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A complete theoretical and experimental description of supertransparency, an effect which we 
discovered and which occurs when a light pulse propagates coherently through an 
optically dense (koL 3 60), resonantly absorbing, two-level medium in a convergent light-beam 
geometry, is presented. It is found that the absorption of the pulse, which is accompanied 
by pushing of the spectrum of the pulse outside the confines of an inhomogeneously broadened 
absorption line, is anomalously weak compared with classical self-induced transparency. 
The maximum shift reached 1 .78vD = 2400 MHz for a pulse spectrum of input width - 1000 MHz, 
and the carrier frequency was always pushed onto the red wing of the absorption line. The 
magnitude of the shift depended on the intensity of the incident pulse and on the optical density 
of the absorber and, over wide limits, it was independent of the initial magnitude and sign 
of the detuning. It is shown that the experimental results cannot be explained on the basis of 
existing theories. A solution is obtained analytically in the form of a stationary, transversely 
bounded, 2 7 ~  self-induced transparency pulse. The spatial dynamics of a three-dimensional pulse 
is investigated and a dispersion-diffraction stabilization mechanism is proposed. The 
detailed qualitative and quantitative analysis made of the main features of the supertransparency 
effect on the basis of dispersion-diffraction stabilization mechanism gives good agreement 
with experiment. 63 1996 American Institute of Physics. [S1063-7761(96)01011-61 

I. INTRODUCTION 

One of the most striking manifestations of the coherent 
interaction of a light pulse with a two-level resonantly ab- 
sorbing medium is the soliton regime of the propagation of a 
radiation pulse when the threshold condition O>T for the 
input pulse area is satisfied. As a result of a transient process, 
the initial radiation pulse is converted into a pulse (or se- 
quence of pulses) of stationary shape that then propagates 
with no The propagation of a pulse without 
loss of energy, a phenomenon with no analog in the classical 
theory of the interaction of radiation with matter, has been 
termed self-induced transparency. 

The unusual features of the temporal dynamics of the 
field were investigated intensively for a number of years and 
are reflected in review a r t i c~es .~ -~  Nonetheless, very little 
attention has beerl devoted to questions concerning the trans- 
verse dynamics of self-induced-transparency pulses, though 
such questions are the main obstacle standing in the way of 
complete utilization of the properties of the self-induced 
transparency effect. The instability of pulses against trans- 
verse perturbations, which was noted experimentally in Ref. 
3 and proved theoretically in Refs. 8-10, destroys the beam 
structure after the pulse has transversed 10-15 absorption 
lengths. To weaken the instability and to observe self- 
induced transparency in its pure form, beams with high spa- 
tial uniformity and a planar wavefront were employed. 

In the experiments described below the classical condi- 
tions for observing self-induced transparency were intention- 
ally violated: A lens, which strongly focused the beam out- 
side the cell next to the exit window, was placed in front of 
the entrance into the absorbing cell. In consequence, new 
characteristics that cannot be explained on the basis of the 

existing theories of self-induced transparency were detected. 
Specifically, the anomalously large shifts = 2400 MHz of the 
pulse carrier frequency into the red region of the spectrum 
are at least an order of magnitude larger than any theoreti- 
cally predicted and experimentally recorded shifts due to 
phase modulation. This "expulsion" of the pulse spectrum 
onto the red wing of the absorption line and the associated 
anomalously long propagation paths, koL 2 60 (ko is the lin- 
ear absorption coefficient for the field at the center of the 
absorption line and L is the length of the cell containing the 
absorbing atoms), are the heart of the phenomena which we 
term supertransparency ." 

The properties of the experimental arrangement dictated 
the choice of theoretical model, which is based on the solu- 
tion of the self-consistent system of Maxwell-Bloch equa- 
tions taking account of the radial variation of the field. The 
existence of stationary solutions in the form of three- 
dimensional light pulses is ensured by the formation of a 
resonant waveguide in the absorbing medium:12 The trans- 
verse distribution of the density of absorbing atoms must 
match the transverse distribution of the field. When this 
matching is present, the classical condition for the pulse area 
( O =  2 7 ~ )  holds over the entire cross section of the beam. At 
the same time, this makes it possible to equalize the velocity 
in all parts of the beam, so that a three-dimensional pulse is 
a natural extension of a self-induced transparency soliton 
with a planar wavefront to the case of three spatial variables. 
Despite the obvious analogy, a three-dimensional self- 
induced transparency pulse exhibits new properties which 
are associated with the interplay of nonlinear diffraction 
mixing of different rays in the beam and the temporal dy- 
namics of energy transfer between the medium and the field 
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and are therefore absent in the classical theory of self- 
induced transparency. 

The convergent light-beam geometry employed in the 
experiments prevents rapid breakup of the pulse. This makes 
it possible to observe the characteristics predicted theoreti- 
cally for stationary propagation of a three-dimensional self- 
induced transparency pulse in a resonant waveguide. 

In the present paper it is shown that the supertranspar- 
ency effect is fundamental and can be regarded as an exten- 
sion of the self-induced transparency effect to the case of 
three spatial dimensions. Together with the well-known dy- 
namics of a self-induced transparency soliton, associated 
with the excitation of the atoms of the medium into the upper 
excited state and subsequent induced emission of the stored 
energy back into the field of the pulse, a new mechanism of 
dispersion-diffraction stabilization of the self-induced trans- 
parency pulse also appears in the supertransparency effect. A 
detailed description of the new physical mechanism and its 
theoretical justification are given below, and it is shown that 
this mechanism plays a decisive role in the interpretation of 
the observed characteristics of supertransparency. 

2. THREE-DIMENSIONAL CHARACTERISTICS OF SELF- 
INDUCED TRANSPARENCY 

The phenomena discussed in the present paper are based 
on an extension of the self-induced transparency effect to the 
case of three spatial dimensions. Correspondingly, the 
Maxwell-Bloch equations are written down taking account 
of the radial variations of the field: 

where 

L n l  d2 1 d E = -  A --+-- 
Ld '  I - d p 2  p d p '  

Here u = ( t  - z lV ) l r  is the wave coordinate; u = zlLnl  is the 
longitudinal coordinate; p= r l r o  is the transverse coordinate 
normalized to the beam radius; A o ,  V ,  and T are the ampli- 
tude, velocity, and duration of the pulse (the amplitude and 
duration and, therefore, the wave coordinate can depend on 
the transverse coordinate); r o  is the beam radius; wo is the 
frequency of the resonance transition; w, is the carrier fre- 
quency of the pulse; n is the density of absorbing particles; 
d is the transition dipole moment; 110 is the linear refractive 
index; and, L,,, and L,/ are the nonlinear and diffraction 
lengths," respectively. The total field and polarization are 
written in the form 

In discussing the transverse dynamics of a self-induced 
transparency pulse it is convenient to distinguish two limit- 
ing cases: weak diffraction ( &  4 1 ) and strong diffraction 
( E *  I ) .  The first case describes the dynamics of wide light 
pulses, in which the nonlinear coherent pulse-medium inter- 
action plays the dominant role, while diffraction distorts only 
very little the ray trajectories within the space occupied by 
the pulse. On the other hand, the transverse dynamics of 
narrow light beams must be described in the strong- 
diffraction limit, where the rays disperse so rapidly on ac- 
count of linear diffraction that there is not enough time for 
the nonlinear mechanism of the interaction of the field with 
the resonance medium to come into play. 

