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We suggest an analytical method for finding the exact steady-state solution of the problem of the 
resonant interaction of atoms and a monochromatic field for closed transitions 
j,= j-+ j,= j+ I ,  where j, and j, are the angular momenta of the ground (g) and excited (e) 
states, for light of arbitrary intensity and ellipticity. The solution for j=0,1/2,1,. . . ,5 is 
given in explicit form. We study the properties of the resulting solution and prove its uniqueness. 
As an application we determine the dependence of the absorption coefficient on the 
ellipticity and calculate the gradient force acting on slow atoms. O I996 American Institute of 
Physics. [S 1063-776 1 (96)O 12 1 1-51 

1. INTRODUCTION 

Many problems of the resonant interaction of atoms and 
polarized light, such as nonlinear polarization spectroscopy 
and the mechanical action of light on atoms, require knowing 
the exact steady-state solution of the optical Bloch equations 
for the atomic density matrix with allowance for the Zeeman 
structure of the energy levels involved. Finding such a solu- 
tion in analytical form for closed optical transitions (where 
the ground level is the lower level and the total population is 
conserved) in the general case of arbitrary ellipticity and in- 
tensity of the field is extremely difficult. The main math- 
ematical difficulties stem from the fact that the number of 
coupled equations for the elements of the density matrix is 
large. In addition, even when the transition is not saturated, a 
perturbation-theory expansion in powers of the atom-field 
coupling constant does not simplify the problem much due to 
the inhomogeneous distribution of atoms over.the magnetic 
sublevels and the appearance of Zeeman coherences in the 
ground state (optical order effects). 

Earlier (see Refs. I and 2) we found an exact steady- 
state solution in general form for two groups of transitions, 
j,=j-+j,=j-1 and j ,=j+j ,=j ,  where j, and j, are the 
total angular momenta of the ground (g) and excited (e) 
states ( j  is arbitrary), belonging to the class of dipole- 
allowed transitions ( A  j =  j - j = 0,+ 1 ). The , 
j, = j-+ j, = j + 1 transitions were examined in Refs. 3-5, 
where an exact solution for the particular cases of linear and 
circular polarization of the field was obtained. For light of 
arbitrary ellipticity a steady-state solution in analytical form 
was obtained677 only for transitions involving small values 
of total angular momentum (j, = O 4 j ,  = 1 and j, = 1 / 2 4  j, 
=3/2). 

sity matrix can be written in an invariant form as a polyno- 
mial of the operator of the resonant atom-field interaction. 
The expansion coefficients can be found from recurrence re- 
lations solvable for all values of j. We list the coefficients for 
j=O, 112, 1, . . . , 5  explicitly. In the general case of arbitrary 
ellipticity the validity of the theorem is verified by direct 
substitution for j=0,1/2,1, . . . ,lo. The theorem is proved 
for any value of j in the case where the field polarization is 
close to circular. Note that this approach can also be applied 
to j,= j ~ j , =  j transitions, with the steady-state solutions 
coinciding with the results of Refs. I and 2 obtained by other 
methods. 

We find that just as for the j,= j+ j,= j- 1 and 
jg= j+j,= j  transition^,'.^ the solution possesses the fol- 
lowing property: the anisotropy of the density matrices of the 
excited state (6,') and the off-diagonal elements (beg and 
6ge) is determined entirely by the ellipticity of the light, 
while the intensity and the detuning from resonance enter 
only into the corresponding scalar factors (see (22)-(24)). 
We also find the conditions for strong and weak saturation of 
a transition. 

Finally, to illustrate the possible applications we study 
the ellipticity dependence of the absorption coefficient and 
calculate the velocity-independent component of the gradient 
force. 

2. STATEMENT OF THE PROBLEM 

Basically the statement of the problem is similar to that 
of Ref. 2. We examine the interaction of atoms whose 
ground and excited states form a closed optical transition 
j, = j-+ j,= j+ 1 and an elliptically polarized resonant plane 

In this paper we study the resonant interaction of atoms wave 

with energy levels degenerate in the projection of the total E= Eoe exp[-i(wt-k-I-)]+ c.c., 
angular momentum and a polarized monochromatic field. 

