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We suggest an analytical method for finding the exact steady-state solution of the problem of the
resonant interaction of atoms and a monochromatic field for closed transitions
Jg=J—Jje=Jj+1, where j, and j, are the angular momenta of the ground (g) and excited (e)

states, for light of arbitrary intensity and ellipticity. The solution for j=0,1/2,1, ..

.98

given in explicit form. We study the properties of the resulting solution and prove its uniqueness.
As an application we determine the dependence of the absorption coefficient on the
ellipticity and calculate the gradient force acting on slow atoms. © 1996 American Institute of

Physics. [S1063-7761(96)01211-5]

1. INTRODUCTION

Many problems of the resonant interaction of atoms and
polarized light, such as nonlinear polarization spectroscopy
and the mechanical action of light on atoms, require knowing
the exact steady-state solution of the optical Bloch equations
for the atomic density matrix with allowance for the Zeeman
structure of the energy levels involved. Finding such a solu-
tion in analytical form for closed optical transitions (where
the ground level is the lower level and the total population is
conserved) in the general case of arbitrary ellipticity and in-
tensity of the field is extremely difficult. The main math-
ematical difficulties stem from the fact that the number of
coupled equations for the elements of the density matrix is
large. In addition, even when the transition is not saturated, a
perturbation-theory expansion in powers of the atom—field
coupling constant does not simplify the problem much due to
the inhomogeneous distribution of atoms over.the magnetic
sublevels and the appearance of Zeeman coherences in the
ground state (optical order effects).

Earlier (see Refs. 1 and 2) we found an exact steady-
state solution in general form for two groups of transitions,
Jg=Jj—j.=j—1 and j,=j—j,=j, where j, and j, are the
total angular momenta of the ground (g) and excited (e)
states (j is arbitrary), belonging to the class of dipole-
allowed transitions (Aj=je=Jjg=0,%1). The
Jg=Jj—Jj.=j+1 transitions were examined in Refs. 3-5,
where an exact solution for the particular cases of linear and
circular polarization of the field was obtained. For light of
arbitrary ellipticity a steady-state solution in analytical form
was obtained®’ only for transitions involving small values
of total angular momentum (j,=0—j,=1 and j,=1/2—},
=3/2).

In this paper we study the resonant interaction of atoms
with energy levels degenerate in the projection of the total
angular momentum and a polarized monochromatic field.
We propose an analytical method for finding the exact
steady-state solution of the problem, with allowance for ra-
diative relaxation, for closed transitions j,=j—j,=j+1
and arbitrary ellipticity and intensity of the light. Our method
is based on a theorem according to which in the case of
purely radiative relaxation of the atoms the steady-state den-
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sity matrix can be written in an invariant form as a polyno-
mial of the operator of the resonant atom—field interaction.
The expansion coefficients can be found from recurrence re-
lations solvable for all values of j. We list the coefficients for
Jj=0,1/2,1, ..., 5 explicitly. In the general case of arbitrary
ellipticity the validity of the theorem is verified by direct
substitution for j=0,1/2,1,...,10. The theorem is proved
for any value of j in the case where the field polarization is
close to circular. Note that this approach can also be applied
to j,=j—j.=Jj transitions, with the steady-state solutions
coinciding with the results of Refs. 1 and 2 obtained by other
methods.

We find that just as for the j,=j—j,=j—1 and
Je=J—Je=] transitions,"”? the solution possesses the fol-
lowing property: the anisotropy of the density matrices of the
excited state (p°¢) and the off-diagonal elements (p¢® and
p%¢) is determined entirely by the ellipticity of the light,
while the intensity and the detuning from resonance enter
only into the corresponding scalar factors (see (22)—(24)).
We also find the conditions for strong and weak saturation of
a transition.

Finally, to illustrate the possible applications we study
the ellipticity dependence of the absorption coefficient and
calculate the velocity-independent component of the gradient
force.

2. STATEMENT OF THE PROBLEM

Basically the statement of the problem is similar to that
of Ref. 2. We examine the interaction of atoms whose
ground and excited states form a closed optical transition
Jg=Jj—Jj.=Jj+1 and an elliptically polarized resonant plane
wave

E=Egje exp[ —i(wt—k-r)]+ c.c,, (1)
where
e= ele
q=0,*1 4

is the unit complex-valued polarization vector of the field,
and the e“ are its components in a cyclic basis {e,=e.,
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e. =% (e,*e))/ \/5} In particular, if we chose the quanti-
zation z axis directed along the wave vector k and the x axis
directed along the major semiaxis of the polarization ellipse,
we can write

e=cos ge,+i sin ge,
=—cos(e—m/4)e, ,—sin(e—7/4)e_,, @)
—mld<e<a/4,

where ¢ is the ellipticity angle (tan & is the ratio of the
minor semiaxis of the polarization ellipse to the major semi-
axis, and the sign of & depends on the sense of rotation).
When dealing with a low-density gas, we can completely
ignore interatomic collisions. We also restrict our discussion
to the zeroth order in the small recoil parameter #ik/Ap<<1
(here %k is the photon momentum, and Ap is the dispersion
of the atomic momentum), i.e., we examine the motion of the
center of mass in the classical setting. Then the quantum
kinetic equation describing the evolution of the density ma-
trix of atoms in the external field (1) assumes the form
i

d . P S X
= vV |p+T{pt=—7[Ho.pl~ 5 [Ve-p.p). ()

at

Here v is the atomic velocity, ﬁo is the Hamiltonian of a free
atom in the center-of-mass reference frame, and in the case
of optical transitions we can limit ourselves to the electric
dipole approximation for the operator ‘75_ p= ~(&-E) de-
scribing the atom—field interaction (d is the dipole moment
operator), and the operator {3} describes radiative relax-
ation.

We split the density matrix into four matrix blocks
P38, pee, p¢8, and pt¢ as follows:

Pt =8 tiglPleosng). o, =(eopelble. ).