In contrast to the one-dimensional case, the system of 
equations (1) has no solutions in the form of stationary 
pulses if special conditions which stabilize the transverse 
distribution of the beam (for example, a waveguide or reso- 
nator) are not established. An ultrashort pulse in dense reso- 
nantly absorbing media which are uniform in the transverse 
direction breaks up due to the self-focusing instability, 
termed resonant self-focusing and investigated intensively in 
Refs. 3, 9, 10, and 13-15. 

The mechanism of the self-focusing instability is due to 
the dependence of the propagation velocity of the pulse on 
the intensity of the pulse, as a result of which the periphery 
of the beam moves with a lower velocity than the near-axis 
part of the beam (the intensity distribution in the transverse 
cross section is assumed to be bell-shaped). As a result, after 
the pulse has transversed in the medium a distance equal to 
several absorption lengths, the energy in the trailing edge of 
the pulse is concentrated in the outer rings. Light is dif- 
fracted from the ring zone to the center, resulting in a higher 
intensity on the axis. Self-focusing of the beam as a whole 
occurs, and in the process a stable spatial shape of the pulse 
is not established, since photon transfer between the ele- 
ments of the transverse structure of the light beam destroys 
coherent energy transfer from the field into the medium and 
back: The excitation region remains inverted, but it does not 
radiate in a matched manner because the excitation phases in 
neighboring regions are different. This diffraction-mixing 
process plays the role of effective transverse relaxation and 
transfers energy irreversibly from the pulse to the medium. 
As a result of instability development, after traversing a dis- 
tance L=(10- 15)LOb the pulse is completely dispersed in 
the medium even in the absence of dissipation. This greatly 
limits the propagation path length of a self-induced transpar- 
ency soliton in any experimental investigation of the effect. 

Pulse breakup can be avoided by suppressing the insta- 
bility by an external action, for example, by allowing the 
pulse to propagate in a fiber-optic waveguide, as demon- 
strated in Refs. 16 and 17. Stabilization of the transverse 
structure of the beam through conservation of the form of the 
waveguide mode occurs when the condition E* 1 is satisfied, 
i.e., when rays in the beam react to a change in the index 
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profile much more rapidly than to the slower process of en- 
ergy transfer between the field and the resonant medium. 

Self-induced transparency experiments are ordinarily 
performed with gases or metal vapors, in which it is very 
difficult to achieve the required index profile and conditions 
for strong diffraction. The experiments of Ref. 18 indicated a 
new method for stabilizing self-induced transparency pulses 
under weak-diffraction conditions. The method is based on 
the use of a convergent light-beam geometry - a lens, 
placed immediately in front of an absorbing cell containing 
Ne, focused the beam on the exit from the medium. Under 
such conditions, a pulse whose duration is only three times 
less than the transverse relaxation time propagated over the 
distance L=60LUb (where L , b = ~ f i 7 7 / 2 ~ ~ , b d 2 n ~ *  is the 
absorption length and (T*)-' is the half-width of the inho- 
mogeneously broadened absorption line) without any strong 
indications of breakup and the pulse was frequency-shifted 
into the red wing of the absorption line by the amount 
-2400 MHz (approximately by two Doppler line widths). 
The observed effect was termed supertransparency. Its char- 
acteristic features are as follows: 

1) A pulse propagates over anomalously long distances, 
exceeding both the known limits for self-induced transpar- 
ency: L=(T2/r )Ldb (T2 is the transverse relaxation time of 
the absorber), the limit associated with the presence of inco- 
herent energy losses due to the finiteness of T2, and 
L= ( 10- 15)LUb, the limit associated with pulse breakup on 
account of resonance self-focusing. 

2) The propagation of a self-induced transparency pulse 
is accompanied by a large shift of its carrier frequency. This 
shift was not observed in previous experiments and it was 
not predicted theoretically: max(Av)=2AvD. 

3) The frequency shift is asymmetric - the frequency 
shifts only in the red direction from line center. 

4) Finally, the frequency shift is independent of the ini- 
tial detuning. 

The experiments of Ref. 18 initiated theoretical investi- 
gations that revealed the reasons for the stabilization of the 
shape of a self-induced transparency pulse propagating in 
dense resonantly absorbing media2) and for the large shifts of 
the carrier frequency."'12"9 The diffraction nature of the ef- 
fect was first suggested in Refs. 11, 12, and 19. It should be 
noted that in the experiments of Ref. 18 stabilization of the 
self-induced transparency pulse was obtained with3) E <  1 
and therefore the nonlinearity of the field-medium interac- 
tion strongly influences the transverse dynamics. Therefore 
the idea of a strict conservation of the form of the transverse 
mode, determined by purely geometric parameters, which is 
acceptable when analyzing the propagation of self-induced 
transparency solitons in one-mode fiber-optic wave- 
guides,16'20 cannot be used in our case. On the other hand, an 
important difference between the cases of weak and strong 
diffraction is that when E Q  1 holds one cannot talk about the 
formation of an absolutely stable soliton structure, since the 
beam remains sensitive to small-scale disturbances of the 
wavefront. For this reason, we shall talk only about a ten- 
dency for the spatiotemporal structure of the pulse to stabi- 
lize. 

In Refs. 12 and 19 we performed a detailed investigation 

of the spatial dynamics of the self-induced transparency 
pulse for the case of weak diffraction. This investigation will 
be employed below as a basis for formulating the principle 
of stabilization of light pulses which are bounded in the 
transverse direction and interact coherently with an absorb- 
ing medium. We term this mechanism dispersion-diffraction 
stabilization4' (Ref. 21). The solution found in Ref. 12 re- 
mains unstable with respect to the growth of small-scale dis- 
turbances of the field?) just as in the experiments of Ref. 18 
which we are discussing, but from the very fact that such a 
solution can exist it can be concluded that new physical 
mechanisms, whose analysis points to a way for achieving 
beam stabilization, come into play. 

The operation of the new mechanism can be briefly de- 
scribed as follows. It is easy to show that the factorized 
dependence of the field on the transverse coordinate, 6 ( u ,  
v ,p) = &(u, v).R(p), cannot satisfy the fundamental prop- 
erty of a self-induced transparency soliton - conservation of 
the envelope area, which equals 2 IT. Therefore the formation 
of a stable solitary wave is necessarily due to ray mixing, 
which is of a purely nonlinear origin and gives rise to the 
same effect as in the case of the propagation of a pulse in a 
medium with a nonlinear refractive index. A phase self- 
modulation arises whose dependence on the field intensity is 
approximately the same as in Kerr media. From the theory of 
nonlinear Schrodinger solitons it is known that the formation 
of stable solitary waves is possible through the balancing of 
phase self-modulation and dispersion compression of pulses 
in the region of anomalous dispersion of the group velocity. 
Therefore, in order to compensate the phase self-modulation 
of a three-dimensional self-induced transparency pulse and 
thereby ensure stabilization of the propagation regime, the 
spectrum of the pulse must be located in the region of 
anomalous dispersion of the group velocity. The dispersion 
of the resonant medium is induced by the passing pulse and 
exhibits a complicated frequency dependence. The region of 
anonlalous dispersion lies in the low-frequency range, and 
therefore the formation of a soliton structure becomes pos- 
sible if the pulse carrier frequency is red-shifted away from 
resonance. 