(1) 

We propose an analytical method for finding the exact where 

steady-state solution of the problem, with allowance for ra- 
diative relaxation, for closed transitions j,= j4  j,= j+ 1 e= eC1e, 

q=o,-e I 
and arbitrary ellipticity and intensity of the light. Our method 
is based on a theorem according to which in the case of is the unit complex-valued polarization vector of the field, 
purely radiative relaxation of the atoms the steady-state den- and the e" are its components in a cyclic basis {eo=e: 9 
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e, , = + (q,? ey)/ JZ). In particular, if we chose the quanti- 
zation z axis directed along the wave vector k and the x axis 
directed along the major semiaxis of the polarization ellipse, 
we can write 

e=cos Ee,+i sin Eey 

where E is the ellipticity angle (tan E is the ratio of the 
minor semiaxis of the polarization ellipse to the major semi- 
axis, and the sign of E depends on the sense of rotation). 

When dealing with a low-density gas, we can completely 
ignore interatomic collisions. We also restrict our discussion 
to the zeroth order in the small recoil parameter h k l A p 4  1 
(here hk is the photon momentum, and Ap is the dispersion 
of the atomic momentum), i.e., we examine the motion of the 
center of mass in the classical setting. Then the quantum 
kinetic equation describing the evolution of the density ma- 
trix of atoms in the external field (1) assumes the form 

Here v is the atomic velocity, H~ is the Hamiltonian of a free 
atom in the center-of-mass reference frame, and in the case 
of optical transitions we can limit ourselves to the electric 
dipole approximation for the operator e,-,= - ( 2 . ~ )  de- 
scribing the atom-field interaction (d is the dipole moment 
operator), and the operator r{;) describes radiative relax- 
ation. 

We split the density matrix into four matrix blocks 
jgg, bee, beg, and b" as follows: 

Here 6=(w-weg-k-v) is the detuning from resonance 
with allowance for the Doppler shift, weg=(Ee-Eg)lh is 
the transition frequency, y is the spontaneous relaxation rate, 
and R =  - ~ ~ ( e l l d l l ~ ) l h  is the effective Rabi frequency, 
with (elldllg) the reduced matrix element of the dipole mo- 
ment. The matrix elements of e can be expressed in terms of 
3jm-symbols in accordance with the Wigner-Eckart 
t h e ~ r e m : ~  

For closed optical transitions the operator fibee) of the ar- 
rival of atoms at the ground state due to spontaneous emis- 
sion has the following standard form (see, e.g., Ref. 9): 

Setting all time derivatives in Eqs. (6)-(10) to zero, 

and expressing the off-diagonal elements 3g and 2e in 
terms of the density matrices bfl and bee, 

~ z ~ = ( e * ~ e l b l g . / ~ g ) -  P g p e = ( g . ~ g I b I e - ~ e ) -  (4) we arrive at the following closed system of matrix equations 
for the steady-state bgg and bee: 

where {Ig,,ug)) and {le, ,u,)) are the Zeeman wave functions 
of the ground and excited states. In the resonant approxima- Y - -  ,. ,. y s c b ~ g c t  - - ~ { v v t ; e e + b e e ~ v t )  
tion we can express the fast dependence on time and coordi- 2 
nates in beg  and j" explicitly, 

beg=exp[- i(wr- k.r)]?g, 

and write the following system of equations for the compo- + i 6 ~ { t t G b g g -  bggetf},  
nents that are spatially homogeneously and slowly vary in 
time: where 

is the saturation parameter. 
[ & + $ + i s ) p c = - i n * [ c t y c - B ' i t t l ,  (7) Note that generally Eqs. (6)-(10) describe damped Rabi 

oscillations, and the condition for a steady-state regime to set 
in for any value of S can be written as follows: 

(8) 
y ~ t +  I ,  yt+ 1, 

where t is the time over which the atom interacts with the 
(9) field. 
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3. THE EXACT STEADY-STATE SOLUTION 

Our method is based on a theorem formulated below. 
Theorem. For arbitrary j, and j ,  in the case of purely 

radiative relaxation, when the steady-state Bloch equations 
have the form ( 15) with the arrival operator ( 12), the den- 
sity matrices jH and jee commute with the Hermitian ma- 
trices ctC and CCt, respectively: 

As is known from algebra, this means that the solution 
of system (17) is diagonal in the basis of the eigenvectors of 
the operators ctc and cct. In addition, since by (17) the 
factors of i S  in (15) vanish, the matrices jRg and bee depend 
only on even powers of 6 .  

