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A theory is developed for the transport of resonance radiation in highly absorbing media. A 
system of equations is derived for the generalized spectral "intensity" of the radiation and for the 
populations of resonance states. The generalized spectral intensity depends on the frequency 
and the wave vector, which are independent variables and simultaneously satisfy two equations, 
one in the form of a kinetic equation and the other in the form of a wave equation with a 
source on the right-hand side. The radiation intensity involved in standard transport theory is 
obtained from the generalized intensity by appropriate integration with respect to the 
wave vector and can significantly exceed the Planck intensity in the interior of a dense medium. 
Boundary conditions are derived for the radiation intensity at the interface of a medium 
with vacuum, and it is shown that radiation emitted from a slightly inhomogeneous medium has 
at the center of the spectral line an appreciable residual intensity, which is in fact an order 
of magnitude higher than the intensity obtained from the standard theory, despite the self- 
conjugation effect. In optically thick media the spatial distribution of the populations of 
excited atoms can be determined from the well-known Bibeman-Holstein integral equations, 
because dispersion-related phenomena become all but inconsequential in the wings of 
the spectral line. A numerical procedure is developed for solving the resulting equations for the 
generalized spectral intensity of radiation and is illustrated in the example of resonance 
transition in sodium vapor. O 1996 American Institute of Physics. [S1063-7761(96)00911-01 

1. INTRODUCTION 

The theory of the transport of resonance radiation in 
gases and plasma has a variety of physical'.2 and 
matl~ematical~.~ aspects. Depending on the conditions of the 
problems in regard to transport either in disperse media or in 
a dense, hot plasma, it is necessary to investigate various 
mechanisms for the absorption and scattering or resonant 
photons by atoms or multiply charged ions, taking into ac- 
count the influence of surrounding particles on the profile of 
the spectral line and on the photon frequency redistribution 
function.' 

The topic investigated in greatest detail is the limit of 
comparatively low gas densities, for which a state-of-the-art 
machinery has been developed to derive the fundamental 
resonance radiation transport equations?-lo and good agree- 
ment has been attained between theory and e ~ ~ e r i m e n t . ' ~ ' "  
Progress is currently witnessed in the theory of spectral line 
broadening and the frequency redistribution of photons in a 
dense plasma of multiply charged ions with allowance for 
the dynamics and nonlinear interference effects in the emis- 
sion spectra as a result of the mixing of radiator states in the 
plasma m i c r o f i e ~ d . ' ~ - ~ ~ ~ ' ~  

We now examine in greater detail the criteria for the gas 
density to be low enough to validate the existing resonance 
radiation transport theory. It is a well-known fact2-l0 that the 
condition A-T (where A is the probability of spontaneous 
emission and I' is the collisional linewidth, which is deter- 
mined in the neutral gas by the Vlasov-Fursov excitation 
transport me~han i sm '~)  separates regions of coherent scatter- 
ing, A*l' (without any change of frequency in the rest frame 
of an atom) and the regime of complete frequency redistri- 

bution, A 4 T (Ref. 1 ) .  Taking into account the relation of A 
and r to the square of the matrix element of the dipole 
moment operator d (Ref. 19), 

(here o is the resonant photon frequency, c is the speed of 
light, and N is the number density of atoms), we find that 
T > A  holds if 

In relation (3) A is the photon wavelength. For the resonance 
line of sodium vapor condition (3) is satisfied for 
N > 3  X lo i4  ~ m - ~ .  If in this case the collisional width satis- 
fies the relation r Q k v T ,  where kvT is the Doppler linewidth 
(k=  2.rrlA, and vT  is the thermal velocity of the emitting 
particle), the energy absorption coefficient of resonance ra- 
diation at the center of the line, kO, is determined by the 
Doppler broadening and can be written in the formi9 

Here g2 and g I are the statistical weights of the excited and 
ground states of the atom. In Eq. (4) the density of excited 
atoms is assumed to be low ( N 2 < N I = N ) .  For sodium vapor 
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the condition r < k v T  implies N< 1017 ~ m - ~ .  The strength of 
the resonance field decays in the medium according to the 
law2' 

where err is the imaginary part of the permittivity of the 
medium at the frequency corresponding to the center of the 
line. Equation (5) has been derived on the assumption that 
the decay of the field at one wavelength is small, and the real 
part of the dielectric permittivity is close to unity. 

It follows from Eq. (5) that &"-koX, where X= h/2.rr, 
and the quantity E' - 1 admits the estimate 

Here the subscript "max" corresponds to maximum depar- 
ture from resonance, A = w  - wo- max(r ,ku T ) .  The condi- 
tion that the atomic density be low enough that the existing 
resonance radiation transport theory holds, is formulated by 
means of the Biberman criterion,' which in the given situa- 
tion implies ( E ' -  I ) , , +  1 or, from (4) and (6), 

When inequality (7) holds, condition (3) can be satisfied 
with a considerable margin, because A < T < k u T .  But if 
T>kuT holds, the absorption coefficient at the center of the 
line is determined by the collisional width T :  

In this limit, based on (I) and (2), the parameter koh/2 as- 
sumes the form 

and saturates as the density increases. Consequently, for 
r > k u T  the influence of the permittivity on the resonance 
radiation transport process must be taken into account in the 
theory, because I r  - 1 1 - 1. Condition (9) implies that the 
mean free path of the radiation is only 4.rr times shorter than 
the wavelength. 

We note that the condition r>kUT does not conflict 
with the representation of the medium by the gas 
approximation,2' which has the form  NU^< 1 ,  where a  is the 
amplitude of scattering with excitation transport and is asso- 
ciated with r by the obvious relation 

From (2) and (10) we obtain a-dl 6, and the con- 
dition for the validity of this approximation can be expressed 
in the form 

Since the inequality ka< l holds for sodium vapor, condi- 
tion ( I I) can also be satisfied for I.> ku -[.. Nunlerically the 
condition for validity of the gas approximation is violated in 

the given situation for N >  10" ~ m - ~ .  Here the theory is 
greatly complicated by the need to take multiple-particle col- 
lisions into account. One of the qualitative phenomena that 
arise in this limit, in principle, is the possibility of nonradi- 
ative transport of the excitation. However, if the discussion is 
limited by the criterion  NU^> 1,  as is evident from the fore- 
going analysis, the resonance radiation transport theory 
needs to be generalized to the case of a dense medium, i.e., 
the case r > k v T ,  when the permittivity differs significantly 
from unity. Levin and ~ ~ t o v ' ~  have remarked that the notion 
of the spectral intensity of radiation is ill-defined in highly 
absorbing media, owing to the violation of the quasiclassi- 
cality condition, and they propose that problems associated 
with the transport of radiant energy be solved in the language 
of spectral energy fluxes, i.e., the Poynting vector expressed 
in terms of frequency. 