Our goal in the present paper is to explain the basic laws 
of supertransparency from the standpoint of the dispersion- 
diffraction stabilization mechanism. In addition to a qualita- 
tive interpretation of the results, quantitative estimates which 
agree well with the experimental data are given. 

3. SUPERTRANSPARENCY EFFECT 

We investigated experimentally the characteristic fea- 
tures of the coherent propagation of a pulse of superradiance 
of neon through an optically dense (L/Ldh>60) resonantly 
absorbing medium in a convergent light-beam geometry.6) 
The plasma in the positive column of a glow discharge in 
neon, containing a large number of metastable atoms in the 
state l s 5 ( 2 p 5 3 s 3 ~ 2 ) ,  played the role of the absorbing me- 
dium. As estimates show, the interaction of the neon atoms 
with the superradiance pulse can be effectively described in 
the two-level approximation. 
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3.1. Pulse source 

In the experiment, a nanosecond, high-voltage, pulsed 
discharge in neon, accompanied by superradiance at a wave- 
length of 614.3 nm (a transition between the 2p6 and l s 5  
states of the 2p53p and 2p53s configurations, respectively) 
served as a source of short coherent light pulses. The dis- 
charge occurred in a thick-wall glass capillary. A pulse from 
the standard power supply for a nitrogen laser was applied to 
the discharge tube. The rate of rise of the voltage pulse was 
-6.10" Vls. In such a system the gas is excited by an 
ionizing wave of the gradient of the potential.22 

The experiment was performed in the pressure range 
0.7-5 Tom, where generation was unidirectional. The geo- 
metric parameters of the capillary (0.3 mm inner diameter 
and 20 cm length) were chosen so that the source would 
operate in the single-mode regime (Fresnel number F -  1 ). 

The duration of the superradiance pulse was -4  ns and 
the maximum peak power was -0.7 W. The characteristics 
of the superradiance pulse depended on the conditions for 
excitation of a discharge in the capillary. The pulse carrier 
frequency could be varied with respect to the resonance tran- 
sition frequency over the range Sv=  vab - vp = - 200- 1400 
MHz. The width of the spectrum of the superradiance pulse 
was equal to 700-2000 MHz and was greater than the in- 
verse pulse duration, which could be due to chirping of the 
frequency in the source. The maximum light-flux density at 
the exit from the source was equal to -700 w/cm2. When a 
lens which focused the light flux was used, the light flux 
density at the waist of the caustic could reach - lo4 w/cm2. 

3.2. Absorbing medium and the two-level approximation 

The superradiance pulse from the source enters the ab- 
sorbing medium - the plasma in the positive column of a 
glow discharge in neon, containing metastable neon atoms in 
the 1 s5 state with maximum density n- 1012 cmP3. The dis- 
charge occurred in a glass tube 30 cm long and 10 mm in 
diameter. The working pressure was equal to 1.66 Torr. Prior 
to the arrival of the pulse, a definite distribution of popula- 
tions between the states of the two configurations indicated 
above already exists in the medium. The arriving superradi- 
ance pulse interacts only with the 2p6- 1 s, transition, since 
the detuning between the pulse carrier frequency and the 
frequency of the closest spectral lines (X=616.3 nm, 612.8 
mm) is much greater than the Rabi frequency. The sponta- 
neous decay time of the 2p6 state to levels of the bottom 
configuration equals 19.7 ns. The reaction of these levels due 
to population mixing on the pulse propagation dynamics is 
negligibly small because the spontaneous decay and mixing 
times (microsecond range) are long compared with the pulse 
duration (-4 ns). 

The neon atom has zero nuclear spin and the levels have 
no hyperfine structure. However, there is a fine structure, 
which results in degeneracy of the resonant transition 
( J l = 2 ,  J 2 = 2 ) .  

On the whole, it can be concluded that the population 
dynamics of the resonant transition, in which we are inter- 
ested, accompanying the propagation of a superradiance 

pulse can be described in the two-level approximation taking 
account of the degeneracy of the levels. 

The experimental conditions made it possible to vary the 
parameters of the absorber. A hydrogen getter was soldered 
in the tube. Hydrogen, which substantially decreased the 
density of metastable neon atoms, could be released by spe- 
cially heating the getter. In this manner, the optical density 
L/LOb of the resonantly absorbing layer could be varied in 
the range 3-60. The optical density was controlled by vary- 
ing the discharge excitation conditions (different currents in 
the range 7-70 mA, introduction of small additions of Hz). 

The light beam passing through the absorbing cell was 
focused with the aid of a lens with focal length F = 20 cm in 
a manner so that the beam converged directly outside the 
absorbing medium. 

For the interaction of the superradiance with the reso- 
nantly absorbing plasma to be coherent, the condition 
7<T2 must be satisfied. According to our  estimate^:^ the 
phase memory time, or the polarization relaxation time T2 of 
the absorbing medium, is T2- 11 ns for the case being de- 
scribed (p = 1.66 Torr, i = 7 - 70 mA). In calculating T2 the 
radiation process and the collisions of atoms in the I s5  and 
2p6 states with neon atoms in the ground state were taken 
into consideration. The collisions of excited neon atoms with 
electrons were neglected, since under the discharge condi- 
tions indicated above the electron density was less than l o i 2  
cmP3. 

In summary, under the conditions of our experiment 
T, IT= L,,lL,,-3, where LC, is the maximum optical thick- 
ness of the sample to which a pulse with a planar wavefront 
can penetrate into the medium according to existing theories 
of self-induced transparency. 

3.3. Basic results 

The experimental study of pulse propagation through a 
resonantly absorbing medium showed that when a conver- 
gent light-beam geometry is used, self-induced transparency 
occurs for absorption lengths much greater than the classical 
limits (LIL,,> 60). 

Above a definite energy threshold (1-0.2 W, 5-6 
w/cm2), the superradiance pulse passed through the absorb- 
ing medium with very little attenuation. The central fre- 
quency of the superradiance pulse at the exit from the ab- 
sorbing layer was found to be shifted into the red region of 
the spectrum. The magnitude A v of the red shift was equal to 
1500-2400 MHz, and the maximum of the pulse spectrum 
was found to be located outside the Doppler width 
6vD= 1400 MHz of the absorption line. The spectral width 
of the shifted spectrum was less than that of the spectrum of 
the superradiance pulse entering the absorbing medium. 
Variation of the initial frequency detuning 6 v =  vo- v ,  in 
the range -200-1400 MHz had no effect on the frequency 
of the pulse leaving the absorbing cell. 

As the pulse passed through the absorber, self-focusing 
was observed simultaneously with a reddening of the pulse 
spectrum. When the power at the entrance exceeded 0.5 W, 
breakup into small-scale filaments of self-focusing occurred. 
The number of filaments at the exit from the absorbing me- 
dium increased with the source power. A superradiance pulse 
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passing through an absorber (LILab260) under the condi- 
tions of small-scale self-focusing was attenuated by a factor 
of -4. 

A decrease in the optical density of the absorbing me- 
dium to LILOb= I 0  as a result of a decrease in the density of 
absorbing metastable atoms substantially decreased the ob- 
served spectral shift. The shift of the pulse spectrum was 3-4 
times less than for the case of high optical density 
(L/Lab=6O). In experiments with variable optical density it 
was observed the superradiance intensity at the entrance into 
the absorbing medium, the density of absorbing particles, 
and the expulsion of the pulse spectrum into the red region 
are all related. 