The validity of Theorem (17) for the j,= j+j,= j- 1 
and j, = j-+ j,= j transitions follows directly from the results 
of Refs. 1 and 2. 

In the present paper we assume that Theorem (17) re- 
mains valid for j,= j-+ j,= j+ 1 transitions. This makes it 
possible to develop an analytical procedure for finding 
steady-state solutions for any j. 

Before we begin to look for the solution of the system of 
equations (15) in general form, let us examine the weak- 
saturation limit (SG 1 ). 

3.1. A method for finding the solution in the case of weak 
saturation 

For small SG 1, keeping in (15) the first-order terms in 
S, we get 

This readily leads to a closed equation for figg without the 
saturation parameter S: 

If we employ the hypothesis of Theorem (17), the solution of 
Eq. (19) for the j,= j+ j,= j+ 1 transitions can be repre- 
sented in the form of a polynomial in the matrix ete: 

2 i  

where po is a normalization constant. Indeed, since the ei- 
genvalues of ctc are analytic functions of E and at 
E = + 7r/4 (circularly polarized light) all these eigenvalues 
are distinct, 

according to the well-known theorems of the theory of ana- 
lytic functions, the eigenvalues may become degenerate only 

at discrete points in the analyticity interval - r r / 4 < ~ S ~ i l 4  
(say, for linearly polarized light (E =0) we have twofold 
degeneracy). This suggests that the expansion (20) deter- 
mines the solution of Eq. (19) unambiguously as an analytic 
function of E ,  provided that Theorem (17) is valid. 

Plugging (20) into (19) yields a system of equations for 
the coefficients C,,(E): 

The number of equations in (21) is (2 j+  but the system 
is highly degenerate, and its rank is equal to 2j. Hence one 
of the coefficients can be chosen in an arbitrary manner (for 
instance, below we put CZj(&) = I ) TO determine the 
Cn(e) we can take any 2 j linearly independent equations in 
(21). Note that the coefficients Cn(&) depend only on the 
ellipticity and are invariant, i.e., do not depend on the choice 
of the coordinate system. 

3.2. Solution in the general case 

Let us return to the system of equations (15). If we know 
the nontrivial solution of the system (21), the steady-state 
density matrices bee and jgg for an arbitrary S have the form 

" A 

of expansions in powers of the operators V V ~  and ctc: 
2i 

j e e = p s C  c,(E)(iet)n+',  
n=O 

Direct substitution with allowance for (21) clearly shows that 
(22) satisfies the system of equations (15) identically. The 
constant p can be found from the normalization condition 
(10): 

j 3 = [ a o + 2 ~ a l ] - 1 ,  (23) 

Here we have used the obvious fact that 
~r{( f i~C)"}  = ~ r { ( c f ~ ) ' > .  

Thus, according to the theorem (17), the solution of the 
system (15) consisting of (2 j+  1 )2 + (2 j+ 3)2 equations can 
be written in an analytically invariant form by determining 
only 2 j +  I coefficients ( 2 j  coefficients C,,(E), since one of 
these can be selected in an arbitrary manner, and the normal- 
ization constant p) .  

Plugging (22) into (14), we arrive at an expression for .. 
and 3': 

The expressions (22)-(24) show that the anisotropy of 
the steady-state matrices fi"e, b e g ,  and CsL' is determined en- 
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tirely by the unit polarization vector e of the light, and the 
amplitude and detuning of the field enters only into the re- 
spective scalar factors. At the same time, the anisotropy of 
the ground state strongly depends on the saturation param- 
eter S, since the second term in the expression for egg (see 
(22)) can be obtained from the first via multiplication by the 
matrix s ( e t e ) .  The invariant operator form of the solutions 
(22)-(24) makes it possible to calculate both the density ma- 
trix elements (the jm-representation) and the multipole mo- 
ments of the density matrix (the ~q-representation) in an 
arbitrary basis. Note that in contrast to a linearly or circularly 
polarized field, an elliptically polarized field induces a non- 
zero Zeeman coherence in any system of coordinates. 