In this article we seek to generalize the theory of reso- 
nance radiation transport to the case of dense gaseous media 
( r r  - 1 - 1 )  but with an upper bound on the density: Nu3 
a 1 .The equations for the correlation functions of the elec- 
tromagnetic field are formulated in the language of kinetic 
Green's  function^^'^-'^'^^ which permits us to introduce the 
generalized radiation intensity J ( w , k ) ,  in which the fre- 
quency w  and the wave vector k are independent variables, 
as opposed to the conventional theory, in which the relation 
@w=clkl is customarily assumed to hold, along with 
E' = 1. In general the function J ( w , k )  is not positive, and 
certain of its moments, i.e., integrals with respect to k  with 
different weighting functions, have physical significance. 
The intensity J ( w , k )  satisfies two equations simultaneously, 
one of which has the form of a kinetic equation, while the 
other is a wave equation with an appropriate source on the 
right-hand side. This fact is well known in formal radiation 
transport theory.24 However, the discussion is usually con- 
fined to the case of weakly absorbing media without sponta- 
neous sources, and the relation J ( w , k )  6 ( 0 -  c k )  follows 
from the homogeneous wave equation for the spectral inten- 
sity. For a homogeneous equilibrium medium we derive an 
equation for the physical spectral intensity J ,  , generalizing 
the Clausius J ~ ' = J : E ' ,  where J:  is the Planck 
intensity for blackbody radiation in vacuum, to the case of 
strong absorption. The excess of J:' above the Planck inten- 
sity J: for E ' > 1 is attributable to the decrease in the photon 
propagation velocity in a dense transparent medium. In an 
absorbing medium the radiation intensity can exceed both 
J: and J:' since photons are also strongly absorbed and 
effectively cluster at a given point in space. This phenom- 
enon takes place both in an unbounded medium and in a 
bounded medium with dimensions greater than the mean free 
path of the radiation. 

The equations for J ( o , k )  involve the absorption coeffi- 
cient and spectral intensity of spontaneous emission of radia- 
tion, both extended to the case of high densities, where the 
probability of spontaneous emission in a highly absorbing 
medium is accurately expressed by the relation 

Here A. is the probability (I) of spontaneous emission in 
vacuum (in Refs. 25 and 26 this relation is derived for trans- 
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parent media, where ~ e & -  @). It follows from Eq. (12), 
in particular, that if a radiator with frequency w  is situated in 
a plasma for which the plasma frequency 
w,= J- is close to w  (e and rn are the electron 
charge and mass, and N ,  is the density of electrons in the 
plasma), the spontaneous emission rate becomes small and 
even equal to zero (neglecting damping, i.e., if 
E = I - - ~ ~ / W ~  holds for w < w p .  

In the article we also obtain a generalized expression for 
the permittivity ~ ( o , k )  of a resonant medium with allow- 
ance for the previously determined expressions for the spec- 
tral densities of the atomic distributions in the limit of broad 
spectral 1ines.2~ This fact is ignored in Ref. 21, in which 
expressions are derived for ~ ( w , k )  in the limit r % k v T .  
Since we are interested in the limit r > k v T  and since condi- 
tion (3) is definitely satisfied, for resonance radiation trans- 
port we have a regime of complete frequency redistribution, 
and the complete system of equations augments the intensity 
equations with equations for the populations of the atomic 
states. If J ( o , k )  is eliminated from the latter equations, 
equations generalizing the well-known Biberman-Holstein 

are obtained for the populations of excited at- 
oms. It is important to note that, since radiation transport in 
the regime of complete frequency redistribution takes place 
in the far wings of the lines, i.e., at frequencies for which 
I E  - 116  1, in optically dense media, the spatial distribution 
of the populations of excited atoms in the volume coincides 
with the distribution deduced from the solution of the stan- 
dard Bibermsn-Holstein equations except in near-boundary 
regions with dimensions of the order of the photon mean free 
path. A similar statement is made in Lozanskii and Firsov's 

but they do  not give generalized equations for the 
populations of excited atoms. 

Below, to formulate the conditions satisfied by the inten- 
sity J ( w , k )  at an interface separating two media, we give a 
rigorous solution of the problem of the emergence of radia- 
tion from an absorbing medium into vacuum (cf. the analo- 
gous problem in Ref. 22, which is solved by means of the 
reciprocity theorem). The present study helps to refine the 
limits of validity of the theory developed thus far and to 
predict certain new phenomena. 

The article is organized as follows. A qualitative analy- 
sis of the problem is given in Sec. 2, and expressions are 
derived for the equilibrium spectral intensity of radiation in a 
highly absorbing medium. A simple derivation of relation 
(12) is also given. In Sec. 3 equations are derived for the 
generalized spectral intensity of the radiation and for the 
populations of excited atomic states. In Sec. 4 an expression 
is given for the permittivity of a resonant medium, general- 
ized to the case of broad atomic lines (cf Ref. 27). The so- 
lution of the problem of emission of radiation from a heated 
absorbing medium into vacuum is discussed in Sec. 5. A 
rigorous solution is given, and approximate boundary condi- 
tions for the intensity J ( w , k )  are formulated. In Sec. 6 the 
results of numerical calculations using the previously derived 
system of radiation transport equations are given for the case 
of the resonance line of sodium. 

2. QUALITATIVE ANALYSIS 

We begin with a brief look at the case of a transparent 
medium, for which E"* 1, without making any additional 
assumptions as to the quantity E ' .  The vacuum Planck radia- 
tion formula can be generalized for the spectral energy den- 
sity of equilibrium radiation to deduce the following relation 
in such a 

Here n ( w )  are the equilibrium photon occupation numbers, 

The factor 2 in Eq. (13) accounts for the two polarization 
directions, and integration over the solid angles R produces 
the factor 4 7 ~ .  

Making use of the relation between k  and w  in a trans- 
parent medium, 

k=nwlc ,  (15) 

where n2=&' >0, from (13) and (15) we obtain 

The quantity d ( n w ) l d w  is known to be positive in a trans- 
parent m e d i ~ m . 2 ~  Transforming from the energy density to 
the spectral intensity J , ,  which is defined by the 
e ~ ~ r e s s i o n ' ~ . ~ ~ . ~ ~  

where v g  is the group velocity of the wave packet, 

from (16) and (17) we obtain the Clausius equation22.25 

Equation (16) has also been obtained previously20 from 
an analysis of electromagnetic fluctuations in a transparent 
medium. In an unbounded homogeneous medium Kirch- 
hoff's law can be used for the spectral intensity of 
radiation: l9 

where E ,  is the spectral density of spontaneous emission per 
unit volume27 in unit intervals of solid angles and frequen- 
cies: 

Here N2 is the effective population of the excited state of the 
atom (see Sec. 3 below), A is the probability of spontaneous 
emission in the medium, q ( w )  describes the profile of the 
spectral line, normalized to unity, and oo is the atomic tran- 
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sition frequency. The absorption coefficient k, in Eq. (20) 
can be obtained from a relation generalizing (5) (Ref. 20): 

where k: is the absorption coefficient at a solitary atom (i.e., 
without regard for dispersion of the medium: n =  1); it is 
written in the form27 

In (23) Ao=2wclwo and A, are the vacuum values of the 
wavelength and the probability of spontaneous emission [cf. 
(I))]. 