3.4. Satisfaction of the self-induced transparency 
conditions 

The choice of the pulse source and absorber combination 
for demonstrating self-induced transparency effects is a non- 
trivial problem. In practice, it is difficult to match the fre- 
quency of the absorption line with the pulse carrier fre- 
quency because the transition frequencies rarely coincide and 
substantial technical contrivances are required to solve this 
problem.24-26 An alternative approach is to use the same 
transition for generation and absorption, in which case fre- 
quency tuning does not present any problems. This is the 
alternative used in our experiment, so that the conditions for 
resonant interaction are satisfied. As shown above, the ab- 
sorber employed is satisfactorily described in the two-level 
approximation. Moreover, when necessary, our source makes 
it possible to control the detuning of the pulse frequency 
within the limits of the absorption line. It should be noted 
that experiments on the observation of self-induced transpar- 
ency in a transition that does not include the ground state 
were first described in Refs. 27 and 28. 

In self-induced transparency experiments, the conditions 
for coherent pulse-absorber interaction must be satisfied. In 
rarefied atomic gases and in low-pressure discharges the con- 
ditions r e  T2< Ti are satisfied for nanosecond durations. 
The population-difference relaxation constant TI measured 
by   en nett^^ and the computed phase memory time T2 for 
the absorbing transition employed satisfy these inequalities. 

We shall now discuss in greater detail the basic charac- 
teristics of self-induced transparency, and we shall compare 
them with the experimental dependence. It has already been 
noted that there exists an energy threshold at which super- 
transparency was observed. This threshold is associated with 
the existence of a threshold for observing self-induced trans- 
parency. It is well known that at the entrance plane of the 
absorbing medium the pulse area must exceed the value 
O =  n-. This condition imposes a limit on the light-flux den- 
sity, which at the entrance into the absorber must exceed 
6.12 w/cm2 (O=dlhr,, d= 5 .  10- cgse), which corre- 
sponds to radiation power P-0.17 - 0.21 W at the entrance 
with beam diameter Dl= 2.0+0.1 mm at the surface of the 
lens. The fact that the experimentally measured transmission 
threshold agrees with the theoretically computed value is a 
direct indication that the observed effect is a self-induced 
transparency effect. For the transition studied here in neon, 
the dependence of the transmission of media which are not 

too long (koL=2) on the input pulse area was investigated 
systematically in Ref. 23. The transmission curve shows 
rapid growth of transmission with input area equal to rr and 
an oscillatory behavior for input areas greater than 2 n-, indi- 
cating coherent pulse-medium interaction. 

Another characteristic manifestation of self-induced 
transparency is the decrease in the pulse propagation 
velocity.' Temporal measurements in supertransparency ex- 
periments have shown that a pulse propagates more slowly in 
optically dense absorbing media. For LILab = 60 and average 
power level at the entrance -0.3 W, the corresponding time 
delay equaled -2 ns. The delay is smaller than the values 
estimated using the classical self-induced transparency for- 
mulas for a 2n--pulse because the spectrum is pushed out 
from under the absorption-line contour, where the pulse ve- 
locity is determined mainly by the refractive index at the 
shifted frequency and is virtually identical to the velocity of 
light. Moreover, McCall and ~ a h n '  as well as Hopf and 
 cull^^^ investigated the time delay as a function of pulse 
area in the coherent case, and they showed that the delay for 
input areas close to n- is smaller because of the finiteness of 
the times T I  and T2 (see also Ref. 5 ). The same results were 
confirmed experimentally in Ref. 28, and in addition a large 
decrease was recorded in the delay in a wide range of input 
areas for transitions with degenerate levels. The latter remark 
is important, since the 2p6- 1 s5 absorbing transition is de- 
generate with respect to energy. 

In addition, the on-axis energy density increases as a 
result of the focusing achieved in the experiment, and the 
pulse area can exceed the stationary value of 2 ~ .  It is well 
known that as the area increases, the delay decreases. 

For these reasons, in supertransparency experiments the 
absence of large delays cannot be used as an argument 
against a coherent character of the pulse-absorber interac- 
tion. 

The temporal measurements also showed that the pulse 
duration decreased very little - down to 3 ns - as the pulse 
travelled through the absorber. This effect can be explained 
on the basis of the theory of self-induced transparency: It is 
known3' that a pulse whose area satisfies the inequalities 
27r<O<3n- tends to transform into a pulse with area 
6=  2 7 ~  and its duration decreases at the same time. 

Finally, there is the fact that as a pulse propagates in a 
two-level medium, the pulse spectrum is transformed and the 
transformation can be attributed only to phase, i.e. coher- 
ence, effects. The interpretation of the spectrum shift on the 
basis of burning-out of spectral components close to the 
resonance transition frequency cannot be adopted as a hy- 
pothesis, since the maximum shift is more than twice the 
width of the pulse spectrum. 

We conclude on the basis of our analysis of the experi- 
mental relations that the experimental conditions correspond 
to coherent interaction of the pulse with a degenerate two- 
level resonance transition. 

3.5. Analysis of mechanisms of the shift of the pulse carrier 
frequency 

Attempts to observe the expulsion of the spectrum of a 
nonresonance pulse from the absorption without focus- 
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ing of the radiation were made in Ref. 25 (the pulse area at 
the entrance into the absorbing medium was & 3 ~ ,  with 
L=5Ldb) .  The detuning between the pulse carrier frequency 
and the central frequency of the absorbing transition varied 
by the Doppler width of the line both above and below reso- 
nance. For input pulse area 8= v ,  a shift of the pulse carrier 
frequency was recorded, but the shift was less than 10-20 
MHz, which is much less than both the inhomogeneous 
width of the absorption line and the initial detuning. 

A detailed theoretical investigation of phase effects ac- 
companying coherent interaction of a pulse with a two-level 
medium is presented in Refs. 33 and 34. Chirped pulses with 
the average carrier frequency equal to the transition fre- 
quency once again remain in exact resonance during propa- 
gation. In the case of chirped pulses which are initially de- 
tuned, it is observed that a 2 ~ - p u l s e  tends to a hyperbolic 
secant form at the same (entrance) frequency. In both cases, 
the excess phase modulation is carried off by a precursor - 
a secondary pulse formed as a result of the splitting of the 
initial pulse into two parts. The phase modulation of the 
precursor is much greater than the initial modulation and 
grows with distance. The precursor propagates with a veloc- 
ity close to the velocity of light and sustains anomalously 
small losses, since its Fourier components overlap very little 
with the absorption line. 

In the supertransparency experiments, the pulses ema- 
nating from the source exhibited large phase modulation and 
therefore similar effects can be expected to appear. However, 
irrespective of the initial detuning, no large splitting of the 
pulses was observed, pulses did not form at the input fre- 
quency, and the width of the output pulse spectrum was less 
than that of the input pulse spectrum, regardless of the opti- 
cal density of the absorber. Therefore we have no grounds 
for associating the observed pushing out of the frequency 
with the action of the initial phase modulation. 

Another process resulting in the motion of the pulse car- 
rier frequency is the relaxation of the elements of the density 
matrix of the two-level system. Depending on the ratio of the 
spontaneous relaxation times of both levels and the dephas- 
ing time, either pulling of the pulse toward resonance or, 
conversely, pushing of the pulse away from resonance can be 
observed.3p6 Although relaxation processes play a very im- 
portant role in our experiments, because the action on both 
wings of the absorption line is symmetric they cannot be 
responsible for the anomalously large red shift, which was 
independent of both the magnitude and sign of the detuning. 

