is proportional to e i 2 ,  goes 
to infinity more rapidly than the corresponding Fourier com- 
ponent E(O)(w,r) of the field of plasma wave, given by Eq. 
(2. lo), which is proportional to e i  I .  Therefore, the condition 
for the perturbation theory that we have used to be appli- 
cable, so that the inequality ~ ( ' ) ( w , r ) < E ( O ) ( w , r )  is valid, is 
satisfied only for e o 4 a  or x-  1 9 a/2 .  If it assumed that, in 
the region x  - 1 5 aI2, the emission intensity is suppressed 
because of its nonlinear effect on the plasma wave, we can 
use x,- 1 + a12 as an extremely rough estimate and we get 

It is obvious that the spectral density given by Eq. (4.1 1) has 
a sharp maximum at o, in this case, where it is independent 
of the modulation depth of the plasma density. Such emis- 
sion is directed almost transverse to the propagation direc- 
tion of the pulse ( 8- 7r12). 

5. ENERGY OF THE WAVES EMITTED BY THE PULSE 

Let us consider a cylindrical surface with radius r and 
length d z ,  along the axis of which a pulse moves. According 
to Eq. (4.2), energy dW, passes through this surface during 
the entire time the pulse is moving: 

a w i w  w-w* 
d W r = d z ( i m d w  (,I * 

e2k;(7) wOmc ' G ( ~ )  w eO 

It can be stated that dW,ldz defines the energy lost by the 
pulse per unit path length in a stratified plasma because of 
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the emission of waves. It is obvious that the energy lost 
through the wave emission in a frequency interval close to a 
frequency w, according to Eq. (5.1), equals 

We shall be interested in the total losses of Eq. (5.1), 
and, introducing the dimensionless frequency x = w/ o* , we 
write 

where 

and the parameters a ,  b, d that characterize the length and 
width of the pulse and the ratio between kp and k, are given 
above. 

In order to estimate the losses, we consider as an ex- 
ample a plasma whose density is modulated by 10% 
(a=O.l)  with period A,= 2rrlkr=94 p m  relative to the 
mean value no = 1.5X loi6  cmW3. We shall assume that a 
laser pulse propagates in such a plasma, with a carrier fre- 
quency wo= 1.88X l0I5 sec-I ( A o =  1 pm), a duration 
r= 100 fs (10-l3 sec), a transverse dimension (the diameter 
of the focal spot) of 2R = 30 pm, and an energy of W = 1 J (a 
Rayleigh length of 710 pm). The wavelength of the excited 
plasma wave is A,= 283 pm,  and kr lkp= 3. The parameters 
a ,  b, and d i.1 Eq. (5.4) are less than unity. and we have 
Fz0 .5 .  According to Eq. (5.3), we find dWrldz-2.4 
erg/cm=2.4X lop7  Jlcm. As the mean plasma density in- 
creases, XI, decreases, the ratio k,lkp approaches unity, and 
the effect strengthens. 

6. CONCLUSION 

A short laser pulse propagating in a periodically inho- 
mogeneous (stratified) low-density plasma can emit rela- 
tively low-frequency electromagnetic waves. The frequency 
spectrum of the emitted waves has a lower limit that exceeds 
the plasma frequency. There is a definite connection between 
the frequency of the wave and the angle at which it is emit- 

ted, which essentially depends on the ratio between the 
density-modulation length and the wavelength of the plasma 
wave excited by the pulse. For large-scale density modula- 
tion, the emission is directed forward in a certain cone of 
angles, and its intensity peaks when the angle is close to 
zero. For small-scale density modulation, the emission ap- 
pears at all angles, and its intensity peaks at an angle of 
13==2rr/3. The emission intensity increases under resonance 
conditions, when the density-modulation period coincides 
with the wavelength of the plasma wave. However, this case 
requires special consideration, which obviously goes beyond 
standard perturbation theory, where we neglect the effect that 
density modulation of the plasma has on the propagation of 
the waves emitted by the pulse. The neglect of this effect for 
waves emitted at angles close to 7r/2 may be wrong. In par- 
ticular, this relates to emission at a frequency close to w,, 
under resonance conditions (kp= k , ) .  

Estimates have shown that energy lost by the pulse 
through the wave emission even under optimum conditions 
has no substantial effect on the energy of the pulse for rea- 
sonable propagation lengths. 

The effect that we have considered can be used as a new 
method for diagnosing powerful, short laser pulses in a 
plasma, as well as for creating smoothly tunable IR sources. 
In particular, radiation at frequencies close to the plasma 
frequency were recently observed in experiment.8 
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