Substituting the values of (21) and (23) into Eq. (20) and 
invoking the Boltzmann relations between the populations 

N2 and N, under thermodynamic equilibrium conditions, 

& 1% = (g2 /g,)exp(-hwolT), we obtain 

It follows from a comparison of (19) and (24) [cf. (12)] that 

Equation (25) and the relation A = Aoln can be used to write 
the absorption coefficient (23) in the form 

We note that relation (25) can also be obtained by Fer- 
mi's golden rule in the first perturbation order with respect to 
the interaction of an atomic electron with an electromagnetic 
field in a mediumt9 in the gauge Hi,,= - d.E with the vector 
potential normalized to the field energy in a transparent 
medium.20 

To extend relations of the type (19) and (25) to the case 
of a highly absorbing medium (8"- 1 ) we can use an equa- 
tion derived on the basis of the fluctuation-dissipation theo- 
rem for the equilibrium spectral density of fluctuations of the 
strength of a transverse electromagnetic field in the medium 
(see, e.g., Refs. 26 and 31): 

In Sec. 3 we obtain an analogous relation for the spectral 
intensity J(w,k) from the kinetic Green's function 
D,;+(k,w) (Refs. 8-10 and 23) in a homogeneous equilib- 
rium medium. Taking into account the definition of the elec- 
tromagnetic energy f l ~ x ~ O , ~ '  

and the relation between the electric and magnetic fields 

from (27)-(29) we can obtain a generalized expression for 
the radiation intensity in an equilibrium absorbing medium 
(see also Ref. 26): 

A definition analogous to (30) allowing for the fact that 
the spectral Green's functions involve integration over 
dw/2w (see Sec. 3 below) and taking into account the two 
independent directions of polarization of the electric field is 
obtained in the more formal treatment by means of kinetic 
Green's functions. 

Taking Eq. (27) into account, we write (30) in the form 

In a weakly absorbing medium (i.e., for E " - + O )  the 
integrand in (31) reduces to k38(w2&' -c2k2), and integra- 
tion with respect to k transforms expression (31) into (19). 
In a highly absorbing medium the integral (31) must 
be evaluated with allowance for the dependence of 
8 = E '  (w,k) + ie(w,k) on the wave number k. If spatial dis- 
persion is ignored because T >  kvT holds in a dense medium 
(see Sec. I), the integral (31) diverges logarithmically. How- 
ever, for large k, i.e., for k > r l u T = & ,  the imaginary part of 
the permittivity decreases: e"=llk (see below). We can 
therefore estimate the integral (31) without regard for the 
dependence of E on k by cutting off the logarithmically di- - 
vergent integral at k=ko. In this approximation we obtain 

Here av= r /2(w/c)vT is the Voigt parameter.'9 Equation 
(32) goes over to (19) in the limit ~ " 4 0 .  The results of 
numerical calculations of the integrals (31) for sodium vapor 
with allowance for the dependence of E on the wave number 
k are given in Sec. 6, where they show that the accuracy of 
the approximation (32) is satisfactory. Because expression 
(32) contains a logarithmic approximation that increases with 
the density of the gas [since T-N; see (2)], the equilibrium 
intensity in the absorbing medium can be almost an order of 
magnitude higher than the Planck intensity within the limits 
of the spectral line profile, i.e., for A S T .  

We now consider the extension of Eq. (25) to a highly 
absorbing medium. The radiation width of state 2 (see Ref. 
27) is determined by the mass operator 'C + - (p)  according to 
the relation2" 
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where the photon Green's function D$-(k) is related to the 
function D,?+(k) as defined by (27) according to the 
equation23 

D$-(k)=~,;+(-k) .  (34) 

In Eq. (33) G:- is the Green's function for atoms in the 
ground state (see Refs. 23 and 27), and di is the ith projec- 
tion of the matrix element of the dipole moment operator. 
Using the relation n ( -  w)&"(-@)=[I +n(w)]er'(w) [with 
allowance for the fact that E"(w) is an odd function20] and 
keeping the contribution from unity in this equation to char- 
acterize the intrinsic width of the spontaneous emission line 
from (27), (33), and (34) we obtain 

?. 2w2e"k2 dk - 
= '  (35) 

The applicability of relation (35) is discussed below in Sec. 
3. For now we note that its use rests on the assumption 
r> kvT. Evaluating the integral (35) in this approximation 
by the residue theorem (i.e., disregarding spatial dispersion), 
we obtain [cf. (12))l 

The results of numerical calculations of integrals of the 
form (35) for the resonance doublet of sodium show that Eq. 
(36) is quite accurate and yields a difference (for N 2 1017 
~ r n - ~ )  by a factor of approximately 1.3 from the vacuum 
spontaneous emission probability A.  in the red wing of the 
line and by a factor of approximately 0.6 in the blue wing, so 
that the emission probabilities in these two cases differ more 
than twofold within the line. 

Zemtsov and  taros st in^^ have investigated the influence 
of the density of the medium on the spontaneous emission 
probability in relation to the previously reported32-34 experi- 
mental observation of this phenomenon. A relation of the 
form (36) does not offer any new results for the case inves- 
tigated in Ref. 27, because the plasma density is low under 
the experimental conditions in Refs. 32-34 (N,- 1019 
~ m - ~ ) ,  and R e m = l .  

3. TRANSPORT EQUATION FOR RESONANCE RADIATION 
IN DENSE, DISPERSIVE MEDIA 

The system of transport equations for resonance radia- 
tion includes equations for the correlation functions of the 

electromagnetic field D ~ ' ( x , x r )  and the atomic Green's 

functions G ~ ~ ' ( x , x ' ) .  Here the superscripts a=  2 are the 
Keldysh variables, which characterize the type of chrono- 
logical ordering of the field operators?,23 Ei is the Heisen- 
berg operator of the electric field, and $ is the Heisenberg 
field operator for atomic particles. 

Thus, for the kinetic photon Green's function 
D,i+(x,x ' ) we have the quantum statistical average 

and for the kinetic atomic-particle Green's function27 we can 
write, analogously, 

Here x=  {r, t} is the Ccoordinate of the center of gravity of 
an atom, and 5 are variables characterizing the internal mo- 
tion of an atomic electron in the nth state (n= 1,2 in the 
two-level case), which is described by the set of atomic wave 
functions (p,(t). The functions D- -  (G--) and D++  
(G") are expressed in terms of the retarded [DR (GR)] and 
advanced [DA (GA)] Green's functions and the above- 
defined functions D - +  (G-+) (Ref. 23: 

The functions D + -  (G+-)  are expressed in terms of (37) 
and (39): 

The spectral Green's functions Dyt ( r , t ,k ,w)  and their 
counterparts G ta f  are defined as the corresponding Fourier 
components with respect to the difference coordinate: 

Here r = t l - t 2 ,  t=(t l+t2)/2,  p=r l - r2 ,  and r 
= ( r ,  + r2)/2. 

