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A self-consistent analytic time-dependent solution of the Schrodinger and Poisson equations 
describing interaction between electrons and an hf electric field in double-barrier structures has 
been obtained. The time-dependent space-charge density limits the transition probability 
between neighboring levels and suppresses transitions in which the level number changes by more 
than unity. The smaller the level number, the stronger the effect of the dynamic space charge. 
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The search for self-consistent solutions of the Schro- 
dinger and Poisson equations remain one of most interesting 
problems of quantum mechanics. But even in the static case, 
which can be treated using well-developed techniques (for 
aplications involving double-barrier resonant tunneling struc- 
tures, see Refs. 1-3), solutions are usually obtained numeri- 
cally. This paper reports on a problem in which self- 
consistent solutions of time-dependent Schrodinger and 
Poisson equations can be obtained analytically. This is the 
problem of resonant interaction between an electron in a 
symmetric double-barrier structure and hf electric field, and 
it is interesting not only from the standpoint of pure science, 
but also for its practical significance, because this interaction 
is the driving force in semiconductor generators of coherent 
rad~ation, and such generators operating in the terahertz 
range have been studied extensively in recent years. 

Consider the transport of a monoenergetic flux of elec- 
trons across a simple double-barrier symmetric structure of 
width a with thin (8-like) barriers495 and no dc electric field. 
A weak potential which is a harmonic function of time is 
applied to the structure, and the space charge and electric 
field outside the device are zero. The effect of static mace 
charge is ignored (one can assume, for example, that this 
charge is cancelled by ionized donors). Let the uniform elec- 
tric field inside the structure vary in time as 
E(t) = ~ ( e ' " ' +  e-'"I). For definiteness, we assume that 
electrons move from left to right. Then under these assump- 
tions, the time-dependent Schrijdinger equation has the form 

where q and m* are the electron charge and mass, 
a= qhb, cph and b are the height and width of the barrier, 
O(x) is the unit step function, qcp[x,$] is the change in the 
potential energy due to the space charge, and cp[x,$] is a 
solution of the Poisson equation 

where An[@] is the electron density perturbation in the 
structure, and E is the semiconductor dielectric constant. 
Since the amplitude of the harmonic field is small, all vari- 
able parameters should be also harmonic functions of time. 
In the small-signal approximation, we seek a solution of Eq. 
(1) with the perturbation 

H(x,t)= ~ - ( x ) e ' ~ ' +  ~ + ( x ) e - ' ~ '  

in the form6 

where $o is the solution for the unperturbed system 
(w0= glh, 8 is the energy of electrons incident on the struc- 
ture), and I tj/, 14 1 ~ ) ~ l .  Since the perturbation problem is lin- 
ear, *,=*l~El+*l~cpl.  

In first-order perturbation theory, the variation in the 
electron density has the form 

The functions ++ in this structure can be expressed as fol- 
lows: 

where 

and x+(x) are the particular solutions of the equation6 
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The coefficients A,, B ,  , C, , and D, are derived by 
matching the wave function and its derivatives at the barriers 
at each moment of time.495 

We assume that the perturbation V,(x) = - qExl2 gen- 
erates a change in the electron density n E ~ x ) c o s ( w t + ~ l ) ,  
leading to some change in the potential, which in turn modu- 
lates the electron flux. 

Suppose that the variation in electron density due to the 
field of the space charge has the slme spatial dependence 
t (x )  as the variation in density due to the uniform electric 
field (this assumption can be checked for each specific case 
by direct calculation). Denoting by n,[(x)cos(wt+ y) the 
density variation related only to the space charge, a uniform, 
harmonically varying field E cos (wt) will yield a potential 
energy of the form 

~ ( P N ( x )  
H(x, t )=  -qEx cos wt+- 

N 
[n, cos (wt+p l )  

+ n, cos( wt + y)], (6) 

where 

Here N is a normalization factor with dimensions of electron 
density, and the constants G I  and G 2  can be derived from 
the boundary conditions for each specific case. 

Let the perturbation H (x,t) = qcpN(x)cos (wr) [V, 
'q(PN(x)/2] correspond to the varying electron density 
nq[(x)cos(wt+p2). Then the perturbation of the potential 
energy given by Eq. (6) corresponds to the varying eiectron 
density 

In order to obtain a self-consistent solution, we equate the 
right-hand side of Eq. (7) and the space charge density, i.e., 

whereupon 

Since this equality hold at each moment of time, the 
coefficients of both cos(wt) and sin(wt) must be equal, 
thereby yielding n ,  and y. Thus, the perturbation V ( r )  in 
Eq. (6) corresponds to the electron density n(t)  given by Eq. 
(8) and the electron wave functions *= $o+ $l(E) 
+ Ql(cp(n(t))>. 