(4)

pf‘ge/"g=(e’M3|ﬁ g,,ug), pfl-eg[l.e:<g’ﬂg|ﬁ e’l"e>,

where {|g,u,)} and {|e,u,)} are the Zeeman wave functions
of the ground and excited states. In the resonant approxima-
tion we can express the fast dependence on time and coordi-
nates in p¢ and p8¢ explicitly,

pes=exp —i(wt—k-1)]p%,

— 3 )
pi=expli(wt—k-r)]p¥,

and write the following system of equations for the compo-

nents that are spatially homogeneously and slowly vary in
time:

Ja vy PN A -

gl Seg . _: ~ge__ nee
(ﬂt 7 15)p iQ[Vp V], (6)
a vy a Ata Ao

2Tt p¥e=—iQ¥[Vipee—pseviy, ™
9 ) o a A
(a—,+v)p“=—f[ﬂvfw—ﬂ*wv*], ®)
d n Ap A St 2 2vey7
= 35 ) = — LRV - eV, ©)
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Tr{p88}+ Tr{p‘} = 1. (10)

Here 6=(w—w,—k-v) is the detuning from resonance
with allowance for the Doppler shift, w,,=(E,—E)/f is
the transition frequency, 7 is the spontaneous relaxation rate,
and Q=—Ey(e|d|g)/h is the effective Rabi frequency,
with {e||d||g) the reduced matrix element of the dipole mo-
ment. The matrix elements of V can be expressed in terms of
3jm-symbols in accordance with the Wigner—Eckart
theorem:®

Je 1 Jg
TMe 9 Mg

(—1)Je ke el (11)

V =
Heltg q=0,*x1
For closed optical transitions the operator ¥{p*‘} of the ar-
rival of atoms at the ground state due to spontaneous emis-
sion has the following standard form (see, e.g., Ref. 9):

. ~ g
VAPV =Y(2j+1) 2 (= 1) kel
8¢ q,/‘e'#; Me 4 Mg
ce AT B PR S
X p°¢ (= 1)e ke , . (12)
Beltte —HMe 4 l“g

Setting all time derivatives in Egs. (6)-(10) to zero,

.a‘gg a‘ee_acz’g_&"—ge 0 13)
aP TuP TP Tal T (

and expressing the off-diagonal elements 5”3 and 5’“ in
terms of the density matrices p#¢ and p°¢,

prsm - — [ pss— peei)
y2—id ’
14
“ge i0n* T hee  seeyt o
pEe= [V'p*—psVT],

T y2+is

we arrive at the following closed system of matrix equations
for the steady-state p&¢ and p°°:

a A npo Y Ant A PSR
,ypee: 'ySVpggVT— ES{VVTpee'Fp“VVT}

+i8S{VVipee—peevity,

(15)
Hpee) == ySVI B+ 2SIV s+ sV
+ioS{ViVpss— pseVivy,
where
S= |Q|2 16
T Y4+ & (16)

is the saturation parameter.

Note that generally Eqgs. (6)—(10) describe damped Rabi
oscillations, and the condition for a steady-state regime to set
in for any value of S can be written as follows:

ySt>1, yr>1,
where ¢ is the time over which the atom interacts with the
field.
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3. THE EXACT STEADY-STATE SOLUTION

Our method is based on a theorem formulated below.

Theorem. For arbitrary j, and j, in the case of purely
radiative relaxation, when the steady-state Bloch equations
have the form (15) with the arrival operator (12), the den-
sity matrices p%% and p¢® commute with the Hermitian ma-
trices V'V and lA/‘A/T respectively:

[ViV,pe81=0, [VV'pe]=0. (17)

As is known from algebra, this means that the solution
of system (17) is diagonal in the basis of the eigenvectors of
the operators V'V and VV'. In addition, since by (17) the
factors of i § in (15) vanish, the matrices p8¥ and p®¢ depend
only on even powers of &.

The validity of Theorem (17) for the j,=j—j,=j—1
and j, = j— j, = j transitions follows directly from the results
of Refs. 1 and 2.

In the present paper we assume that Theorem (17) re-
mains valid for j,=j—j,=j+1 transitions. This makes it
possible to develop an analytical procedure for finding
steady-state solutions for any j.

Before we begin to look for the solution of the system of
equations (15) in general form, let us examine the weak-
saturation limit (S<<1).

3.1. A method for finding the solution in the case of weak
saturation

For small S<1, keeping in (15) the first-order terms in
S, we get

¥B; = ySVAEVT,
sraeer _ Y orvtvragg s Agg Ut
Hpit=5S{VIVoEE+p5° vV}

+i8S{VIV 88— pgEvIVY). (18)

This readily leads to a closed equation for p§® without the
saturation parameter S:

HVBEVT) = TAVIV38E+ 54V 1V

+is{vivpss— pesvivy. (19)
If we employ the hypothesis of Theorem (17), the solution of
Eq. (19) for the j,=j—j,=j+1 transitions can be repre-
sented in the form of a polynomial in the matrix viv:
2j

=Bo2, Cu(&)(VV)", (20

where B, is a normalization constant. Indeed, since the ei-
genvalues of ViV are analytic functions of & and at
e=* /4 (circularly polarized light) all these eigenvalues
are distinct,

_ (jH1+p)(jt2+p)
“U2(j+1)(2j+1)(2j+3)°

p=—j,—j+tl,....j

according to the well-known theorems of the theory of ana-
lytic functions, the eigenvalues may become degenerate only
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at discrete points in the analyticity interval — w/4<e<n/4
(say, for linearly polarized light (¢=0) we have twofold
degeneracy). This suggests that the expansion (20) deter-
mines the solution of Eq. (19) unambiguously as an analytic
function of &, provided that Theorem (17) is valid.

Plugging (20) into (19) yields a system of equations for
the coefficients C,(&):

2j 2j

= 2 Ca(e)F{(VVH) 1} = 2 C(e)(VIV)™+1, (21)

The number of equations in (21) is (2 + 1)2, but the system
is highly degenerate, and its rank is equal to 2. Hence one
of the coefficients can be chosen in an arbitrary manner (for
instance, below we put C,i(g)=1). To determine the
C,(g) we can take any 2j linearly independent equations in
(21). Note that the coefficients C,(g) depend only on the
ellipticity and are invariant, i.e., do not depend on the choice
of the coordinate system.