The retarded Green's function for photons in an un- 
bounded medium, D;(k,w), obeys the following well- 
known e ~ ~ r e s s i o n ~ ~ ' ~ ~  in the transverse gauge (div A=O): 

The advanced Green's function D$ is obtained from (42) by 
forming the complex conjugate. A formal derivation of equa- 
tions describing radiation transport in gaseous media having 
a low density bounded by the Biberman criterion (7) has 
been published ear1ier,8,'~.~~ using the approximation e t  1 
in Eq. (42). We note that ~ e v i n s o n ~  has investigated the 
transport of resonance phonons in dense media, using an 
expression similar to (42) for the phonon Green's function, 
with the appropriate polarization operator (which, however, 
is not expressed in terms of the permittivity of the medium). 
For the transport of resonance radiation allowing for the de- 
viation from unity automatically implies that the approxima- 
tion of complete frequency redistribution is valid, whereas in 
Ref. 9 the limit of partial frequency redistribution is investi- 
gated as an alternative approximation to the Biberman- 
Holstein theory. 

The transport equation for incoherent resonance radia- 
tion in the form of a kinetic equation for photons is a special 
case of the Dyson equation?.8-10x2'927 which is written as 
follows in the quasiclassical approximation for the function 
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Here Q is the unit vector along the direction of k. The po- 

larization operators naa' are expressed in the resonance ap- 
proximation in terms of the atomic Green's  function^^"^'^^ (it 
is assumed for simplicity that the states n =  I, 2 are nonde- 
generate): 

The following expressions have been derived27 for the 

Green's function G : ~ ' ( ~ )  in the limit of complete frequency 
redistribution: 

where a,(&) is the "line profile" of the nth state, 

he  = hw- hw,- E (p )+p ,  w,, is the frequency of the nth 
state, E(p) is the translational kinetic energy of a moving 
atom, and p is the chemical potential. The width y, repre- 
sents the sum of the radiation width A and the collisional 
width r (y l -+0  for the ground state). For the generalized 
occupation numbers K ( p )  we have the expression10327 

Here c, is the effective, in general nonequilibrium, popula- 
tion of the nth state, and A,= is the thermal de 
Broglie wavelength of the atom. For narrow spectral lines 
(h e = yi< T) and a nondegenerate atomic gas (&A;G 1 ) 
we obtain from (49) 

Here N,, is the true population obtained by integrating (46) 
with respect to E and p. In the case of broad lines 
(h y,,=T) the generalization (49) is significant and can be 
used to obtain the correct Planck formula for the photon 
occupation n ~ m b e r s , l ~ * ~ ~  whereas in standard radiation trans- 
port theory we find in its place n(w)= Il[exp(hwolT)-11, 
wo= w2- w I ,  i.e., the exponential function involves the tran- 
sition frequency wo instead of the instantaneous frequency 
0. 

From Eq. (43), taking relation (40) into account, we ob- 
tain 

From Eq. (51) in the homogeneous stationary case we 
deduce 

Using the expressions for the polarization operators (44) 
and (45), substituting expressions (46)-(49) therein, and tak- 
ing into account the fact that N2/NI =exp(-hwo/T) in ther- 
modynamic equilibrium, from Eqs. (52) and (42) we obtain 
[see Refs. 20, 26, and 31 and Eq. (27)] 

Consequently, the method of kinetic Green's functions re- 
produces the results of the fluctuation theory while simulta- 
neously providing a means for extending the results to the 
nonequilibrium situation. 

We now introduce the scalar spectral intensity 
J(w,k,r,t) by means of the relation 

We write Eq. (43) for the stationary case in the form of the 
standard radiation transport equation2-4 

Here k ,  is the absorption coefficient and 6 i s  the generalized 
spectral (with respect to k  and w) intensity of volume spon- 
taneous emission. From Eqs. (43)-(49) we obtain explicit 
expressions for k ,  and iT [cf. (21)-(23)]: 

which are written with allowance for the possible degeneracy 
of states 1 and 2 and with the relation between the permit- 
tivity E and the polarization operator I IR (Refs. 17, 23, and 
35): 
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where the first term in IIR contributes to E ', and the second 
term to E" [cf. (44)-(49)l. 

Expressions (56) and (57) involve the generalized line 
profile cp(w,k) (Ref. 27): 

We have derived (59) with allowance for relations (46)-(49), 
which generalize standard line profile theory to the case of 
broad spectral lines.27 If we multiply both sides of Eq. (55) 
by the factor ( C ~ / ~ T ~ ~ ) X ~ ~ I ( ~ T ) ~  and integrate with re- 
spect to k [cf. (30)], we obtain the relation 

We have used the definition (30) for the spectral intensity 
J, encountered in conventional radiation transport theory. 
The quantity E, characterizes the spectral source of sponta- 
neous emission in the equation for J, and has the form [cf. 
(57)l 

- h(w- wo) 4 w2d2 
E w = N 2  exp[- T ] shw 

The dependence of the line profile p( w,k) on the wave num- 
ber k is not essential in the case I'> ku,. The spatial disper- 
sion of the permittivity can be disregarded within the same 
error limits by virtue of the convergence of the integral (61), 
where it is assumed that E ( O , ~ ) = E ( O ) .  Evaluating the in- 
tegral (6 I), we obtain [cf (21) and (391 

Here A. is the probability of spontaneous emission in 
vacuum, defined by relation (1). Consequently, the spectral 
intensity of spontaneous emission in a highly absorbing me- 
dium has a highly accurate and straightforward form (in the 
limit of complete frequency redistribution), but contains in 
addition: 1) renormalization of the spontaneous emission rate 
in the medium (the factor ~ e & ) ;  2) the generalized line 
profile cp(w), which depends in general on the populations 

(59); 3) the factor exp[-fi,(w-wola, which generalizes 
the standard theory to the case of broad spectral lines 
(fi T = T ;  Ref. 27). 

We consider the first term on the right-hand side of Eq. 
(60). Because of the factor Ilk in the integrand, this term has 
the form of a new moment of the generalized spectral inten- 
sity J(w,k,fi,r), which is not reducible to the customary 
form -k,J,(a,r), so a closed equation for J, does not 
exist. Only in the case of a weakly absorbing medium, i.e., 

1 [satisfying the Biberman criterion (7)] can we assume 
[cf (57) and (53)] that 

whereupon Eq. (60) assumes the customary form 

In the homogeneous equilibrium case Eqs. (63), (56), 
and (62) lead to the Clausius law [cf. (19)] for the spectral 
intensity in a weakly absorbing medium: 

In a highly absorbing medium in the homogeneous equilib- 
rium case we obtain the following relation from (55) and 
(30): 

where the function $(w) has the approximate form [cf. (32)] 

The function satisfies $(w)+ 1 in the limit crr+O, whereas 
for err= 1 and high densities (since aV-N) it $(w) in- 
creases logarithmically, causing J, to be an order of magni- 
tude greater than J: in a highly absorbing medium, consis- 
tent with Planck's law. The question of modifying the 
Clausius equation, which is usually written in the form 
JC,'=J;n2 with corrections to account for absorption, has 
been discussed in the literature (see, e.g., Ref. 22). If we 
introduce the refractive index n and the effective absorption 
index ,y (Ref. 20) by the definitions n = ~ e G  and 
X =  1m&, we can express the quantities E and E" involved 
in (65) and (66) in terms of n and X: 

We now write the expression for the equilibrium spectral 
intensity in a highly absorbing medium in these terms: 