Following this scheme for the resonant interaction be- 
tween an electron and ac field in a double-barrier structure, 
we calculate n,, [(x), and P, ,  and verify that the dynamic 
space charge outside the structure is small. 

The equations for the coefficients A, , B , C ,  , and 
D, of the wave functions defined by Eq. (3) can be written 
in the matrix form as 

i 
1 0 - 1 0 

ik, - y k , 0 0 
0 sin k,a cos k,a - 1 

0 -k, cos k,a k, sin k,a ik, -y  

where =2m*a lh2 .  
In double-barrier structures the transmission factor has 

clear-cut resonances, and in symmetric structures it equals 
unity at values of k that are roots of the transcendental 
equation7 

kh2 2k --- tan k a =  - -- 
a m *  y 

The unperturbed electron wave function normalized by the 
electron density n is expressed as 

exp[ikx], x<O, 

A. sin kx+Bo cos kx, O<x<a,  (12) 

Co exp[ik(x-- a)] ,  x > a ,  

where 

The determinant of the system (10) is 

~ = ( 2 k : - ~ ~ ) s i n  kta-2k,y cos k,a 

+2ik,[kt cos k ,a+y sin k,al. (13) 

Let the electron energy in a monoenergetic flux of elec- 
trons pass through a resonant level numbered K, and let the 
electric field frequency correspond to a transition to level 
L. If the final state of the transition is a nonresonant level, 
then A-k,y, and if the barrier is sufficiently high 
( y e k , )  and the resonant transition is strong enough, the 
determinant will be small: 

Therefore, narrow resonant levels, only the transition prob- 
ability between two resonant levels is important . In the case 
of broad levels (y-k), transition probabilities with both 
emission and absorption of a photon of energy h w  may be 
comparable. 

For V,(x)= -qEx (see Ref. S), 
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so with (y.>k,) for resonant transitions, having calculated 
the function f in Eq. (10) and only retained terms with the 
highest power in y in (10) and (13), we obtain: 

C, - 9E 
(ik+ y)(ik,- y)[cos k,a cos ka 

2ik,m*02 

It follows from Eq. (10) that the sign of cos ka changes with 
level number, so only transitions in which the difference be- 
tween level numbers is odd are important for a double- 
barrier resonant tunneling structure with sufficiently high 
barriers (y %= k,). 

It also follows from Eqs. (15) and (16) that the validity 
criterion for perturbation theory in this problem has the form 

i.e., perturbation theory is valid when the classical interac- 
tion energy between an electron and hf electric field over the 
structure length is much less than the difference between 
resonant levels, and the higher and wider the barriers (there- 
fore, the more narrow the resonant levels), the smaller the 
field amplitude. 

The active conductivity a of a quantum structure (which 
is determined by the relationship between the photon emis- 
sion and absorption probabilities) and the current density 
j(a) leaving the structure, with the electron wave functions 
given by Eq. (4), are5g6 

It follows from a comparison of Eqs. (17) and (18), taking 
due account of Eqs. (15) and (16), that the induced current in 
a double-barrier structure, with resonant transitions between 
narrow levels being responsible for the active conductance, 
is much higher than the current through the structure bound- 
aries (a-y4, j-y2). Therefore, as we suggested above, the 
space charge outside the double-barrier structure has a little 
effect on the resonant interaction between electrons and hf 
field. 

From Eqs. (15)-(17) the following expression can be 
derived (ignoring space charge) for the active conductivity of 
a symmetric double-barrier structure in the case of electron 
transitions between two resonant levels (ak,=mL): 

Since only transitions between two levels are important 
in the case of narrow resonant levels, we consider for sim- 
plicity of calculations only transitions between the ground 
and lowest-lying levels (the final equations will naturally 
also hold for resonant transitions from the ground state to 
higher levels). In this case we have the following expressions 
for the coefficients of the wave function (4): 

Substituting Eqs. (20) and (21) into Eq. (4), taking Eq. (12) 
into account, and retaining only the lowest-order terms in 
y,  we have from Eq. (3) 

An(E)= 
~ E Y  4n 

2 sin o t  sin kx sin k-x. (22) m*02k?k 

According to this equation, the perturbation of the electron 
density changes sign over the structure length and, since 
q<O, it lags the field variations by a phase shift of 3 ~ 1 2  
( P I  = - 3 7~12) and the potential by ~ 1 2 .  

Now to solve of Eq. (9) in terms of An(E), we have to 
calculate the density perturbation An(An(E)) and verify 
that it has the same spatial dependence as An(E). 