3.2. Solution in the general case

Let us return to the system of equations (15). If we know
the nontrivial solution of the system (21), the steady-state
density matrices p¢ and p38 for an arbitrary S have the form
of expansions in powers of the operators vV and VIV:

2j

ﬁ"=/3SEO Co(e) (VY1

2j 2j (22)

pE=p 2 c (e)(vTV)"+SE C.(e)(VIV)"*1|.

Direct substitution with allowance for (21) clearly shows that
(22) satisfies the system of equations (15) identically. The
constant B can be found from the normalization condition
(10):

B=[ay+2Sa,]" ", (23)
2j
ao=Tr }_}O c,,(s)(‘?ﬁ‘/)"},

2j
al=Tr[ 2_)0 cn(s)(&*(/)"“l.

Here we have used the
T{(VIV)} =Te{ (VV)"}.

Thus, according to the theorem (17), the solution of the
system (15) consisting of (2j+ 1)?+(2j+3)? equations can
be written in an analytically invariant form by determining
only 2j+ 1 coefficients (2 coefficients C,(¢), since one of
these can be selected in an arbitrary manner, and the normal-
ization constant 3).

Plugging (22) into (14), we arrive at an expression for

p*¢ and p*:

obvious fact that

2j

dal 1% }_}0 C(e)ViV)". (24

y2—id

'!:“!)

=(p*9)f=—

The expressions (22)—(24) show that the anisotropy of
the steady-state matrices p*¢, p®®, and p** is determined en-
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tirely by the unit polarization vector e of the light, and the
amplitude and detuning of the field enters only into the re-
spective scalar factors. At the same time, the anisotropy of
the ground state strongly depends on the saturation param-
eter S, since the second term in the expression for p&¢ (see
(22)) can be obtained from the first via multiplication by the
matrix S(VT‘A/). The invariant operator form of the solutions
(22)-(24) makes it possible to calculate both the density ma-
trix elements (the jm-representation) and the multipole mo-
ments of the density matrix (the xqg-representation) in an
arbitrary basis. Note that in contrast to a linearly or circularly
polarized field, an elliptically polarized field induces a non-
zero Zeeman coherence in any system of coordinates.

Let us show that the analytical solution (22)—(24) is
unique. Indeed, since the normalization (10) is conserved,
the system of equations (15) for closed optical transitions is
singular, and one of the linearly dependent equations in (15)
can be replaced by (10). The resulting system of equations
for the components of the matrices p*¢ and p## is inhomo-
geneous due to the presence of the right-hand slide of Eq.
(10). In addition, it is obvious that the determinant A(g) of
this system is an analytic function of the ellipticity angle &
(see Eq. (2)). Taking now the value &= * /4 (circular po-
larization), we can easily show that because of optical pump-
ing the problem is reduced to the well-known two-level
model, where the uppermost and lowermost Zeeman states
le,j+ 1) and |g,j) act as the levels. And the two-level model
has a unique steady-state solution, which implies A(7/4)
# 0. Then, basing our reasoning on the most general proper-
ties of analytic functions, we can say that A(e) vanishes
only at discrete points in the interval — w/4<e<w/4, and
the solution of the system of equations (15) and (10), an
analytic function of &, is unique, which is what we set out to
prove. Note that such reasoning can be employed in proving
the uniqueness of the analytical solutions found in Refs. 1
and 2 for the j,= j—j, = transitions, since in the case of
circular polarization the solution is obviously unique, too.

As (22) and (23) imply, the ratio of the total populations
of the ground and excited states is

LLANE

T )

This readily leads to the conditions for weak and strong satu-
rations of a transition. For instance, weak saturation corre-
sponds to

a,
S—<I1. (26)

@

Here

1
Tr{p}<Tr{p*}, B~—_,
0

and in (22) we can ignore the second term in the expression
for ps&:

2j

s o
pe=— 2 Cyle)(VV)",
Qg n=0
(27)
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2j
1 al A
pEE~— >, C,(e)(VIV)".

ag n=0

The condition that is the opposite of (26),

a
S—>1, (28)
@y
corresponds to strong saturation of the transition. Here the
total populations of the ground and excited states are roughly
the same,

1
T{pI~Tr{p} B~ 55ar

and in (22) we can ignore the first term in the expression for
pes:
T
ree ‘7 Otyn+1
P~ g 2, Cae) VYD,
YT PO Otyyn+ 1
P~ 5 2 Cule)VIV)L.

Since for the j,=j—j,=j+1 transitions the matrix
Vv acting in the space of the ground-state Zeeman wave
functions {|g,u,)} is always nonsingular (according to Ref.
1, only the matrix VVT acting in the space {|e,u,)} is sin-
gular), the condition (28) for strong saturation holds for a
field of arbitrary ellipticity. This constitutes the main differ-
ence of this case from j,=j'—j,=j' transitions (j' is a
half-integer), where, as Ref. 2 implies, the condition for
strong saturation is highly dependent on the ellipticity of the
field. For instance, in a circularly polarized field there is no
intensity at which the j,=j'—j,=j’ transitions ( j'is a
half-integer) become saturated (the effect of coherent trap-
ping of populations).

3.3. Calculating the coefficients C,(¢)

The solutions (22)—(24) show that to fully determine the
steady-state solution we must find the coefficients C,(g),
which constitute the solution of 2j linearly independent
equations in (21). Since the C,(¢) are invariants, we can use
an arbitrary system of coordinates for their calculation. We
select the one suggested in Ref. 10. As is known, an arbitrary
ellipse is a curve along which a cylinder and a plane inter-
sect, so that to each elliptic polarization vector e we can
assign a cylinder (generally there are two such cylinders)
whose section is the given ellipse e. We direct the quantiza-
tion z axis along the axis of the cylinder and the y axis along
the minor semiaxis of the polarization ellipse (Fig. 1). Then,
as Ref. 10 implies, the elliptic polarization e is a linear com-
bination of the linear and one of the circular components:

e=\/cos(2¢)ey+ \/5 sin g€ . (30)

For the sake of definiteness we take the decomposition
e=\cos(2¢&)e,+ V2 sin e, . 31
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FIG. 1. The coordinate system suggested in Ref. 10 in which the z axis (the
quantization axis) is directed along the axis of one of the cylinders built on
the polarization ellipse e (the dashed lines stand for the second cylinder) and
the y axis is directed along the minor semiaxis of the polarization ellipse. In
this base the vector e is a superposition of the linear component and one of
the circular components (see Eq. (30)).