For small values of x ln  expression (68) assumes the form 

We have previously written the equation for the kinetic 
photon Green's function D<+ in the form (43), which is 
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obtained5923 from the equations for the Green's function 
D ; + ( X ,  ,x2) in coordinate representation by subtracting a 
Dyson equation of the form 0 2 D - +  = j2 from the analogous 
equation q , D  - + = j  and then transforming to the Fourier 
components with respect to the difference coordinate 
x ,  -x2 .  For compactness we use the symbols j ,  and j2 here 
to denote the corresponding right-hand sides of the Dyson 
equations, C1 denotes the d'alembertian, 
q = A  - ~ - ~ d ~ / d t ~ ,  and the subscript 1 or 2 signifies differ- 
entiation with respect to the coordinate x l  or x2. This proce- 
dure yields a radiation transport equation in the form of a 
corresponding kinetic equation for photons. To the accuracy 
with which satisfies Eq. (43), it should satisfy the Green's 
function, a wave-type equation obtained analogously to (43) 
but using the sum rather than the difference of equations of 
the type O , D - + = j l  and U 2 D - + = j 2  and with the trans- 
formation to Fourier components with respect to x l - x 2 .  
Like (43), (51),  and (55)-(57), an analogous wave equation 
can thus be obtained for J ( w , k , a , r ) :  

x 2 ( c 2 k 2 - 0 2 a ' ) .  (70) 

In Eq. (70) in the general case, as in (56) and (57), N1 and 

& can be nonequilibrium populations. In thermodynamic 
equilibrium, on the other hand, the second factor on the 
right-hand side of Eq. (70) reduces to the Planck occupation 
numbers n ( w ) .  In the stationary and homogeneous case Eq. 
(70) leads to the same result (53) as that obtained form the 
kinetic equation for J Eqs. (55)-(58). 

A transport equation in the form (70) is used in formal 
radiation transport but with zero on the right-hand 
side. If we disregard the right-hand side (e.g., in the limit 
E " + O )  and the wave operator on the left-hand side, as is 
justified for the case of low absorption (kW<k)  and slow 
processes (07% 1 ), it follows from (70) that 

J ( w , ~ ) = A s ( w ~ E '  - c2k2) .  (71) 

If we use this relation in Eq. (60),  we can obtain an equation 
of the form (63),  where A = ~ , ( 2 7 r ) ~ c ~ / o e ' .  

Equations (55) and (70) need to be solved simulta- 
neously in the general case. In Sec. 5 we give an example of 
such a simultaneous application of both forms of the equa- 
tions for the generalized spectral intensity J(w ,k , f l , r )  in the 
stationary case for the formulation of boundary conditions to 
be satisfied by the function J at an interface between two 
media. 

To close the system of equations describing the transport 
of resonance radiation, we need to augment Eqs. (55) and 
(70) with equations for the populations N l  and G2, which 
determine the absorption coefficient k ,  and the spectral in- 
tensity of spontaneous emission .C By analogy with Ref. 27 
we can derive the corresponding equations using the Dyson 
equation for the kinetic Green's function G, + and relations 
(46)-(49) in the approximation of complete frequency redis- 

tribution. We confine the discussion here to the stationary 
case, when the density of excited particles is low, 

N 2 ) < i l = ~  (the Wien limit). For i2 in this limit we have 
the equation 

where the first term ( I 1 )  corresponds to the photoabsorption 
of radiation, which leads to the excitation of atoms, the sec- 
ond term (I , )  corresponds to their spontaneous decay, and 
the last term ( I 3 )  describes the collisional exchange between 
states 1 and 2 (cf. Ref. 27). 

If we use the approximation (71) and substitute this ex- 
pression into the first term of Eq. (72),  we can reduce the 
photoabsorption contribution to the standard form'-4 [cf. 
(2311 

The term corresponding to spontaneous decay ( I 2 )  can 
be written as follows in the approximation used in the deri- 
vation of (62) from expression (61) (Ref. 27): 

If we have a '=  1 and the linewidth, which determines the 
profile cp(w), is small, hT%T, then Eq. (74) is reduced to 
the standard form 12= - A ~ $ ~ .  

In general, the collisional transition rate W exhibits a 
complicated dependence on the populations and the den- 
sities of the particles inducing the decay and excitation of 
state 2 (Ref. 2).27 In the unionized gas the rate of extinction 
of excitations with energy transfer h o o  into translational de- 
grees of freedom is in comparison with the sponta- 
neous decay rate (WIAo4  1 ). The opposite limit W+Ao is 
possible in a gas containing impurity molecules or in a 
plasma.37 We note that in optically dense media radiation 
transport in the volume takes place in the limit of complete 
frequency redistribution in the far wings of the line 
( A B r ) .  Here all the corrections associated with the devia- 
tion of the permittivity from unity become inconsequential 
(cl'+O, E ' +  1) .  Radiation transport equations of the form 
(63) (with a' = 1 )  and the approximation (71) are valid in the 
wings, and once the intensity J ,  has been eliminated from 
(73) the well-known Biberman-Holstein integral 

can be obtained for the populations NZ, SO that 
the spatial distribution of excited atoms, which is associatecl 
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with the emission of radiation and is obtained from the more 
general case (72), essentially coincides with the distribution 
obtained in the Biberman-Holstein approximation.30 In Sec. 
V we give integral equations in a more general form for the 
populations of excited atoms. It must be noted here that, 
besides volume radiation transport, which makes the prob- 
lem of the spatial distribution of excited particles nonlocal, it 
is also necessary in dense media to take account of wave 
reflection from an interface which produces additional con- 
tributions to the equation for i 2 ,  but these are insignificant 
in optically dense media in the far wings of the spectral line. 
For broad lines ( f i r  2 T) it is essential to include a factor 
exp[-h(o-wo)lT], which renders the diffusion approxima- 
tion valid in the lines for the transport of resonance radiation 
(see Ref. 27). 

The need to include wave reflection from the interface 
for le - 1 1 - 1 substantially restricts the applicability of the 
scalar theory, in which the radiation is described by a single 
function J(o,k) ,  the approximation (54). Inasmuch as the 
reflection coefficient depends on the polarization of the ra- 
diation, strictly speaking, it is necessary to abandon this ap- 
proximation and work with the Stokes parameters instead of 
the scalar intensity J. In Sec. 5 we examine this problem in 
closer detail in the case of radiation from a half-space, where 
we mention other restrictions on the applicability of the ra- 
diation transport theory set forth here. In view of its relative 
simplicity and relationship to standard radiation transport 
theory, we show that the approximate approach described in 
this article is justified in a number of cases for the solution of 
practical problems by modification of the boundary condi- 
tions using Eqs. (55) and (70) simultaneously. 

4. PERMllTlVlTY OF A RESONANT MEDIUM 

Vdovin and ~a l i t sk i i~ '  have discussed the problem of 
the permittivity of a resonant gas in detail, deriving equa- 
tions for the collisional widths IT in the limit r B k v T ,  but 
within the gas approximation, i.e., for N L Z ~ <  1 .  In this limit 
we restrict our scope to the generalization of the equations 
for E ( o , ~ )  to the case of broad spectral lines, using the 
relations (46)-(49) obtained in Ref. 27 and assuming that the 
widths r, are described by expressions given in Ref. 21. 