Let us show that the analytical solution (22)-(24) is 
unique. Indeed, since the normalization (10) is conserved, 
the system of equations (15) for closed optical transitions is 
singular, and one of the linearly dependent equations in (15) 
can be replaced by (10). The resulting system of equations 
for the components of the matrices fie" and j" is inhomo- 
geneous due to the presence of the right-hand slide of Eq. 
(10). In addition, it is obvious that the determinant A(&) of 
this system is an analytic function of the ellipticity angle E 

(see Eq. (2)). Taking now the value E = -+ d 4  (circular po- 
larization), we can easily show that because of optical pump- 
ing the problem is reduced to the well-known two-level 
model, where the uppermost and lowermost Zeeman states 
1 e, j+ I ) and (g ,  j) act as the levels. And the two-level model 
has a unique steady-state solution, which implies A ( d 4 )  
# 0 .  Then, basing our reasoning on the most general proper- 
ties of analytic functions, we can say that A ( & )  vanishes 
only at discrete points in the interval - 7r/4< E < r / 4 ,  and 
the solution of the system of equations (15) and (lo), an 
analytic function of E ,  is unique, which is what we set out to 
prove. Note that such reasoning can be employed in proving 
the uniqueness of the analytical solutions found in Refs. 1 
and 2 for the j,= j-+ j,= j transitions, since in the case of 
circular polarization the solution is obviously unique, too. 

As (22) and (23) imply, the ratio of the total populations 
of the ground and excited states is 

This readily leads to the conditions for weak and strong satu- 
rations of a transition. For instance, weak saturation corre- 
sponds to 

Here 

and in (22) we can ignore the second term in the expression 
for 6": 

The condition that is the opposite of (26), 

corresponds to strong saturation of the transition. Here the 
total populations of the ground and excited states are roughly 
the same, 

and in (22) we can ignore the first term in the expression for 
68,: 

Since for the j, = j4  j, = j + 1 transitions the matrix 
ete acting in the space of the ground-state Zeeman wave 
functions {Ig,pg)} is always nonsingular (according to Ref. 
1, only the matrix $fit acting in the space {le,p,)} is sin- 
gular), the condition (28) for strong saturation holds for a 
field of arbitrary ellipticity. This constitutes the main differ- 
ence of this case from j,= jr+je= j' transitions ( j '  is a 
half-integer), where, as Ref. 2 implies, the condition for 
strong saturation is highly dependent on the ellipticity of the 
field. For instance, in a circularly polarized field there is no 
intensity at which the j,= j' -+ je= j' transitions ( j '  is a 
half-integer) become saturated (the effect of coherent trap- 
ping of populations). 

3.3. Calculating the coefficients Cn(&) 

The solutions (22)-(24) show that to fully determine the 
steady-state solution we must find the coefficients C,(E), 
which constitute the solution of 2 j  linearly independent 
equations in (21). Since the C,(E) are invariants, we can use 
an arbitrary system of coordinates for their calculation. We 
select the one suggested in Ref. 10. As is known, an arbitrary 
ellipse is a curve along which a cylinder and a plane inter- 
sect, so that to each elliptic polarization vector e we can 
assign a cylinder (generally there are two such cylinders) 
whose section is the given ellipse e. We direct the quantiza- 
tion z axis along the axis of the cylinder and the y axis along 
the minor semiaxis of the polarization ellipse (Fig. 1). Then, 
as Ref. 10 implies, the elliptic polarization e is a linear com- 
bination of the linear and one of the circular components: 

e=  J m e O +  JZ sin c e +  I .  (30) 

For the sake of definiteness we take the decomposition 

e= J m e O +  JZ sin ce, I .  (31) 
(27) 
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- j - 1  -j - ] + I  ... 

-j - j + l  1 - 1  J 

FIG. 2. The diagram representing light-induced (solid lines) and spontane- 
ous (wavy lines) transitions in the system of coordinates depicted in Fig. I 
with the vector e specified by (31). 

FIG. 1. The coordinate system suggested in Ref. 10 in which the z axis (the 
quantization axis) is directed along the axis of one of the cylinders built on 
the polarization ellipse e (the dashed lines stand for the second cylinder) and 
they axis is directed along the minor semiaxis of the polarization ellipse. In 
this base the vector e is a superposition of the linear component and one of 
the circular components (see Eq. (30)). 

The light-induced transitions corresponding to (31) are de- 
picted in Fig. 2. In this case the matrices ctc and cct are 
real and symmetric and have three nonzero diagonals (de- 
noted by *): 

where, in accordance with (1 1) with (31), the matrix ele- 
ments have the form 

X Jcos(2e)sin E. 