Therefore the large changes in the carrier frequency 
which were recorded in the supertransparency experiments 
cannot be satisfactorily explained in terms of the existing 
theories of self-induced transparency for pulses with a planar 

-- 

wavefront. 
Coherent resonance self-focusing during the propagation 

of short, spatially nonuniform, light pulses in absorbing me- 
dia was investigated experimentally and numerically in Refs. 
8, 14, and 35-38. In our opinion, this model is closest to the 
phenomenon which we are discussing, and it can incorporate 
the main features of supertransparency, but in the cited work 
attention was directed mainly on the aspects of the problem 
which are associated with the transfer and exchange of en- 

ergy between elements of the beam in the transverse direc- 
tion. The spectral characteristics of the radiation leaving the 
absorbing cell were not analyzed either in the experimental 
or the numerical investigations. 

We shall now briefly discuss the possibility of interpret- 
ing the spectrum shift which we observed from the stand- 
point of specific properties of the absorbing medium as an 
active plasma object. For example, the possibility of nonlin- 
ear resonant pumping of plasma oscillations by the self- 
induced transparency pulse - a process accompanied by en- 
ergy transfer from the pulse to the plasma and resulting in a 
corresponding reddening of the pulse spectrum - cannot be 
ruled out a priori. 

Estimates showed that under the experimental conditions 
(i-7 mA, n,-10" ~ m - ~ )  the plasma frequency is 
vp= 1000 MHz, and the width and shift of the pulse spec- 
trum are very close in magnitude. Since the plasma fre- 
quency satisfies vp A, when nonlinear buildup of the 
plasma oscillations occurs the spectrum shift should depend 
on the electron density in the absorbing medium (plasma). 
However, special experiments performed to check this hy- 
pothesis did not show any changes in the magnitude of the 
shift of the pulse spectrum when the strength of the current 
was varied over wide limits (7-70 mA). This indicates that 
the mechanism considered here for the frequency shift does 
not participate in the supertransparency effect which we are 
studying. 

4. DYNAMICS OF A THREE-DIMENSIONAL SELF-INDUCED 
TRANSPARENCYPULSE 

The foregoing arguments attest convincingly to the im- 
possibility of explaining from the standpoint of the classical 
theory of self-induced transparency all of the experimental 
results on supertransparency. A theory claiming to explain 
the new effect must satisfy at least two basic requirements: 

1) It must explain the mechanism of the shift or, in other 
words, the mechanism of energy transfer from one region of 
the spectrum into another and 

2) it must give results which are in quantitative agree- 
ment with the experimental results. 

We expound below the basic principles of the theory of 
a three-dimensional self-induced transparency pulse, and the 
focus of the investigations is transferred to the experimental 
context. In Ref. 1 I we proved for the case of weak diffrac- 
tion ( E G  1) that solutions can exist in the form of pulses 
with a stationary shape: 

and the phase of the field is found from the equation 

A solution in the form of the stationary pulse (3) exists when 
the transverse distribution max(l%l) of the field matches the 
transverse distribution n(p)  of the density of resonance at- 
oms, which in the simplest case of a homogeneously broad- 
ened absorption line and with the carrier frequency of the 
field tuned to exact resonance with the atomic transition has 
the form (see Ref. I I )  
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Under this condition the pulse velocity does not depend on 
the transverse coordinate. 

For further analysis, we shall require the concept of an 
average pulse carrier frequency. This concept is introduced 
according to the formula (see Ref. 33) 

The expression for the phase is found by solving Eq. (4). If 
T-'(p) is chosen as a Gaussian function 

then we obtain for the frequency shift 

Without analyzing in detail the dependence of the frequency 
shift on the transverse coordinate, we average the expression 
(7) over p and finally obtain the following expression for the 
average shift: 

Here we have introduced the new parameter 

where the averaging is performed over the transverse coor- 
dinate p. 

The physical meaning of the parameter S is quite obvi- 
ous - S is proportional to the fraction of the energy stored 
in the radiation field relative to the maximum energy which 
the medium can absorb. 

From the formula for the frequency shift (8) it can be 
concluded that the correction to the phase as a result of the 
diffractional mixing of rays in the beam determines the red 
shift of the frequency away from the resonance line. 

We shall now examine in greater detail the dynamics of 
the propagation of the pulse (3) in a medium possessing 
waveguide properties (5). When diffraction of the beam is 
taken into account, the trajectories of the rays in the region 
of space occupied by the pulse become curved. The path of 
the rays in the energy-carrying part of the pulse (u<  I )  with 
the transverse distribution of the amplitude of the field taken 
in the form r- = 70 ' exp(-p2/2) is shown in Fig. la. From 
Fig. la it is evident that the beam radius is maximum on the 
wings of the pulse and minimum at the peak of the pulse. 
This dynamical behavior of the rays follows from an analysis 
of the expression for the transverse energy flux 

Near the axis the flux is directed inwards on the leading edge 
of the pulse and outwards on the trailing edge. In addition, as 
expected for stationary propagation, the integrated energy 
flux 

equals zero, and the beam radius averaged over the pulse 
remains constant. 

One can see from Fig. l b  that within the pulse envelope 
the ray trajectories curve in a complicated manner, but for 
the energy-carrying part there is a tendency for monotonic 
compression of the beam to occur with increasing instanta- 
neous intensity. 

There is an obvious analogy to self-focusing of a beam 
in Kerr media. We shall show that this analogy has a formal 
basis, and elaboration of the analogy gives an effective tool 
for describing the physics of the processes which we are 
studying. We rewrite the equation for the field in the form 

which is correct to within 8, inclusively. Let us treat Eq. (1 1) 
as a formal extension of the nonlinear Schrodinger equation, 
where 9 plays the role of the dispersion of the group veloc- 
ity and &A,/flplays the role of the phase self-modulation. 
Then the nonlinear correction to the refractive index is for- 
mally written as 

If the interaction of the field with the matter were linear, the 
wave equation could be solved by the method of separation 
of variables and the expression (12) would not contain a field 
dependence. But, we are dealing with a strongly nonlinear 
interaction, and the transverse coordinate enters in the solu- 
tion for the field (3) to keep the pulse area constant and equal 
to 27r over the entire cross section of the beam. Therefore 
the correction to the refractive index contains explicitly a 
dependence on the time and the field intensity. Substituting 
the solution (3) into Eq. (12) and choosing for the amplitude 
of the field a Gaussian function of the transverse coordinate 

we obtain finally the following expression for the refractive 
index: 

One can see from Eq. (13) that the refractive index in- 
creases as u+O, i.e. away from the leading edge of the pulse 
toward the center of the pulse, where the amplitude of the 
field of the pulse is maximum. Just as in Kerr media, the 
increase in the refractive index with increasing intensity re- 
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Wave coordinate 

FIG. I .  a - Schematic diagram o f  the beam cross section in the energy carrying part o f  the pulse ( u <  1 ) along the wave coordinate. It is seen that the radius 
tends to decrease monotonically as the amplitude increases; the minimum is reached at u = O ,  i.e., at the peak o f  the pulse. b - Form o f  the three-dimensional 
self-induced transparency soliton in a moving coordinate system. The distribution o f  the density o f  the absorbing atoms is taken in the form n ( p )  
= e ~ p [ - ~ ~ ] .  

sults in beam self-focusing, which in the case of stationary 
propagation of the pulse is expressed in an oscillatory depen- 
dence of the beam radius on the time with a maximum at the 
peak of the pulse (see Fig. la). Figure 2 displays the relation 
SV,,,~ 1 % I 2 ,  which is characteristic for Kerr media, as com- 
pared with the relation found above for self-induced trans- 
parency: SV(U, p= 0). The curves are obviously similar. 