We write in explicit form expressions for the polariza- 
tion operators IIaa'(k) encountered in the definition of the 
permittivity r in the single-loop (resonance) approximation. 

For example, for the contribution IIR from the first term 
in (58) for nondegenerate states 1 and 2 we have [cf. (44) 
and (491 

We note that terms containing the Green's functions G:"' 
with the argument p + k  are nonresonant terms for 
w-woGwo and o>O. We omit them from now on, even 

though they should be included for w>O, when 
o+oo600 holds, to reproduce the correct symmetry 

c l ( 0 ) =  &I(- o); E"(w)= - 8''- o). 
Substituting the expressions G; - = G:+ G,: + and 

G+ + = - G; + G,: + into (75) and dropping integrals that 
contain products of the type G ~ G ;  and G ~ G ; ' ,  since their 
poles lie in the same half-plane, we reduce (75) to the sim- 
pier form 

Proceeding analogously with the contribution to IIR from the 
second term (n-+- I I+- ) /2  in (58) and summing it with 
(76), we obtain 

Using the expressions for the Green's functions G,+ (46)- 
(49) and the analogous expressions for G: and G: (Ref. 27), 
from (77) we obtain 

If we consider the case of narrow spectral lines 
(h&,hA<T) and disregard terms of the form ~ , A ; G  1 in 
the denominators of Eq. (78), we obtain the Drude equation 
for rIR: 

For broad lines it is necessary to take into account the 
dependence on E in exponential functions of the form 
exp(-AeIT) in expressions (78). For example, if the widths 
y, do not depend on E [this assumption underlies the deriva- 
tion of (79) but is invalid in the general case2'] and if Dop- 
pler shifts are ignored, expressions of the following type 
arise in the evaluation of the integrals with respect to E :  
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Integrating Eq. (80) with the aid of the residue theorem, we 
obtain new contributions, not found in (79), from the poles 
of the first factor [for E -  w,+p=i7rT(2n,)], which are 
usually omitted by virtue of their smallness with respect to 
the parameter h yi I T  or h A l T 4  1. 

In general, such terms must be included in calculating 
the resonance contribution to the permittivity on the basis of 
the general expression (78). We also note that when the 
imaginary part of the permittivity 

E =  1 -47rhrIR 

is calculated, Eq. (56) with the profile cp(w,k) represented in 
(59) is obtained from Eq. (78). 

In the most interesting case, when the lower state is the 
ground state, for a ,(w) we have a , (w)  = S(E) and, if we 
disregard the contribution of excited states, for H R  we obtain 
an expression of the form (79), in which it is now required to 
drop terms containing N2. Degeneracy is taken into account 
by simply multiplying this expression by g 2 / g l .  It is also 
immediately apparent that the Biberman criterion is written 
in the form 4.rrhIIR4 1 in this case and has the form (7) for 
ku,+T. 

5. EXAMPLE OF AN APPLICATION OF RESONANCE 
RADIATION TRANSPORT THEORY IN DENSE, DISPERSIVE 
MEDIA; CONDITIONS OF VALIDITY 

Let us consider the elementary problem of radiation 
from a half-space occupied by a heated, highly absorbing, 
homogeneous medium. This problem has been solved 
previously22 using the reciprocity theorem from electrody- 
namics and the fluctuation-dissipation theorem. It can be 
solved formally and rigorously by the method of Green's 
functions for nonequilibrium pro~esses5,23,25736 and by the 
resonance radiation transport theory developed above in Sec. 
3. By comparing these approaches it is possible to formulate 
boundary conditions for the generalized intensity, to refine 
the restrictions on the validity of such an approach, and to 
predict new qualitative phenomena. 

Let a half-space filled with a medium of permittivity 
E ( a )  OCCUPY the domain z 2 0 .  Here we confine the problem 
to the case of zero spatial dispersion and begin with the 
electric field vector polarized in the x-direction. Transform- 
ing to Fourier components with respect to the time difference 
and the transverse coordinates in the equations for the sta- 
tionary retarded Green's function D;(z,z1) (we drop the 
subscripts xx from now on), 

for the function D~, , (z ,z ' )  we obtain the equation (an analo- 
gous equation holds for the derivative d2 /dz r2 )  

w ~ E - c ~ ~ ~ + c ~ ~  dz  ~ : , ( ~ , ~ ~ ) = 4 7 r h w ~ 6 ( z - z ' ) ,  
d2 1 

(82) 

in which E = E ~ = E  holds for z>D, and . F = E ~ = I  for z<O. 
The solution of Eq. (82) with allowance for the continu- 

ity of the function D:,(z,zl) and its first derivative at 
z= 0 has the form 

\ z,z1<0. 

In (83) we have introduced the notation 

If we transform from the solution (83) obtained above to the 
Fourier components with respect to the difference coordinate 
5= z- z' for a fixed value of their half-sum Z =  (z + z1)/2, as 
is the custom in kinetic theory5s23 and as we have done above 
[see (41)], we obtain 

Substituting Eq. (83) into (84) and making use of the 
fact that for Z>O the domain of integration in (84) extends 
from -m to - 2 2  (z<O, z t>O),  then from - 2 2  to 2 2  
(z,zl>O), and from 2 2  to +a (z>0, zl<O), we obtain 

iDo( 1 - r )  
D:,(z>o,~) = exp[2iz(k+ kf)]  

k+(k: +k:)/2 

i D ,  
-- 

i D ,  
exp[2iZ(k+ k:)] + - 

k+ kf k-kf 

i D , ( l - r )  
xexp[-2iz(k-  k:)]- 

k-(kf + kt)/2 

Here 
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It is evident from (85) that only the fifth term in this expres- 
sion does not depend on the sum coordinate Z and corre- 
sponds to the expression (42) used above. All other terms 
decay with increasing distance from the boundary at dis- 
tances L= 1IIm k: They also vanish in the limit r ~ 0 ,  when 
k : = k :  It is also evident from (85) that the transition to 
Fourier components for multidomain solutions of the type 
(83) at a fixed value of the sum coordinate has serious prob- 
lems: the condition Z> 0 can be satisfied in the integration of 
(84) not only for z>0, z l<O,  but also for z<0, z l < O  and 
for z>0, z' <0.  We shall therefore work with the function 
'D;,(z,z1) below. 

Knowing the functions D:, and D:, [the latter is ob- 
tained from (83) by forming the complex conjugate], we can 
find the kinetic Green's function D$ from the relations'23 

For simplicity we assume here that the polarization operator 
n-+ [see (45)] does not depend on the coordinates, i.e., 
excited atoms occupy space uniformly, and spatial dispersion 
is insignificant. 

If radiation of a resonance character with respect to the 
1-2 transition, is incident on the medium from the outside, 
expression (86) must be augmented with the contribution 
from the solution of the homogeneous equation for the func- 
tion D,-,f subject to the condition of continuity of the func- 
tion and its first derivatives [of the form (82) with zero right- 
hand side]. We restrict the present study to aspects of the 
description of radiation emitted from heated media. For phe- 
nomena in the category of Wood's specula reflection of 
resonance radiation from a dense medium of metal vapor 
these terms give the required contributions for the given situ- 
ation, which are not discussed in this article. 