The light-induced transitions correspondmg to (31) are de-
picted in Fig. 2. In this case the matrices V'V and VV' are
real and symmetric and have three nonzero diagonals (de-
noted by *):

* * * 0
0 * * a4y, O
viv= 0 * auu, * 0 ,
0 Apu+vp, * * 0
0 * * *
0 0 * *
me=—j,—j+1,....j, (32)
0 0 ) . .0
* * 0
* % bu-nu, 0
por=ll 0+ b, o0 -,
0 bpu+vu, * * O
O * * *
0 0 * *
Me=—j—L—j, ..., j+]

where, in accordance with (11) with (31), the matrix ele-
ments have the form
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-j-bv -j -j+1 Jj-1 j+1

A AR

-ji i+l i-v
FIG. 2. The diagram representing light-induced (solid lines) and spontane-
ous (wavy lines) transitions in the system of coordinates depicted in Fig. 1
with the vector e specified by (31).

a"‘g"g

_ [(j+1)2_/L§]COS(28)+(j+ 1 +,u,g)(j+2+p,g)sin2 €

(2j+3)(2j+1)(j+1)
Quglug=1)
B AT NG+ p)(+1—py)
T e T T (24 3)(2jF (1)

X ycos(2¢)sin &,

bl“’e"’e
LG+ 1)2=p2cos(2e) +(j+ pm)(j+ 1+ p,)sin® &
B (2j+3)(2j+1)(j+1) ’
b u,~ 1=~ 1,

_Utp U+ T+ p)(+2-p)
(2j+3)(2j+1)(j+1)

X \/cos(2¢€)sin €.

For the 2 linear independent equations for determining
C,(g) we select those obtained from (21) by taking the off-
diagonal matrix elements between the states (g,u| and
|g.), where w runs through 2j values:

o

with u=—j,—j+1,...,j—1. This system of equations is
of triangular form. Indeed, by direct multiplication we can
show that the matrices (VV)* and (V‘;T)k in the base (31)
are real and symmetric and contain 2k+ 1 nonzero diagonals
for 0<k<2j. In addition, the matrices (V'V)% and
(VIV)¥*! do not have zero diagonals, while in the matrix
(VVH2* 1 only the first column and the first row consist of
zeros. Hence for a fixed p only terms with n=2j,
2j—1,..., j—u—1 contribute to (33). The terms w1th
n<j—pu—1 contribute nothing because, first,

2j

2 Cale) H{(VVH 1}

2j

-2 Cua)VIY)! (33)

(n=0,1,...,j—pn—2)

(g.ul(V!
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and, second, since the arrival operator ¥{- - -} (see (12)) does

not provide additional coherence, we have

(8.1 F(VVH* Y5, /) =0, J-p-2).

Thus, at u=—j Eq. (33) couples only two coefficients,
Cyi(e) and Cy;_((); at u=—j+1 this equation couples
three coefficients, C,(€), Co;— (&), and C,j_5(€); etc.:

0=A}""'Cy)(e) +AYZ1Caj1(8),

(n=0,1, ...

0=A%72C,(e)+AY3Cy;- (&)
A%,_%Cu—z(ﬁ),
(34)

c+AKC(e)+- - +AKC(8),

0=A%,C,(8)AY;_Caj-1(&)+- - +AJCo(e),

where

g,j>,

(35)

P Ao
Af=<g,j—k—1H;y{(VVT)’“}—(VTV)’“}

k=2j—12j-2,...0, 1=2j2j—1,... k.

We can show that all the diagonal coefficients satisfy
Af # 0, i.e., (34) is indeed a system of linearly independent
equations. The triangular form of the system (34) makes it
possible to write the recurrence formula for the coefficients
C,(¢g) explicitly:

2 AIC (&), (36)

na=n+

Caj(e)=1, C,(8)=—

where n=2j—1,2j—2,...,0. Thus, by selecting the basis
(31) and the off-diagonal matrix elements in (31} in a spe-
cific form we solve the problem of determining the C,(¢) by
Gauss’s method.

It would seem that the system of equations for the coef-
ficients C,(¢) acquires a triangular form similar to (34) if we
take the off-diagonal matrix elements between the states
(8.l =jj= 1., = 1)

0=A%" 'cz,(e>+A2,' 1Cyjmi(e),

0=A%72C,(e) +A3[21C,j1(8) +AFIT5Co; 2(8),

0=ggjczj(8)+ggj (Cajo1(8)+ -+ - +AYCo(e).

However, for all values of j the coefficient A2 . 2 is zero,
and the first two equations are linearly dependent.

Below we give the results of calculations of the coeffi-
cients C,(g) (n=2j,2j— .,0) by Egs. (35) and (36) for
eleven transitions jg_j—U‘, j+l at j=0,1/2,1, ,5. We
also give the coefficients ay(g) and (&), which determine
the normalization constant B (see (23)).

3.3.1. The jg=0— jo,=1 transition

=1, a=7
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3.3.2. The jg=1/2— j,=3/2 transition

1 1 5—cos(4¢)
Cl—l’ CO—__1_21 ao_gv al_ 144 .
3.3.3. The jy=1—j,=2 transition
L 2 c _7+2 cos(4¢)
G=L G="75 Co" 7500
21—4 cos(4¢) 7—3 cos(4¢)
®=7 1500 0 YT 3000
3.3.4. The jy=3/2— j,=5/2 transition
| 1 c _155+29 cos(4e)
6=l G="% ©""igs0

27+ 13 cos(4¢) 69— 29 cos(4¢)

Co=™ "Teson0 7

84 000 ’
169— 108 cos(4e)+3 cos(8¢)
“ar= 1440 000
3.3.5. The jy=2— j,=3 transition
4 440+ 59 cos(4¢)
Ce=l, G==37, G355
C - 13614497 cos(4¢)
- 3472 875 ’
_2[ 1083+ 737 cos(4e)+32 cos(8¢)]
o 510 512 625 ’
_2[9615—6094 cos(4e)+ 167 cos(8¢)]
%o~ 510512 625 ’
_269—220 cos(4e)+15 cos(8¢)
%= 56 723 625