For the 2 j linear independent equations for determining 
C n ( e )  we select those obtained from (21) by taking the off- 
diagonal matrix elements between the states (g,pl  and 
Ig , j) ,  where p runs through 2 j values: 

with p= - j ,  - j+ 1, . . . , j- 1. This system of equations is 
of triangular form. Indeed, by direct multiplication we can 
show that the matrices (cte)k and (fict)k in the base (31) 
are real and symmetric and contain 2k+  I nonzero diagonals 
for O S k G 2 j .  In addition, the matrices ( f t e ) ' j  and 
(etc)2j+l do not have zero diagonals, while in the matrix 
( c c t )2~+  ' only the first column and the first row consist of 
zeros. Hence for a fixed p only terms with n = 2 j ,  
2 j -  I ,  . . . , j- p- l contribute to (33). The terms with 
n < j - p -  1 contribute nothing because, first, 
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and, second, since the arrival operator f{. . .) (see (12)) does 
not provide additional coherence, we have 

(g ,p l+{ (cGt)n+l ) lg , j )=~ ,  (n=O,l, . . . ,  j - p -2 ) .  

Thus, at p= - j  Eq. (33) couples only two coefficients, 
C 2 j ( ~ )  and C2j- at p= - j +  1 this equation couples 
three coefficients, C 2 j ( ~ ) ,  C2j- and C 2 j - 2 ( ~ ) ;  etc.: 

where 

We can show that all the diagonal coefficients satisfy 
A: # 0,  i.e., (34) is indeed a system of linearly independent 
equations. The triangular form of the system (34) makes it 
possible to write the recurrence formula for the coefficients 
C,(E) explicitly: 

, 2 j  

where n = 2 j - 1, 2 j -  2, . . . ,O. Thus, by selecting the basis 
(3 1) and the off-diagonal matrix elements in (3 1 j in a spe- 
cific form we solve the problem of determining the c , ( ~ )  by 
Gauss's method. 

It would seem that the system of equations for the coef- 
ficients C,(E) acquires a triangular form similar to (34) if we 
take the off-diagonal matrix elements between the states 
(g,- j l  and lg,p) ( p = j , j -  1,.  . . ,- j + l ) :  

T j -  1 O = ~ - ' C ~ ~ ( E ) + A ~ ~ - ~ C ~ ~ - ~ ( E ) ,  

7 L j - 2  O = ~ - ~ C ~ , ( E ) + A ~ ~ -  I ~ 2 j -  + ~ I ; C ~ ~ - ~ ( E ) ,  

-0 0=$,c2,(~)+AZj-  l ~ 2 j l ( ~ ) + .  . . + ~ c ~ ( E ) .  

T j - 2  . However, for all values of j  the coefficient A2j-2 is zero, 
and the first two equations are linearly dependent. 

Below we give the results of calculations of the coeffi- 
cients C,(E) (n = 2 j,2j- 1, . . . ,0) by Eqs. (35) and (36) for 
eleven transitions jg  = j 4  j ,  = j+  1 at j=  0,1/2,1, . . . ,5. We 
also give the coefficients aO(&) and a , (& ) ,  which determine 
the normalization constant /3 (see (23)). 

3.3.1. The jg = 0 4  j,= 1  transition 

C o = l ,  a o = l ,  a l= f .  

3.3.2. The jg= 1 / 2 4  je= 3/2 transition 

3.3.3. The jg= 1 je= 2  transition 

3.3.4. The j,= 3/2+ je= 5/2 transition 

3.3.5. The jg= 2 4  je= 3  transition 

3.3.6. The jg= 5 /24  je= 7/2 transition 

5 1495+ 153 c o s ( 4 ~ )  
C5=1, C 4 = - 5  C3= 

88 704 
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3.3.7. The jg = 3 + j, = 4 transition 

3.3.8. The jg= 712-r j,= 9/2 transition 

3.3.9. The jg= 4+ j,= 5 transition 
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3.3.10. The jg= 912- je= 11/2 transition 

3.3.11. The jg= 5--t je= 6 transition 
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Interestingly, the coefficients C,(E) and ( ~ ~ ( 8 )  are linear 
combinations of the functions cos(4nzs): 

[j-n12] 