We first compute the integral in (86) for z ,  z1>0. Using 
the solution (83), we obtain 

Here J ( z , z1  ) has the form 

Transforming from the function D,; defined in (37) to 
the spectral Poynting vector [see (28)-(30) and Ref. 22) 
Sz,, , which is equal to 

s- =-- d2q 
C2 Re] z D ~ ~ ( z , z ' ) ~ i f  +;m~. (89) 

'O 47To 7T dz 

from (87)-(89) for z= z' >O we obtain 

We now consider the flux at the boundary for z=zl++O. 
Bearing in mind that the polarization operator n - + ( w )  is 
purely imaginary [proportional to i; see (45)-(47)], along 
with the relation ~ " ( o )  = - 2 ~ r i h ( n + -  - IF +) [see (58)] 
and the fact that in thermodynamic equilibrium [see (52) and 
(5311 

from (90) we obtain 

The minus sign in (91) signifies that the energy flux is di- 
rected from the medium into vacuum (toward negative z). 
We introduce the energy reflection coefficient R, , defining 
it asR,=Ir12. We find at once that 

where, bearing in mind that Re k: vanishes for q> wlc and 
defining q = ( olc)sin$=(olc)x, from (9  1) and (92) we 
have22 

For R, =0, from (93) we obtain half the Planck flux, which 
is given by the relation22 

h o 3 n ( o )  
J: cos 0 sin ddqdd= - 

cos K O )  4m2c2 . 
(94) 

The halving of the flux implies that we have considered only 
one of two possible directions of polarization of the electro- 
magnetic field. Equations (83) and (86) can be used to cal- 
culate the energy flux in vacuum (for z<0, zl<O). It is natu- 
rally independent of the coordinate z and has the same value 
(93). - - 

If N2 and N 1  are not equilibrium populations, as for 
example in the case when the medium contains excitation 
sources as a result of external particle or radiation beams or 
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when an electric current flows through the medium, then in 
place of n(w) in Eqs. (91), (93), (94), etc. [see (97)] we must 
write the expression [cf. (70)] 

If we consider the problem of radiation emerging from a 
heated medium with the electric vector polarized in the plane 
of incidence and if we determine the Green's functions Dyy  
and D y z  from equations analogous to (82) (Refs. 35 and 36), 
we obtain an expression for the energy flux analogous to 
(93), but now with the reflection coefficient RI1, which is 
equal to20,22 

Introducing the total reflection coefficient 

we obtain the total energy flux into vacuum from waves of 
both polarizations in the form22 

If we introduce the spectral intensity of radiation emitted 
from a heated medium into vacuum by analogy with (94), we 
arrive at Kirchhoff's law22 

which follows in an obvious way purely from energy consid- 
erations and, of course, its derivation does not require the 
apparatus of Green's functions for nonequilibrium processes. 
Condition (98) implies that the Planck equation holds for the 
spectral intensity of radiation J :  in a vacuum cavity in the 
interior of any set of media existing in thermodynamic equi- 
librium. 

We note that the radiation intensity in the interior of an 
equilibrium medium is given by Eq. (65). In the case of weak 
absorption (E"-+O) the transition from the expression 
J:= J O , ~ ~  (inside the medium) to radiation at the exit from it 
into vacuum (98) is well known.22738 

The loss of the factor n2 in this case is attributable to the 
transition from solid angles for a wave propagating in the 
medium to solid angles for the refracted wave in vacuum and 
to the existence of an invariant that follows from Snell's 
law:20,25,38 

n2 sin8.d sin 8=const. (99) 

Since we have not made any assumption as to the weak- 
ness of absorption in the derivation of expressions (97) and 
(98), the more general law relating the spectral intensity J: 
of radiation in the medium as determined in (65) to its value 
upon exit into vacuum [see (98)] has the form 

We now investigate the same problem by means of the 
equations for the generalized spectral intensity J (w,k ,p ,z)  

(55) and (70). Here we have the notation p= cos 8, and 8 is 
the angle between the vector k and the z axis. 

In the case of a homogeneous medium we obtain from 

Eq. (55) 
- 
E 

J-(w,k,p,z)= -, p<O, 
k, 

Substituting this solution into the wave equation (70), drop- 
ping the constant terms a k ,  from the right-hand side, and 
taking the relation between k, and E" (56) into account, we 
obtain 

The unknown field b c a n  be found from the boundary con- 
dition, which is naturally formulated in the present situation 
so that the spectral flux of the radiation into vacuum as de- 
termined previously in (97) will coincide with the flux ob- 
tained from the solution of Eqs. (101) and (102): 

In (103) we have introduced the definition [cf. (30)] 

Making use of the fact that the constants terms Ellk, in (103) 
drop out (the isotropic intensity does not generate a radiation 
flux), at z = 0  we obtain 

Since the reflection coefficient R (96) depends on the abso- 
lute value of the cosine of the angle 8, we can require [see 
(105)] satisfaction of the relation 

Here ko is determined from the biquadratic equation formed 
when the argument of the &function in expression (106) is 
equal to zero: 
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From these relations we deduce 

in- 0 
J;(P,~)=J,-J,E'(w)$(o), 

Note that if a boundary condition of the type 

is imposed on the solution (101), it follows from (109) that 
B = - ( a k , ) ( l -  R) ,  but then the solution (101) would not 
satisfy the wave equation (70), and for the intensity of the 
radiation emitted into vacuum, instead of Jz  [see (98)] we 
would have J;(1- R). Analogously, it is evident from (108) 
that the solution (101), (102), (106), which satisfies the ki- 
netic equation (55) and the wave equation (70) for photons, 
does not satisfy the boundary condition 
J: ( p , ~ )  = RJ,; ( p , ~ )  by virtue of the factor ' $ in the ex- 
pression for Jc . 

In the wings of the line (A>r) we have E ' A  1, 
$4 1, R 4 0 ,  and the resulting solution gives J~,"=J: for the 
intensity of the emitted radiation. We also obtain J ;  =J: 
and J: = J:[ 1 - exp(- we"ijcp)], i.e., the standard results in 
the conventional radiation transport theory. 

An analysis of the spectral energy fluxes yields correct 
results without any reliance on the intensity but 
fails to solve a number of problems that arise in radiation 
transport theory. For example, in the equations for the popu- 
lations of excited atoms (72) the photoabsorption rate is not 
determined by the energy flux S,, , but by the intensity J or, 
in the more general case [due to the impracticality of trans- 
forming to Fourier components with respect to the difference 
coordinate in multidomain problems; cf. (85)] expressions of 
the formlo 

where l?(z,z") is the corresponding kernel describing the 
process of nonlocal absorption of radiation near the bound- 
ary of a half-space.'' 