3.3.6. The jg="5/2— jo=7/2 transition

5 1495+ 153 cos(4¢)

Cs=1, Ci=—5z, 3= 88 704 ’

c 22 589+ 6507 cos(4¢)
2 34771 968 ’

_ 5[4713+2596 cos(4¢) + 83 cos(8e)]
= 1 947 230 208 ’

B 25[ 1167+ 988 cos(4&)+ 85 cos(8¢)]
o 327 134 674944 ’

25[4659—3796 cos(4e)+257 cos(8¢)]
81 783 668 736 ’

25[3562— 3435 cos(4¢e)+390 cos(8&)— Scos( 129)]
555 137 630 208

ang=

a,=
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3.3.7. The jg=3— jo=4 transition

2 1175+ 96 cos(4¢)
C6= ], C5=_§, C4=

oz 15 799+ 3709 cos(4¢)
58 968 ’ 3 17 336 592 ’

c _ 2892 489+ 1318 732 cos(4&) +32 705 cos(8)
2 128 152 088 064 ’

_ 5[313723+226 384 cos(4s)+15 621 cos(8¢)]
= 5382 387 698 688 ’

B 25[24 295+ 23 964 cos(4e)+3165 cos(8¢)+64 cos(12¢)]
o 387 531 914 305 536 ’

__25[710 311—683 706 cos(4&)+77 325 cos(8&) —986 cos(12¢)]
o= 387 531 914 305 536 ’

_ 25[6070— 6573 cos(4€)+ 1050 cos(8)—35 cos(12¢)]
B 32 520 160 641 024 :

a,

3.3.8. The jg=T7/2— jo=9/2 transition

7 7[697+ 47 cos(4¢)]
C7=1, C6=—§67 C5=

_ 6797+1335 cos(4¢)
216 000 »oTAT 5 832 000 ’

coe 101 098 369+ 38 951 668 cos(4€)+779 019 cos(8¢)
3 2 911 334 400 000 ’

52718 937432730 548 cos(4&)+ 1861 491 cos(8¢)
Cr=- 87 340 032 000 000 ’

c _7[2048 696 150+ 1788 745 935 cos(4&)+ 197 248 026 cos(8¢) +3144 641 cos(12¢)]
e 2 490 238 992 384 000 000 ’

49[2400 366+2642 251 cos(4e)+468 418 cos(8¢)+20 613 cos(12¢)]
0= 4980 477 984 768 000 000 ’

49[ 65 149 338—70 477 367 cos(4e)+ 11232 886 cos(8¢)—373 209 cos(12¢)]
G0~ 2 490 238 992 384 000 000 ’

49[338 377— 398 888 cos(4¢)+81 620 cos(8&) — 4760 cos(12&)+35 cos(16¢)]
“r= 139 314 069 504 000 000

3.3.9. The jg=4— jo=5 transition

8 _ 14[2470+ 141 cos(4e)] _ 2[1450 183+243 387 cos(4¢)]
Cs=1, Cr=—33, Ce= 1 388 475 »oTsT 2061 885 375 ’

10851 455+3597 104 cos(4&)+59 763 cos(8¢)
Ca= 226 807 391 250 ’

56724 509+ 30 650 862 cos(4)+ 1469 889 cos(8z)
G=- 56 134 829 334 375

b}

c _ 3153 457 345+2442 690 541 cos(4&)+229 168 019 cos(8&)+2977 919 cos(12¢)
- 240 818 417 844 468 750

)

_ 7[547 223 774+ 548 709 937 cos(4¢&)+83 763 746 cos(8¢)+3071 183 cos(12¢)]
e 397 350 389 443 37343 750

’
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98[38 190 410+ 45 612 597 cos(4&)+ 10 071 846 cos(8&)+713 051 cos(12e)+ 8192 cos(16¢)]
Co= 12 019 849280 662 046 484 375 ’

98
~ 12019 849 280 662 046 484375

—54451074 cos(12e)+ 399317 cos(16¢e)],

49[ 599 569— 753 768 cos(4&)+ 186 228 cos(8&)— 15 960 cos(12¢e)+ 315 cos(16¢)]
*= 10 877 691 656 707 734 375 )

a, [3886 404 435— 4578 763 678 cos(4e)+935 599 096 cos(8z)

3.3.10. The j,=9/2— J,= 11/2 transition

1 6755+333 cos(4¢e) _ 810761+ 118287 cos(4¢)
Co=1, Ce=—7. Cr=—7%55500 * C6~ 496 584 000 ’
_ 304 103 347+ 88 056 060 cos(4¢)+ 1243 857 cos(8¢)
Cs= 4952 597 760 000 ’
Con 53 684 221 357+ 25 535 542 692 cos(4€)+ 1052 208 687 cos(8¢)
4 35955 859 737 600 000 ’
187 307 519 134+ 129 416 693 787 cos(4&)+ 10 500 196 946 cos(8&)+ 114 166 005 cos(12¢)
G= 7910 289 142 272 000 000 ’
com 4886 243 962+ 4455 970 441 cos(4e)+ 592 969 494 cos(8¢)+ 18 474 983 cos(12¢)
N 20 473 689 544 704 000 000 i
7
C\= 16390 513 094 391 308 000 000[3315 809 101+ 3685 574 600 cos(4€)+ 717 658 724 cos(8¢)
+43 558 904 cos(12¢)+ 412303 cos(16¢)],
49
Co= [18 106 229+23 015 384 cos(4€e)+ 6026 372 cos(8¢)

2437327 525 384 413 184 000 000
+595 560 cos(12¢)+ 15 815 cos(16¢)],

49
0760 831 881 346 103 296 000 000

~23099 048 cos(12¢) + 455 101 cos(16¢)],

49
~ 7649 257 763 930 112 000 000

—372 435 cos(12¢)+ 13 230 cos(16g) — 63 cos(20e)].