C,(E) = z X: C O S ( ~ ~ E ) ,  
m=O 

where the symbol [ p ]  in the upper limit of the sums stands, 
as usual, for the integral part of p. This fact considerably 
simplifies the process of finding the coefficients C,(E) for 
large j ,  since now the numerical coefficients X;, can be de- 
termined by numerically solving the recurrence relations (36) 
at certain points (8,). To determine all the coefficients X:, 
for a given j ,  when the number of harmonics cos(4ms) is 
[ j+ 11, we must take the same number of points differing in 
absolute value. 

j, = j 4  j,= j+ 1 transitions (j=O, 112, 1, . . . , 5) we found 
by direct substitution that (22)-(24) constitute the solution of 
the initial system of equations (14) and (15). For 
j =  11/2,6, . . . ,10 the validity of (17) was established nu- 
merically. Finally, we were able to establish the validity of 
(17) for arbitrary j  in the case where the field polarization is 
close to circular (see the Appendix). 

We also compared our results with those known for the 
particular cases of circular and linear polarizations. Note that 
when the field is circularly polarized, the atoms are pumped 
to the outermost Zeeman sublevels le, j+ 1 ) and Ig,j). i.e., 
the problem is reduced to the well-known two-level model, 
and the steady-state solution has the form 

3.4. Verification of the results and the applicability range 

As noted earlier, the steady-state solution has the form smirnov4 was the first to obtain a steady-state solution in 
(22)-(24) if the theorem (17) is valid. Since we do not have the case of linear polarization for the j,v= j 4  j,= j+ I tran- 
the proof of (17) in the general case, for the sitions (with j  and S arbitrary): 
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where 

is a normalization constant. Our results (22) and (23) become 
(37) at E = v / 4  and (38) at E = 0. 

Note that (17) is generally valid only for steady-state 
solutions, since for arbitrary ellipticity the arrival operator 
(12) induces coherence between the eigenstates of the matrix 
G f f  (see Ref. 9), with the result that the time-dependent 
solution (6)-(10) does not satisfy (17). We also note that for 
an isotropic arrival operator .i'(bee} of general form with 
arbitrary rates y, of transfer of multipole moments of rank 
K> 1 from the excited state to the ground state, 

(17) does not hold. We checked this directly for the 
j, = 1 + je= 2 transition in an elliptically polarized field. 
Thus, the range within which (17) operates is, apparently, 
limited to isotropic arrival operators of the form (12), which 
corresponds to (40) at 

We discovered that the commutation relation (17) is violated 
if isotropic depolarizing collisions'' are taken into account. 

where the symbol (. . -), stands for averaging over the ve- 
locity distribution of the atoms normalized to the concentra- 
tion. Plugging (42) into (41) and combining the result with 
(22) yields 

Thus, the nonlinear coefficient of steady absorption at a fixed 
field intensity is proportional to the total population of the 
excited state. At low intensities, in the limit S 4  1, the depen- 
dence of the absorption coefficient on the ellipticity angle 
E is determined by the ratio ( Y ~ ( E ) / ~ ~ ( E ) ,  as Eq. (43) im- 
plies. The diagrams of this dependence at j=0,1/2,1, . . . ,5 
are depicted in Fig. 3, which shows that the absorption is at 
its maximum for circular polarization (E  = 2 d 4 )  and at its 
minimum for linear polarization ( E  = 0 )  (with the exception 
of the j, = O + j e =  1 transition, in which case the absorption 
coefficient is independent of the ellipticity of the light). For 
all values of j the ratios a , ( +  v / 4 ) / a o ( ~  d 4 )  and 
cu,(0)lao(O) can be found from (37)-(39): 

4. DEPENDENCE OF ABSORPTION ON THE LIGHT'S 
ELLIPTICITY 

i =  IR 
Let us examine the dependence of absorption on the el- 

lipticity when a plane-polarized wave propagates along the j =  1 

z axis in a gas of atoms with the j, = j+ je= j+ 1 transition. i = 3 n  
j =  2 

As is well known, in conditions of a steady state interaction i = SR 
1 = 7 n  j = 3  

the variation of the intensity I of a monochromatic wave is 
I = 9i2 j = 4  

determined by the equation J =  5 

where is the pOsitive-frequency of the medi- FIG. 3. The ratio O , ( E ) / ~ , ( E )  as a function o f  n at j=o ,  I I ~ , I ,  . . . ,5. AS 
urn's polarization vector (the average dipole moment)- In our Eq. (43) implies, when saturation is weak ( S <  I ), the absorption coeflicient 
case Eq. (24) yields is proportional to a ,  ( E  ) / a o ( & ) .  
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This implies that the ratio of the absorption coefficients at 
& = ? d 4 a n d & = O  is 