For a density variation of the form N sin kx sin k-x, and 
noting that the field due to the space charge is weak at the 
boundary, the potential takes the form 

If we express $o cos(k-k-)x and $o cos(k+k-)x as 
sums of sines and cosines, we have terms with the wave 
vector k- , which is an eigenvalue of Eq. (5) for this 
str~cture.~ Since in a double-barrier structure with thin, high 
barriers (k6y )  and a resonant transition between the K- and 
L-levels (we take for definiteness K>L) we have k=Kk,, 
k--Lkl, o=(K2-L2)ol ,  and wl=i5,/Ii  (where 5, and 
k, are the height of the first resonant level and the anplitude 
of the respective electron wave vector), the perturbation 
V- (x) = q p(x) can be expressed as 

Here we use the notation v=q2~ /ck : .  Given that k- is an 
eigenvalue of Eq. (5) for this structure , we obtain the par- 
ticular solution of Eq. (5) after substituting Eq. (24) into Eq. 
(5): 
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Calculating the functions f in Eq. (10) and retaining the 
highest-order terms in y (only the term with f3 contributes), 
we obtain 

Taking due account of Eqs. (4) and (12), we derive from 
Eq. (3) 

vay4  K2+L2 
An(V)= - 

hwkk? 4KL(K2- L2) 
sin o t  sin kx sin k-x. 

(28) 

Hence, it follows that the variation in the electron density 
due to the space charge potential lags the latter by w12 
(/I2= - w12) and, as was assumed above, it has the same 
shape as the variation in the electron density due to the uni- 
form electric field. The coefficients n~ and n, in Eq. (9) are 

~ E Y  4n q 2 ~  ay4n K ~ + L ~  
n E = -  m*w2k!k9 "'=z hwkik 8KL(K2-L2) ' 

(29) 

Substituting Eq. (29) into Eq. (9) and noting that 
/I = - 3 w12 and /I2 = - w12, we obtain 

rp n n 
tan y = -  7, n,=- rp cos y. 

N 

For subsequent calculations, it is convenient to introduce 
the complex charge and potential: 

cp(a,t) = [cp,(a) + icpy(a)]eio'+ c.c. (32) 

Then 

N,=n, cos y, (33) 

Ny=nE+n(, sin y, (34) 

cp(a)= cp(E)+ cp(N,)+ icp(N,.). (35) 

Given cp(N) in (23) and Eq. (24), we have 

As in Eq. (37), the expression for D- in Eq. (4) can be 
written 

Then substituting Eqs. (20) and (26) into (38), taking into 
account Eqs. (33), (34), and (29), and writing 

we obtain 

Thus, the variation of the potential (32) 

corresponds to the perturbed part of of the wave function (4) 
with coefficients 

Given these expressions, one can easily reconstruct the elec- 
tron wave function under any harmonic potential applied to 
the structure, such as U(r)  = U cos wt. In most cases the ef- 
fect of dynamic space charge on the ac conductivity of the 
structure (or probability of electron transitions between lev- 
els), rather than the electron wave function, is what is de- 
sired. The conductivity can be derived directly from Eq. 
(17), using Eqs. (40) and (41). Generally speaking, this cal- 
culation should not use the active specific conductivity a 
defined in terms of the hf field amplitude, a = 2 ~ l a ~ ~ ,  but 
the active conductance G = 2w/u2 ,  defined in terms of the 
hf voltage U applied to the structure (here W is the hf power 
absorbed or emitted by electrons), although again in this 
case, one can also formally introduce the mean field 
E =  Ula and a = a G .  Given that IC-I = I D -  I ,  we therefore 
find from Eqs. (17), (40), and (41) that 

Clearly, regardless of the structure parameters, the effect 
of the dynamic space charge on the resonant interaction be- 
tween electrons and an hf electric field in symmetric double- 
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FIG. 1. The function F,,,- , ( lo , l lws) .  The digits indicate numbers of 
initial resonant levels of transitions. 

barrier structures is determined only by the labels of the lev- 
els taking part in the transitions and the ratio of the structure 
conductivity UE (19), calculated without the contribution of 
the space charge, to ws. Plots of FK,,- , ( l )  are given in Fig. 
1. It is clear that in resonant transitions, the peak active con- 
ductivity of a double-barrier structure is higher, the higher 
the levels participating in the transitions. The growth rate of 
this maximum with the level number is lower at higher lev- 
els. For example, (F32)m,l(F21)m;vr=2, and as K+m the 
maximum possible conductance is I c,,,I =2.14ws/a (the 
corresponding conductivity is l c E I - 4 . 3 ~ ~ ) .  At 4'<0.7(,,, 

the space charge has little effect on the transition rate be- 
tween levels (here cm, is the argument at which the function 
FK,K-,(l) peaks). At higher lffEl/w&, the space charge first 
limits the transition probability and then leads to its decrease. 

An analysis of Eq. (43) demonstrates that the dynamic 
space charge severely limits the transition probability be- 
tween levels whose labels differ by more than unity. For 
example, as K+m the maximum of the function F K , K -  I is 
more than 40 times the maximum of FK,K-3. 
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