[870 013 975— 1093 383 576 cos(4&)+269 893 228 cos(8¢)

[8613 290— 11 386 350 cos(4&)+ 3263 400 cos(8¢)

a,y

3.3.11. The j4=5— j,=6 transition

ool Com 10 c _ 4485+ 194 cos(4s) c 185 201+ 23 823 cos(4¢)
0= =97 T390 3T 156 156 > ETT T 100 486 386 ’
con 140 482 351+35 991 420 cos(4&) + 440 331 cos(8¢)
6~ 1872 147 502 368 ’
41899041259+ 17 728 511 636 cos(4z) +637 577 869 cos(8¢)
ST 20614216 148 574 048 ’

1
~ 1804 073 740 458 606 384 763

Cy [67 366 047 034 556+ 41 790 617 770 797 cos(4¢)

+2973 545 622 054 cos(8&)+27 624 757 535 cos(12¢)],
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5
773 947 634 656 742 139 065 472

C3=

[71 725 965 608 861+59 574 531 611 847 cos(4¢)

+6990 847 337 307 cos(8¢)+ 188 213 423 921 cos(12¢)],

25
C2“442698047023656503545449984

[66 345 264 612 487+ 68 407 666 859 323 cos(4¢)

+11 839 482 235 349 cos(8¢&)+625 064 156 281 cos(12&)+ 4987 772 048 cos(16¢)],

125
6029 125 783 274 560 000 666 604 544

Cl=

[863 488 388 287+ 1037 909 611 284 cos(4¢)

+244 316 706 564 cos(8&)+21 148 019 308 cos(12¢)+ 480 836 541 cos(16¢)],

4375
Co= 226 427 168 305 200 142 247 256 926 208

[1986 067 779+ 2650 850 296 cos(4¢)

+795 453 436 cos(8¢)+ 101 244 360 cos(12¢) + 4466 945 cos(16¢) +32 768 cos(20¢),

4375
113213 584 152 600 071 123 628 463 104

axog=

[362 584 767 369— 479 211 795 182 cos(4¢)

+ 137 263 299 604 cos(8&)— 15 650 817 399 cos(12&) +555 293 347 cos(16e) —2640 347 cos(20¢)],

_ 30 625
17267 341 936 646 439 922 078 961 664

[156 337 790— 21 515 450 cos(4¢)

+6952 440 cos(8¢)—992 145 cos(12¢)+53 130 cos(16&)— 693 cos(20¢e)].

Interestingly, the coefficients C,(&) and a;(e) are linear
combinations of the functions cos(4me):
[j—n/2]
C,(e)= 20 X}, cos(4me),
me

[J]
ag(e)= Eo Y,, cos(4me),
=

[j+1/2]
a,(e)= 20 Z,, cos(4me),
frope

where the symbol [p] in the upper limit of the sums stands,
as usual, for the integral part of p. This fact considerably
simplifies the process of finding the coefficients C,(g) for
large j, since now the numerical coefficients X}, can be de-
termined by numerically solving the recurrence relations (36)
at certain points {¢,}. To determine all the coefficients X,
for a given j, when the number of harmonics cos(4me) is
[j+ 1], we must take the same number of points differing in
absolute value.

3.4. Verification of the results and the applicability range

As noted earlier, the steady-state solution has the form
(22)—(24) if the theorem (17) is valid. Since we do not have
the proof of (17) in the general case, for the

957 JETP 83 (5), November 1996

Je=J—Jje=j+1 transitions (j=0, 1/2, 1,..., 5) we found
by direct substitution that (22)—(24) constitute the solution of
the initial system of equations (14) and (15). For
Jj=11/2,6, ...,10 the validity of (17) was established nu-
merically. Finally, we were able to establish the validity of
(17) for arbitrary j in the case where the field polarization is
close to circular (see the Appendix).

We also compared our results with those known for the
particular cases of circular and linear polarizations. Note that
when the field is circularly polarized, the atoms are pumped
to the outermost Zeeman sublevels |e,j+ 1) and |g,j). ie.,
the problem is reduced to the well-known two-level model,
and the steady-state solution has the form

“« _5 s S/(2j+3)
P, = Onen,Ori+ VT 25/(2j+3)”
' (37
S5 s 1+S/(2j+3)'
Bk, Pelg Bl 1 4+28/(2j+3)
Smirnov* was the first to obtain a steady-state solution in

the case of linear polarization for the j,=j— j,=j+1 tran-
sitions (with j and S arbitrary):
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S[(+1)2—u?)

i~ B, I 2T DTG T TG T T T

38
- G+ D(2j+ 1)(2j+3)+S[(j+ 12— 2] G8)
Pugtsy = Pouey G D) 27+ D2+ DG+ 1= ) G+ 1+ ) 1T
where
_ [2j+2)1]°* )

(4j+4)!—2[(2j+2)!11? +S(4j+4)! 4(j+1)/[(2j+3)(4j+3)]

is a normalization constant. Our results (22) and (23) become
(37) at e=7/4 and (38) at £=0.

Note that (17) is generally valid only for steady-state
solutions, since for arbitrary ellipticity the arrival operator
(12) induces coherence between the eigenstates of the matrix
VIV (see Ref. 9), with the result that the time-dependent
solution (6)—(10) does not satisfy (17). We also note that for
an isotropic arrival operator ¥{p®¢} of general form with
arbitrary rates 7y, of transfer of multipole moments of rank
«=1 from the excited state to the ground state,

Jg K g

Y u,{ﬁee}z 2 YK(_ 1)jg—l"g _ '
He 8 K.q,1, ,#; l"g q, /'Lg
, . K .
X(—l)je_#e+4( Je , Je p?t’ 1y
M, -q M. ety

B [2j.+1 40
Yo=7Y 2,1 (40)

(17) does not hold. We checked this directly for the
Jg=1—j,=2 transition in an elliptically polarized field.
Thus, the range within which (17) operates is, apparently,
limited to isotropic arrival operators of the form (12), which
corresponds to (40) at

Jg e 1]

Je Jg &)
We discovered that the commutation relation (17) is violated
if isotropic depolarizing collisions'' are taken into account.