The analogy drawn above is based on an extension of the 
concept of a nonlinear refractive index to the case of coher- 
ent interaction of a pulse with a resonantly absorbing me- 
dium. A detailed derivation shows that the complicated func- 
tion (Yq(u,p) can be replaced by the simpler function 

Sn,,, , which holds near the maximum of the field (u<  I ,  
p< 1 ). The reduction to a simpler function is dictated by the 
fact that it is convenient to interpret the pulse dynamics in 
terms of a refractive index which is quadratic in the field, 
since the effect of such an index on the pulse has been well 
studied. 

It is well known that a positive correction to the refrac- 
tive index results not only in beam self-focusing but also, 
which is no less important for the pulse, to a shift of the 
"red" frequencies in the spectrum of the field on the leading 
edge of the pulse and a shift of the "blue" frequencies to the 
trailing edge of the pulse (i.e. phase self-mo~lulation).~~ 1n 
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FIG. 2. Plot of the nonlinear correction to the refractive index calculated 
according to Eq. (12) (solid curve) compared with the nonlinear correction 
to the refractive index in the case of a Kerr nonlinearity (dotted curve). 

the process, the spectrum becomes deformed. This deforma- 
tion is expressed in a symmetric broadening of the pulse on 
both sides of the central frequency. Cancellation of the fre- 
quency spreading, which ensures a stationary shape, is pos- 
sible only in the region of anomalous dispersion of the group 
velocity: d2k ldw2  < o.~' 

To determine the nature of the resonant dispersion, we 
shall find an expresson for the polarization induced in the 
medium in the case when a self-induced transparency soliton 
propagates in it (in the plane-wave approximation). This 
problem with arbitrary detuning is solved, for example, in 
Refs. 5,6, and 12. The dispersion of the medium is described 
by the polarization component which fluctuates in phase with 
the field: 

The dispersion relation for the field interacting coherently 
with resonantly abrorbing atoms follows immediately from 
the expression (1 4): 

In the context of the present exposition, we are interested not 
in the wave number k itself, but rather its second frequency 
derivative, d2k ldm2,  i.e. the dispersion of the group velocity. 
It is seen from Fig. 3 that the dispersion of the medium near 
resonance has a complicated frequency dependence. Even 
though it is completely similar to the curve of linear disper- 
sion of the resonant matter, the half-width of the curve being 
determined by the homogeneous lifetime T 2 ,  here we are 
dealing with a manifestation of nonlinearity and the half- 
width of the curve is determined by the pulse duration T. The 
curve of the nonlinear resonant dispersion of the group ve- 
locity determines two regions of anomalous dispersion: a 

FIG. 3. Plot of the nonlinear resonant dispersion of the gmup velocity for 
the case of a homogeneously broadened absorption line. The letters A and 
B designate local minima of the dispersion. The dimensionless detuning 
normalized to the pulse duration T is plotted along the abscissa. 

deep well at low frequencies (near the point A )  and a weak 
anomalous dispersion at high frequencies (near the point 
B ) .  

The most favorable conditions for compensation of 
phase self-modulation, i.e. large anomalous dispersion, occur 
to the left of the resonance. Therefore, as diffraction in- 
creases (the parameter E increases), the nonlinear correction 
611 to the refractive index will increase, and in order to com- 
pensate for the additional phase self-modulation the pulse 
carrier frequency must shift into the region with large values 
of the anomalous dispersion of the group velocity, i.e., in the 
red direction from resonance. This monotonic dependence on 
the magnitude of the phase self-modulation is correct for 
small frequency shifts. The expression (8), which likewise 
determines the monotonic increase in the red shift with in- 
creasing parameter E and serves as a confirmation of the 
qualitative description of the shift, was obtained in the same 
approximation. 

Therefore the dynamics of a three-dimensional self- 
induced transparency pulse admits a simple and clear inter- 
pretation in terms of phase self-modulation and dispersion of 
the group velocity. The interaction of these two effects is 
responsible for the conservation of pulse shape and explains 
all characteristic features of the phase dynamics of the field. 

5. ANALYSIS OF SUPERTRANSPARENCY FROM THE 
STANDPOINT OF THE DISPERSION-DIFFRACTION 
MECHANISM OF STABILIZATION 

The main experimental result is the construction of a 
curve of the shift of the pulse carrier frequency versus the 
pulse intensity and the optical density of the resonant matter. 
In Ref. 1 I the semi-empirical formula 

was proposed for describing the frequency shift as a function 
of the parameter S introduced above. The formula (16) was 
obtained as an extension of the theoretical result (8) to the 
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FIG. 4. Comparison of the experimental results with the magnitude of the 
shift calculated according to the semi-empirical formula (16). 

case of large values of S, where the energy of the field ex- 
ceeds the energy that the medium can absorb. The quantita- 
tive and qualitative agreement with the experimental results 
(designated by dots with an indication of the error) serves as 
a confirmation of the correctness of the semi-empirical for- 
mula (16); see Fig. 4. The solid lines in the figure represent 
the dependence of the spectral shift A v on the parameter S, 
as calculated from the formula (16) taking account of the 
experimentally measured parameters, which we have at our 
disposal, of the source and the absorbing medium. The beam 
diameter at the surface of the lens is Dl= 2.050.1 mm, the 
focal length of the lens is Fl= 20 cm, the peak power of the 
pulse is Pm,=0.2-0.7 W, and the radius at the waist of the 
bean) is r,= XF1/2Dl= 3 .  cm. The density of meta- 
stable atoms n= 1012 cmW3 corresponds to the optical den- 
sity L/Lab-60 with a 30 cm long absorbing cell. The region 
of the computed values within the limits of error is shaded in 
the figure. All experimental points fall within the theoreti- 
cally predicted region. The formula (16) reflects the funda- 
mental role of the reradiation processes in the supertranspar- 
ency effect. The shift depends not on the intensity and 
density separately but rather on the combined parameter S, 
which incorporates the characteristics of both the medium 
and the field. 

The absence of experimental points on the initial section 
of the curve (for S<0.6) is due to the existence of a thresh- 
old for observing self-induced transparency - the pulse area 
at the entrance must be greater than v. From this condition it 
is possible to calculate the threshold light-flux density 
1,,=6.12 w/cm2, which in turn results in the cutoff of small 
values of the parameter S,  so that the values of the frequency 
shifts corresponding to S<S,, are in principle unobservable. 

The condition 8 2  v at the surface of the lens with beam 
diameter D l =  2.02 0.1 mm corresponds to radiation power at 
the entrance Pm,=O. 17- 0.21 W. We obtain finally 
S,., = 0.60- 0.86 and A v,,= 1700- 2400 MHz with the 
absorbing-atom density n = 1012 ~ m - ~  (L/LOb= 60). In real- 
ity, the experimental values of A v,, should be somewhat 
lower, since it was assumed that the threshold condition 
holds on the surface of the lens and not at the entrance into 
the medium. 