For j= 112 the ratio is 312; it increases monotonically with 
j and tends to 2 as j + m .  Thus, with the j,= j-+ j,= j+ 1 
( j s  112) transitions in the case of weak saturation ( S 4  1 ), 
the absorption coefficient for circularly polarized light ex- 
ceeds that for linearly polarized light by a factor of 1.5 to 2. 
This fact must be taken into account in interpreting the data 
in nonlinear polarization spectroscopy. 

As the field intensity grows, the maximum (minimum) 
of absorption is still determined by the maximum (minimum) 
of the ratio a l ( ~ ) / a O ( ~ ) .  But the dependence of the absorp- 
tion coefficient on E becomes weaker and vanishes for 
S 9  1, when Tr{iee}= 112. 

Note that for the j,= j4je= j transitions ( j  is a half- 
integer), as Ref. 2 implies, the situation is reversed: for any 
intensity the absorption is at its maximum in the case of 
linear polarization and at its minimum (vanishes) in the case 
of circular polarization. 

5. THE RADIATION FORCE FOR SLOW ATOMS 

Let us study the force acting on slow atoms with a reso- 
nant transition j, = j+ j,= j+ 1 in the inhomogeneous 
monochromatic field 

where E(r) is the complex-valued amplitude, and e(r) is 
complex-valued unit polarization vector satisfying the condi- 
tion Im(ee)=O, which fixes the phase of the function E(r). 
The atomic velocity is assumed to be low: 

so that at each point in space the internal state of atoms 
adiabatically follows the field vector E(r)e(r). In these con- 
ditions, to determine the velocity-independent component of 
the force we use the solution (22)-(24) in which we must put 
v=O and introduce the coordinate functions R(r) ,  ~ ( r ) ,  and 
e(r) in accordance with the variation in the amplitude and 
the field polarization. 

Proceeding from the well-known general formula for the 
dipole force, 

we arrive at the following expression for the force for 
jR = j4 jr= j+ I transitions: 

The fact that F can be split into four terms corresponds to the 
classification of Ref. 12: Fl and F2 are the spontaneous ra- 
diation forces, which are related to processes of induced ab- 
sorption and subsequent spontaneous emission, with F1 de- 
termined by the gradient of the field's phase and F2 by the 
gradient of the orientation of the polarization ellipse e(r), 
and Fg and F4 are the stimulated radiation forces, which are 
related to processes of coherent re-emission of photons from 
one mode to another, with F3 determined by the gradient of 
the field's intensity and F4 by the gradient of the ellipticity. 

As an example, we consider four characteristic cases in 
which plane waves propagate along the z axis. 

5.1. An elliptically polarized traveling wave 

Here the saturation parameter S and the polarization vec- 
tor e do not depend on coordinates, and R(z) = n,exp(ikz). 
Then the force is spatially homogeneous and is determined 
by the number of spontaneously scattered photons per unit 
time ( yTr{iee)): 

5.2. Oppositely propagating waves a+ - a- 

Such a configuration is a linear combination of two op- 
positely propagating plane waves with orthogonal circular 
polarizations e+ and e- and intensities I +  and I -  . In this 
case the phase and the saturation parameter are coordinate- 
independent, and the polarization vector e(z) is an ellipse 
rotating in space about the z axis, with the ellipticity constant 
E determined by the following relationship: 

The force is spatially homogeneous and proportional to the 
rate of variation of the z-component of the angular momen- 
tum caused by spontaneous emission: 
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FIG. 4. The spatial dependence of the 
linl l in  field configuration for three 
transitions with j =  I (dotted curves), 3 
(dashed curves), and 5 (solid curves) 
for (a) weak saturation (S4 1 ; calcula- 
tions via (SO)), and (b) strong satura- 
tion (S% 1 ; calculations via (51)). 

5.3. An elliptically polarized standing wave 

In this case the phase and polarization are coordinate- 
independent, and s ( ~ )  = So[ 1 + cos(2kz)], where So is the 
saturation parameter averaged over the period. For this force 
we have 

Clearly, the expression for the optical potential coincides 
with the one in the theory of a two-level atomi3 with a renor- 
malized saturation parameter g= 2 a  I S/ a O ,  which is now 
ellipticity-dependent. 