Y= Y(2je+ 1)(26+ 1)(— 1) gtiet et 1[

4. DEPENDENCE OF ABSORPTION ON THE LIGHT’S
ELLIPTICITY

Let us examine the dependence of absorption on the el-
lipticity when a plane-polarized wave propagates along the
z axis in a gas of atoms with the j,=j—j,=j+1 transition.
As is well known, in conditions of a steady state interaction
the variation of the intensity  of a monochromatic wave is
determined by the equation

a .
==~ 2 Im{Eq(e-P*)}, (41)

where P is the positive-frequency component of the medi-
um’s polarization vector (the average dipole moment). In our
case Eq. (24) yields
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2j
B .
P¥*)=; 2 Ty \n+1
Eq(e-P*)=ih|Q| <7/2+i(S vTr ,Zo C,(e)(ViV)r+Hih,
(42)
where the symbol (- - -}, stands for averaging over the ve-
locity distribution of the atoms normalized to the concentra-

tion. Plugging (42) into (41) and combining the result with
(22) yields

al el Sa (&) ay(e)
' ~hoY(Trp™h,= ~ﬁwy< 1 +25arl(e)/a0(s)>v ’

(43)

Thus, the nonlinear coefficient of steady absorption at a fixed
field intensity is proportional to the total population of the
excited state. At low intensities, in the limit S<€1, the depen-
dence of the absorption coefficient on the ellipticity angle
€ is determined by the ratio a(g)/ay(e), as Eq. (43) im-
plies. The diagrams of this dependence at j=0,1/2,1,...,5
are depicted in Fig. 3, which shows that the absorption is at
its maximum for circular polarization (e = *7/4) and at its
minimum for linear polarization (¢ =0) (with the exception
of the j,=0— j,=1 transition, in which case the absorption
coefficient is independent of the ellipticity of the light). For
all values of j the ratios «;(*@/4)/ay(*xm/4) and
,(0)/ a(0) can be found from (37)—(39):

allao
0.4 "

FIG. 3. The ratio a|(€)/ay(e) as a function of € at j=0,1/2,1,....,5. As
Eq. (43) implies, when saturation is weak (S< 1), the absorption coefficient
is proportional to a,(g)/ ay(e).
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a(xm/4) 1

a(Emw/4) ~ 2j+3°

a(0) (4j+4)1 26+ 1) (44
ao(0)  (2j+3)(4j+3){(4j+4)!-2[(2j+2)']}"

This implies that the ratio of the absorption coefficients at
e=*m/4 and £=0 is
a (£ /4 ay(*xm/4)
a;(0)/ao(0)
(4j+3){(4j+4)!—2[(2j+2)!1%}
- (4j+ a1 2(j+1)

(45)

For j=1/2 the ratio is 3/2; it increases monotonically with
J and tends to 2 as j—. Thus, with the j,=j—j,=j+1
(j=1/2) transitions in the case of weak saturation (S<1),
the absorption coefficient for circularly polarized light ex-
ceeds that for linearly polarized light by a factor of 1.5 to 2.
This fact must be taken into account in interpreting the data
in nonlinear polarization spectroscopy.

As the field intensity grows, the maximum (minimum)
of absorption is still determined by the maximum (minimum)
of the ratio a;(g)/ ay(e). But the dependence of the absorp-
tion coefficient on & becomes weaker and vanishes for
S$>1, when Tr{p‘}~1/2.

Note that for the j,=j—j,=j transitions (j is a half-
integer), as Ref. 2 implies, the situation is reversed: for any
intensity the absorption is at its maximum in the case of
linear polarization and at its minimum (vanishes) in the case
of circular polarization.

5. THE RADIATION FORCE FOR SLOW ATOMS

Let us study the force acting on slow atoms with a reso-
nant transition j,=j—j,=j+1 in the inhomogeneous
monochromatic field

E(r,t)=E(r)e(r)e "'+ c.c.,

where E(r) is the complex-valued amplitude, and e(r) is
complex-valued unit polarization vector satisfying the condi-
tion Im(ee)=0, which fixes the phase of the function E(r).
The atomic velocity is assumed to be low:

kv<y, Kkv<ysS,

so that at each point in space the internal state of atoms
adiabatically follows the field vector E(r)e(r). In these con-
ditions, to determine the velocity-independent component of
the force we use the solution (22)—(24) in which we must put
v=0 and introduce the coordinate functions {)(r), (r), and
e(r) in accordance with the variation in the amplitude and
the field polarization.

Proceeding from the well-known general formula for the
dipole force,

F(r)=—Tr{p(r)VV_p},

we arrive at the following expression for the force for
Jg=Jj—Jj.=j+! transitions:

959 JETP 83 (5), November 1996

2j
F=- /12+'35Tr E Coe)(VIV)(Q*VHV(QV) | +cec.

=F,+F,+F;+F,,

iﬁ‘ySal Q
Fi=——————Vin——,
2(a0+2Sal) Q*
_— ikyS
2 2(ap+2Sa))
2j
X Zo C(e)TH{(VIV)"(VIVV)} = c.c., (46)
F _ ﬁ5a1
3 a0+2Sa1
nes X c, .t s
F4=— > (S)V[Tr{(VTV)"“}]-

a0+2Sal n=0 n+1

The fact that F can be split into four terms corresponds to the
classification of Ref. 12: F,| and F, are the spontaneous ra-
diation forces, which are related to processes of induced ab-
sorption and subsequent spontaneous emission, with F| de-
termined by the gradient of the field’s phase and F, by the
gradient of the orientation of the polarization ellipse e(r),
and F; and F, are the stimulated radiation forces, which are
related to processes of coherent re-emission of photons from
one mode to another, with F; determined by the gradient of
the field’s intensity and F, by the gradient of the ellipticity.

As an example, we consider four characteristic cases in
which plane waves propagate along the z axis.