It is evident from Fig. 4 that large shifts are observed in 
a quite narrow range of variation of the parameter S and are 

of the light wave at which the frequency shift reaches its 
largest value corresponds to the situation when half the en- 
ergy is stored in the matter and the other half is stored in the 
field of the pulse. For S 9 1, which corresponds to the situ- 
ation when the number of photons in the light beam is much 
larger than the number of absorbing particles, the spectral 
shift decreases rapidly with increasing S. This corresponds to 
the experimental situation realized for optical densities 
LILab< 17 with the same power at the entrance. To achieve, 
once again, large spectral shifts for the indicated small values 
of the density it is necessary to decrease the initial intensity 
of the light beam, i.e., the parameter S must be decreased. 

According to Eq. (16), the frequency shift is inversely 
proportional to the beam radius squared. The convergent 
light-beam geometry employed in the supertransparency ex- 
periments gave a radius which decreased gradually to a com- 
paratively low value and thereby resulted in the appearance 
of large spectral shifts. 

Analysis of the experimental data on the basis of the 
formula (16) shows that the magnitude of the shift of the 
pulse spectrum is a sensitive function of three parameters - 
the peak intensity of the field, the optical density of the ab- 
sorber, and the beam radius. Therefore the absence of large 
spectral shifts in the earlier classical self-induced transpar- 
ency experiments is apparently due to the fact that in those 
experiments a geometry close to a planar wave beam was 
used and the value of the parameter S was not optimal. 

We can conclude on the basis of the quantitative and 
qualitative agreement between the experimental data and the 
theory for small S and the simplicity of extending the for- 
mula without invoking additional physical parameters that 
supertransparency is of the same nature as a three- 
dimensional self-induced transparency pulse. A unified de- 
scription of both phenomena is possible on the basis of the 
dispersion-diffraction stabilization mechanism, which, spe- 
cifically, will make it possible to construct a complete pic- 
ture of supertransparency and to describe the mechanism by 
which energy is transferred into the red region of the spec- 
trum. 

In the preceding section we noted that diffraction is the 
source of phase self-modulation and gives rise to symmetric 
spreading of the frequencies with respect to the central fre- 
quency. Part of the broadened spectrum falls into the region 
of violet detuning, where the dispersion of the group velocity 
is positive and therefore these spectral components disperse 
in time. The dispersive spreading process results in rapid 
absorption of the violet components of the field. The part of 
the spectrum falling within the region of red detuning from 
the resonance frequency is subject to anomalous dispersion 
of the group velocity, and the spectral components of the 
field run together in time. The mutual compensation of the 
phase self-modulation and anomalous dispersion of the 
group velocity produces favorable conditions for the forma- 
tion of a stationary pulse shape. This is the process respon- 
sible for the transfer of the energy stored in the field into the 
red region of the spectrum, as observed in supertransparency 
experiments. 
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The magnitude of the shift depends on the ratio of the 
magnitudes of the phase self-modulation and dispersion of 
the group velocity. Let us consider first the case of small 
parameters S, when phase self-modulation is not too large. 
Then the initial section of the curve in Fig. 4, characterized 
by a direct proportionality between the magnitude of the shift 
and the intensity and an inverse proportionality between the 
magnitude of the shift and the density, describes well the 
dependence of the frequency shift on the parameter S. Con- 
sider now the curve of the nonlinear dispersion of the group 
velocity (see Fig. 3). As the intensity increases, the pulse 
duration decreases in accordance with the ability of a self- 
induced transparency soliton to keep the envelope area equal 
to 2 ~ ,  and so the characteristic width of the dispersion curve 
increases. In the process, the pulse spectrum shifts to lower 
frequencies, since now the same value of the dispersion cor- 
responds to a frequency farther from resonance. As the 
absorbing-particle density increases, the half-width of the 
dispersion curve does not change, but rather the curve ex- 
tends along the vertical axis. Now the anomalous dispersion 
of the group velocity required to balance phase self- 
modulation shifts closer to resonance. Ultimately, the red 
shift decreases. 

The dynamics of the shift of the pulse frequency as a 
function of the position of the pulse in the medium can be 
easily traced systematically on the basis of the mechanism 
described above. For a fixed magnitude of the diffraction 
(i.e., for fixed beam radius) the pulse carrier frequency self- 
tunes to the frequency near which the anomalous dispersion 
makes possible complete balancing of the phase-self- 
modulation and therefore prevents the pulse from breaking 
up. In supertransparency experiments, the radius and there- 
fore the magnitude of the diffraction changed with distance. 
Adiabatic adjustment of the pulse parameters to the instanta- 
neous beam radius results in a continuous increase in the 
shift of the pulse carrier frequency with decreasing beam 
radius. This process continues until the pulse spectrum is 
completely pushed out from under the contour of the absorp- 
tion line. 

We shall show that the dispersion-diffraction stabiliza- 
tion mechanism which we have proposed gives a satisfactory 
quantitative estimate for the maximum frequency shift. 

The theory developed is restricted by the assumption 
8% 1 and does not contain an explanation of the basic feature 
of the curve presented in Fig. 4 - the saturation of the shift. 
However, this feature can be easily understood on the basis 
of a more complete analysis of the dispersion curve. In the 
process of focusing of the beam by the lens, the diffraction 
parameter E and the phase-self-modulation increase. The 
self-modulation is balanced by a gradual shifting of the fre- 
quency into the region of large anomalous dispersion of the 
group velocity, i.e., in the direction of low frequencies. This 
happens until the frequency is located near the minimum - 
near the point A. A further shift of the carrier frequency is 
disadvantageous - beyond the point of the minimum the 
anomalous dispersion of the group velocity starts to decrease 
as the detuning increases. Therefore the region near the mini- 
mum of the dispersion curve is the natural limit for the fur- 
ther motion of the frequency. 

Arb. units , 
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FIG. 5. Plot of the nonlinear resonant dispersion of the group velocity 
calculated for the case of an inhomogeneously broadened absorption line 
according to Eq. (17) with substitution of the experimentally measured val- 
ues of the parameters (curve I). Profile of an inhomogeneously broadened 
line with width Sv,)= 1400 MHz (curve 2). Pulse spectrum of width 
6 v =  1000 MHz (curve 3). The maximum shift of the carrier frequency is 
A,,= 2400 MHz. 

The experimentally observed independence of the fre- 
quency shift from the initial detuning can be explained from 
the same standpoint of the dispersion-diffraction stabiliza- 
tion mechanism. For prescribed parameters of the field and 
the medium, the frequency corresponding to exact balancing 
of the phase self-modulation and dispersion of the group 
velocity is determined naturally according to the dispersion 
curve, and in order for the form of the curve to remain the 
same the pulse spectrum inevitably shifts toward this fre- 
quency, regardless of where the pulse is located (within rea- 
sonable limits). 

To get an idea of the maximum shift occurring under the 
experimental conditions, having extended the theory for an 
inhomogeneously broadened absorption line, we shall 
present the relevant quantitative estimates. From the theory 
of self-induced transparency it is known that in this case the 
dispersion relation assumes the form 

where the averaging extends over the inhomogeneously 
broadened contour of width T; . Differentiating the expres- 
sion (17) twice with respect to frequency, we obtain the de- 
sired frequency dependence of the dispersion of the group 
velocity. 