5.4. The l in l  / in field configuration 

The l i n l  l i n  field configuration is a linear combination 
of two oppositely propagating plane waves with orthogonal 
linear polarizations and equal intensities. For it the gradients 
of the phase and intensity vanish, the orientation of the el- 
lipse axes is constant, and the ellipticity angle is spatially 
dependent: E (z) = kz. 

In this case, we have F(z)=F4(z) .  For SG 1, 

while for S 9  1 , 

The results of calculations of the force by Eq. (5) for three 
transitions j,= j-+ jr= j+ I ( j =  1,3,5) are shown in Fig. 4. 
We see that the F vs z dependence becomes more jagged as 
j grows. 

Note that ~ l e k s e e v , ' ~  using perturbation theory tech- 
niques with allowance for the finiteness of the atom-field 
interaction time, arrived at an expression for the radiation 
force for an arbitrary initial distribution of the atoms over the 
Zeeman sublevels of the ground state. 

6. CONCLUSION 

The obtained exact steady-state solution of the problem 
of optically pumping the j, = j+ j,= j+ 1 transition is of 
interest from the fundamental viewpoint, just as any exact 
solution of a quantum mechanical problem is. In addition, 
this solution can be used in various approximations related to 
the interaction of atoms and polarized radiation. For in- 
stance, in Secs. 5 and 6 we examined the dependence of the 
absorption coefficient on the ellipticity and calculated the 
gradient force. Other possible applications are the nonlinear 
self-consistent problem of propagation of an elliptically po- 
larized wave in a medium of resonant atoms and the polar- 
ization spectroscopy with a strong pump field and a weak 
probe wave. Note that the closed transitions 
j,= j-+j,= j+ 1 are always present in the 0 2  line of alkali 
metals and are often used in experiments in spectroscopy and 
laser cooling (in the presence of hyperfine splitting, j, and 
j, are the total atomic angular momenta F, and F, , respec- 
tively). 

Combining the results of the present work with those of 
Refs. 1 and 2, we may assume that we have found all steady- 
state solutions of the problem of the resonant interaction of 
atoms and elliptically polarized light that allow for radiative 
relaxation for all closed dipole transitions (including inter- 
Raman and magnetic-dipole). The only unsolved problem is 
Theorem (17), which has not been proved in the general case 
for j,= j-+ j,= j+ 1 transitions. However, the results of the 
present investigation suggest that there are no physical 
grounds to doubt the validity of (17) for all values of j 
and E .  

The present work was supported by a grant from the 
Russian Fund for Fundamental Research (Project No. 95-02- 
04752-a). 
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APPENDIX 

As Secs. 3.1 and 3.2 clearly show, the theorem (17) is 
valid if and only if we can prove that the steady-state solu- 
tion of Eq. (19) for j g R  commutes with ete: 

i.e., the steady-state density matrix of the ground state for 
S< I is independent of the detuning 6. Let us prove this for 
any value of j in the case of a field polarization close to 
circular, where E = 7r/4- 5 ((< 1 ) and the unit vector (2) can 
be represented by the following expansion: 

e=-e+ I+~e - l+0 (52 ) .  (A2) 

We write ,6gR in the form of a power series in 5: 

#=&(O)+ 5 &(1)+0(52). (A3) 

To zeroth order in [, where the field's polarization is exactly 
circular, the solution of Eq. (19) has the form 

and the property (Al) holds in the same approximation. 
Setting the factors of the first order in 5 equal to zero in 

(19) and allowing for (A4), we arrive at the following ex- 
pression for the matrix element 

- - - i s  vrl vtP1 .- (: ) J-1.j J I., 2 .  

where 

Writing the 3 jm-symbols in (A5) explicitly and allowing for 
the hermiticity of &(') yields 

For the other matrix elements of & ( I )  in (19) we obtain a 
homogeneous system of equations, which has only a trivial 
solution. Thus, to first order in 6, the steady-state solution of 
Eq. (19) for # d o e s  not depend on 6, which means that the 
condition (Al) is met to within the same approximation. 

A complete proof of (17) requires extending this proce- 
dure to all powers of 5. 
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