5.1. An elliptically polarized traveling wave

Here the saturation parameter S and the polarization vec-
tor e do not depend on coordinates, and (z) = Qyexp(ikz).
Then the force is spatially homogeneous and is determined
by the number of spontaneously scattered photons per unit

time (yTr{p*¢}):

P —hky —2L 47
o 7a0+28a,' “7)

5.2. Oppositely propagating waves o, — o _

Such a configuration is a linear combination of two op-
positely propagating plane waves with orthogonal circular
polarizations e, ; and e_; and intensities /. and /_ . In this
case the phase and the saturation parameter are coordinate-
independent, and the polarization vector e(z) is an ellipse
rotating in space about the z axis, with the ellipticity constant
€ determined by the following relationship:

1,—1_
sin(2¢)= T ¥1
+ —

The force is spatially homogeneous and proportional to the
rate of variation of the z-component of the angular momen-
tum caused by spontaneous emission:
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FIG. 4. The spatial dependence of the
linl lin field configuration for three
transitions with j=1 (dotted curves), 3
(dashed curves), and 5 (solid curves)
for (a) weak saturation (S<1; calcula-
tions via (50)), and (b) strong satura-
tion (S>> 1; calculations via (51)).

F=F,=hk[yTr{J ,p¢} — Tr{J , #{p*}}]
2j

> Cu(e)[Tr{J (vVhHr*1}

=hkyao+2sal n=0

—Te{J (VIV)"1}]. (48)

5.3. An elliptically polarized standing wave

In this case the phase and polarization are coordinate-
independent, and S(z)=So[1+cos(2kz)], where S, is the
saturation parameter averaged over the period. For this force
we have

d
F(z)=F3(z)=—l-9;U(z),
(49)

hé 2a,
U(z)= —2—ln 1+ —;()—S(z)].
Clearly, the expression for the optical potential coincides
with the one in the theory of a two-level atom'® with a renor-
malized saturation parameter §=2a15/ agy, which is now
ellipticity-dependent.

5.4. The linl lin field configuration

The linL lin field configuration is a linear combination
of two oppositely propagating plane waves with orthogonal
linear polarizations and equal intensities. For it the gradients
of the phase and intensity vanish, the orientation of the el-
lipse axes is constant, and the ellipticity angle is spatially
dependent: e(z)=kz.

In this case, we have F(z)=F4(z). For S<1,

2j
1 C,e) o apn
~ —_ e tyyn+l
Fy(2)~hk8S - 2 T R TV, (50
while for S>1,
2 Ce) 9

1 ny
F4(z)~ﬁk52—al "ZO — g[n{(v*vy'“}]. (51)

The results of calculations of the force by Eq. (S) for three
transitions j,= j— j,=j+1 (j=1,3,5) are shown in Fig. 4.
We see that the F' vs z dependence becomes more jagged as
J grows.
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0 /4 2 3n/4 T 0 n/a

;/2 3r/4 n

Note that Alekseev,'* using perturbation theory tech-
niques with allowance for the finiteness of the atom-—field
interaction time, arrived at an expression for the radiation
force for an arbitrary initial distribution of the atoms over the
Zeeman sublevels of the ground state.

6. CONCLUSION

The obtained exact steady-state solution of the problem
of optically pumping the j,=j—j,=j+1 transition is of
interest from the fundamental viewpoint, just as any exact
solution of a quantum mechanical problem is. In addition,
this solution can be used in various approximations related to
the interaction of atoms and polarized radiation. For in-
stance, in Secs. 5 and 6 we examined the dependence of the
absorption coefficient on the ellipticity and calculated the
gradient force. Other possible applications are the nonlinear
self-consistent problem of propagation of an elliptically po-
larized wave in a medium of resonant atoms and the polar-
ization spectroscopy with a strong pump field and a weak
probe wave. Note that the closed transitions
Je=Jj—Jje.=j+1 are always present in the D2 line of alkali
metals and are often used in experiments in spectroscopy and
laser cooling (in the presence of hyperfine splitting, j, and
Je are the total atomic angular momenta F, and F,, respec-
tively).

Combining the results of the present work with those of
Refs. 1 and 2, we may assume that we have found all steady-
state solutions of the problem of the resonant interaction of
atoms and elliptically polarized light that allow for radiative
relaxation for all closed dipole transitions (including inter-
Raman and magnetic-dipole). The only unsolved problem is
Theorem (17), which has not been proved in the general case
for j,=j—j.=j+1 transitions. However, the results of the
present investigation suggest that there are no physical
grounds to doubt the validity of (17) for all values of j
and &.

The present work was supported by a grant from the
Russian Fund for Fundamental Research (Project No. 95-02-
04752-a).
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APPENDIX
As Secs. 3.1 and 3.2 clearly show, the theorem (17) is
valid if and only if we can prove that the steady-state solu-
tion of Eq. (19) for p&¥ commutes with V1V
[ViV,p81=0,
i.e., the steady-state density matrix of the ground state for
S<1 is independent of the detuning 8. Let us prove this for
any value of j in the case of a field polarization close to

circular, where e = w/4— ¢ (£€<1) and the unit vector (2) can
be represented by the following expansion:

(A1)

e=_e+|+§e_l+0(§2). (A2)
We write p§f in the form of a power series in &:
pEE=50+ 6V +0(£). (A3)

To zeroth order in &, where the field’s polarization is exactly
circular, the solution of Eq. (19) has the form

o) _
T, 'M;—éﬂg '#36”'8 J (A4)
and the property (A1) holds in the same approximation.
Setting the factors of the first order in ¢ equal to zero in
(19) and allowing for (A4), we arrive at the following ex-

pression for the matrix element 05 ']) 2

{7(21+3)(V,+|,)Z(V}L—lu—z)z ( +15)(V,+1,)2

Y .
—(5—15)(V+ll] 2)] ;l])_2

+l

_7(21+3)(V]+|])2 '-—lj ]—l,j 2

(AS)
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Writing the 3 jm-symbols in (A5) explicitly and allowing for
the hermiticity of 6{! yields
(1

J2j=1)j
o) =g —_YZiZDj

B2 Yj-2j 4j+1 (A6)

For the other matrix elements of 6" in (19) we obtain a
homogeneous system of equations, which has only a trivial
solution. Thus, to first order in £, the steady-state solution of
Eq. (19) for p§® does not depend on &, which means that the
condition (A1) is met to within the same approximation.

A complete proof of (17) requires extending this proce-
dure to all powers of £.
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