We now possess all information required to make a 
quantitative comparison of the theory with the experimental 
data. The computed dispersion curve of the group velocity 
for the case of an inhomogeneously broadened resonance 
transition with half-width AvD= 1400 MHz and for a pulse 
with a spectrum of width 1000 MHz is displayed in Fig. 5. It 
is easy to see that the inhomogeneously broadened character 
of the transition causes the dispersion curve to stretch out 
along the frequency axis. Figure 5 also shows schematically 
the pulse spectrum shifted in the red direction away from 
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resonance by the amount of the maximum experimentally 
recorded shift. It is easy to see that the minimum of the 
dispersion curve lies closer to resonance than the pulse car- 
rier frequency with the maximum recorded shift. This small 
discrepancy is easily explained by the asymmetry of the dis- 
persion well and the finite width of the spectrum of the pulse. 
The maximum anomalous dispersion of the group velocity 
for the pulse as a whole is reached not in the well itself but 
somewhat to the left of the well. After this correction, the 
agreement between the theoretical results and the experimen- 
tal data becomes better. 

It should be noted that the nature of the supertranspar- 
ency effect is of a fundamental character and is independent 
of the specific geometry of the experiment. The effect always 
occurs during the coherent propagation of transversely 
bounded light pulses through resonantly absorbing media. In 
our case the experimental detection of frequency shifts and 
their interpretation are facilitated by using lenses, though in 
principle the same result can also be obtained in a lens-free 
geometry on account of the coherent resonant self-focusing 
of the beam.14 The effect of the transverse dynamics on the 
temporal dynamics and vice versa is manifested as time- 
dependent diffraction of the beam. The interplay is strongest 
when the scale -Lnl  of the longitudinal changes in the pulse 
is comparable to the scale -Ld of the transverse changes. 
This was recorded in our experiments as a strong red shift of 
the frequency. 

Returning to the question of the nature of the anoma- 
lously long pulse propagation paths, two basic points can be 
distinguished. The first one, which is not associated directly 
with the characteristic features of the nonlinear dynamics, is 
that the lens plays a key role in supertransparency. The re- 
sults of the experiments performed in a lens-free geometry 
serve as proof of this assertion. The medium completely ab- 
sorbed the pulse energy and the useful signal at the exit from 
the cell with an absorber with optical thickness L-3LOb 
became comparable to the noise level. When the lens was 
introduced, beam focusing occurred and the energy became 
concentrated near the axis. The dissipation due to polariza- 
tion relaxation was thereby effectively balanced by a con- 
stant inflow of energy from the periphery of the beam. This 
can serve as an explanation of the fact that the width of the 
pulse spectrum is approximately the same at the entrance and 
exit of the medium. In the experiments with a lens under 
optimal conditions, the total energy losses from the field 
were at most 70% of the input energy. 

The second reason for effective stabilization of the beam 
is of a nonlinear nature and does not depend on the coherent 
geometry of the experiment. Nonetheless, lenses make it 
possible to create favorable conditions for the dispersion- 
diffraction mechanism of stabilization. As the beam becomes 
narrower, the frequency shift increases monotonically, dis- 
placing the pulse spectrum from under the absorption curve. 
Therefore the effect of the dissipative processes in the me- 
dium on the pulse decreases (approximately as the square of 
the detuning) and the growth rate of the disturbances de- 
creases (also approximately as the square of the tletuning; 
see Ref. 41). 

6. CONCLUSIONS 

In the forgoing discussion we gave a detailed description 
of the experimentally discovered supertransparency effect, 
which is observed when a pulse interacts coherently with a 
two-level absorbing medium under the conditions of a con- 
vergent light-beam geometry. We showed in detail that the 
two-level approximation is applicable and that the require- 
ments for self-induced transparency are satisfied. We showed 
that existing theories cannot give an adequate explanation of 
all experimental results. 

Having found that the difference between the classical 
self-induced transparency experiments and supertranspar- 
ency experiments is due mainly to the use of light beams 
which are bounded in the transverse direction, we con- 
structed a theory of a three-dimensional self-induced trans- 
parency pulse. The condition that the transverse density pro- 
file match the transverse profile of the field, as required for 
stationary propagation of a pulse, is equivalent to the use of 
a focusing lens in the experiments. Analysis of the transverse 
dynamics of a three-dimensional self-induced transparency 
pulse uncovered the reasons why a stable spatiotemporal 
structure is formed, the entire collection of factors being 
called the dispersion-diffraction mechanism of stabilization. 
The heart of the new mechanism is that phase self- 
modulation, caused by diffraction mixing of rays with differ- 
ent phases, and nonlinear resonant dispersion induced in the 
group velocity in the medium during the propagation of the 
self-induced transparency pulse in it balance one another. 

All the basic features of supertransparency were ex- 
plained. The experimentally measured curves of the magni- 
tude of the shift as a function of the energy stored in the field 
and as a function of the optical density of the absorber can 
be explained on the basis of the dispersion-diffraction 
mechanism of stabilization and merge in a natural manner 
into a single curve as a function of the combined parameter 
S. The theoretical formula for the frequency shift, containing 
the radius of the light &am and the parameter S, requires a 
slight generalization in order to produce complete agreement 
with the experimentally measured curves. In so doing, we 
remain completely within the model employed and do not 
invoke any new parameters or new physical mechanisms. 

The asymmetry of the shift of the pulse carrier frequency 
is explained by the asymmetry of the nonlinear dispersion 
curve, and the most favorable conditions for stabilization of 
the temporal shape of the pulse are obtained only on the 
low-frequency side of the absorption line. The shift recorded 
in the experiment may saturate because of a minimum in the 
frequency dependence of the dispersion. After the minimum 
of the dispersion is reached, a further motion of the spectrum 
into the low-frequency region becomes disadvantageous, 
since the conditions for balancing phase self-modulation be- 
come worse. For a fixed beam radius, diffraction is deter- 
mined by the corresponding degree of phase self-modulation, 
to compensate which a definite value of the dispersion is 
required, and so the pulse self-tunes to the frequency at 
which this value is reached. Therefore, within wide limits, 
the experimentally recorded shift is independent of the mag- 
nitude of the initial detuning. 

The additional stabilization of the pulse as a result of the 
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pulse carrier frequency being pushed out from under the ab- 
sorption contour made it possible to increase the propagation 
path of the pulse up to anomalously large values 
(L > 6 0 L a h ) ,  since then the dissipative processes in the me- 
dium became less efficient and development of transverse 
instability was suppressed. 

In summary, both distinguishing features of supertrans- 
parency - pulse stabilization over large distances and large 
spectral shifts - are found to be inseparably interrelated and 
they are based on the same mechanism - dispersion- 
diffraction stabilization. 
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"If a medium with an inhomogeneously broadened absorption line is stud- 
ied, then the nonlinear length L,,, must be replaced by the absorption 
length Lob= Ilk,,, which differs in that the width T* of the absorption line 
replaces the pulse duration T. 

2The medium is considered to be dense if L > L , b  and N l n S  1 hold, where 
N is the number of photons per unit volume and n is the same for atoms. 

'A value close to E =  1 is reached only at the exit from the absorbing me- 
dium. 

in he fact that adequate concepts for describing all coherent spatial effects 
which we are discussing are not available in the literature justifies the 
introduction of a new term. 

5~uppression of disturbances is possible only for sufficiently small beam 
radii ( E F J  I) ,  when a narrow resonant waveguide is chosen. 

6~ detailed description of the experiment is given in Ref. 11. We present 
below only the results that are required in our exposition. 
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