The solution of problems in the presence of an inhomo- 
geneous particle distribution in space in the language of ki- 
netic Green's functions D,i+(x,x') presents major difficul- 
ties. The use of the generalized intensity helps to circumvent 
some of them, because equations of the type (55) and (70) 
are obtained in the quasiclassical approximation?*23 i.e., the 
characteristic lengths of variation of the physical quantities 
are assumed to be large in comparison with the photon wave- 
length. This approximation is satisfactory if the distribution 
of particles in space is sufficiently smooth (see Refs. 1-4), 
but generally speaking, one of the characteristic lengths for 
the radiation intensity itself is the photon mean free path 
L -  llk,, , which is commensurate with the wavelength for 
E"- 1 . Near boundaries, therefore, the solutions found from 
the transport equations (55) and (70) [see (101) and (log)], 
strictly speaking, are invalid. This is evident, for example, 

from expressions of the type (85) and (88), since only at 
distances L> l/Im k: do the corresponding contributions to 
functions of the type D R  and D - +  coincide with those used 
in the derivation of Eqs. (55) and (70). We note that the 
characteristic dependence of the intensity on the distance 
near a boundary has the form (101), (log), i.e., is described 
by the exponential 

where ko is defined in (107). If we compare this expression 
with the exact solution (90), we see right away that the cor- 
responding arguments of the exponentials (1 10) and (90) do 
not coincide, because the quantity 2 Im k 1  can be written in 
the form [denoting q =  (wic) 

The greatest difference occurs for small values of p ,  i.e., at 
small angles with the interface. At distances greater than L, 
i.e., for z P  1IIm k: the energy flux is equal to zero, since the 
radiation in the volume is essentially isotropic. 

If we transform to Fourier components with respect to 
the difference coordinate for the function D$ [see (87) and 
(88)], we may find that the function i D - +  (z,k,q,w) at dis- 
tances z%L yields (101). On the other hand, the solution 
(101) is "hemmed" just beneath the true value of the radia- 
tion flux from the medium (105), (106). Consequently, the 
approximate solution of radiation transport problems using 
the scalar intensity J ( o , k )  with "correct" boundary condi- 
tions [of the type (103), (97)] and satisfying two equations 
simultaneously - the kinetic equation (55) and the wave 
equation (70) - can be justified both by its comparative 
simplicity and by the reducibility of this approach to the 
conventional procedure'-4 in the limit .zl'-+O, E '4 1. 

The solution (101) of Eq. (55) can be generalized to the 
case of nonequilibrium and inhomogeneous (but sufficiently 
smooth) distributions of the density of atomic particles in the 
form 

J + ( w , k , p , z ) = ~  exp 

We have written the right-hand sides of expressions (1 12) so 
that they will go over to (101) in the homogeneous case 
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(E,k,=const). In the case of a smooth distribution of Eand 
k (e.g., in a nonuniformly heated body) on the scale of the 
mean free path L-llk, expressions (122) can be approxi- 
mately written in the form (101) with F and k, depending 
adiabatically on z [e.g., by integrating (1 12) by parts and 
discarding the "leftover" derivatives]. In this form the prin- 
cipal terms of the solution (1 12) drop out to the same accu- 
racy on the right-hand side of the wave equation (70), and 
for the function B we obtain an expression analogous to 
(102). 

Calculating the spectral intensities J , " ( ~ , z )  described by 
(104) with the use of the solutions (1 12), we obtain the con- 
dition for the radiation flux emanating from the medium 
(103) at z=0,  where now instead of (100) in the inhomoge- 
neous case we have 

Here the subscript 0 refers to the values of the corresponding 
quantities at the boundary z= 0. Inasmuch as J;(p,O), like 
J-(w,k,p,O), is now determined by an integral of the type 
(1 12), for a nonuniformly heated medium the radiation at the 
exit into vacuum can exceed the Kirchhoff level (98) at the 
boundary temperature To because of the deeper heated lev- 
els, where the intensity can be considerably higher than the 
Planck value at the local temperature of the layer [since 

1 holds in a highly absorbing, dense media within the 
limits of the line profile ( A  S r ) ] .  

For the quantity b i n  (102), taking (1 13) into account, 
we obtain 

Here the angle brackets signify integration with respect to k 
with the weighting factor [ 2 ~ ~ / ~ ( 2 , r r ) ~ ] k ~ ,  as defined in 
(104). An expression of the form (8) occurs in the denomi- 
nator of Eq. (106): 

where ko is given by expression (107). 
The populations i2 involved in expression for .F given 

by (57) are nonequilibrium in general. If the radiation inten- 
sity J,(p,O) is close to (.G7k,)0 (as happens if the integral 
in (1 12) is calculated asymptotically by parts for p<O), the 
last two terms in (1 14) essentially drop out. This also occurs 
in the homogeneous case, and the expression for bgoes over 
to (106). 
. The solution (112) can be written in the form 
J= J,T + J, , where J ,  is the contribution from the surface 
term: 

[ ( 1  ( -  J;=O, (116) ~ f =  B +  - exp 

and the subscript v refers to the volume contributions repre- 
sented by the corresponding integrals in (1 12). If we substi- 

tute this expression into Eq. (72) for the populations N2, the 
contribution from the volume terms reduces to a generalized 
integral operator of the Biberman-Holstein which 
in the given situation has the form 

and in the case k,= const (throughout space) can be written 

The Biberman-Holstein operator (118) differs from the 
usual form by the additional integration with respect to k, 
where the absorption coefficient k,, according to (56), de- 
pends on k. For E"< 1 (i.e., either if the Biberman criterion is 
satisfied or in the wings of the line) a factor of the form 
(1/,rr)o2&"/(I 02&-c2k2I2) goes over to 6(02&'  - c2k2), 
and after integration with respect to k expression (1 18) as- 
sumes the form 

Here A. is the probability of spontaneous emission in 
vacuum (1). We note that a factor of the form ~ e & -  @ in 
the expression for A [see (12), (25), and (36)] cancels out 
with the analogous factor in the expression for k,= kzl@ 
[see (22)l. For narrow lines ( h T 4 T )  the expression 
exp[-h(o-%)IT can be dropped from (1 19) and replaced 
with unity. In this case (1 19) goes over to the standard 
e ~ ~ r e s s i o n . ' . ~ ~ . ~ ~  

However, Eq. (72) also contains an added contribution 
from surface terms. It has a local rather than a global form 
and can be written explicitly, for example, in the one- 
dimensional case: 

For brevity we have introduced the abbreviation S(. . .) to 
denote the corresponding Bfunction shown explicitly in 
(102). The quantity b is given by expressions (1 14) and 
(1 15). Owing to the exponential in (120), the wings of the 
spectral line (A9I ' )  are important in the integral with re- 
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spect to w far from the boundary [ L S  llk,(A = O)]. In the 
wings we have R o 4 0  and .5A-,fiO4 1. On the right-hand 
side of Eq. (1 14) the first two terms drop out in this case. For 
the other terms in the brackets of relation (120) we obtain 

It is readily apparent from (121) that the two terms in the 
brackets drop out in the wings of the line 
( d A 9 T  ,&"4 1 ,E ; 4 1 ). Consequently, the contribution from 
the surface source in the equations for the populations of 
excited atoms in optically thick media can be omitted, and 
the volume contribution goes over, within small error limits, 
to the Biberman-Holstein integral operator. For the 
Bibelman-Holstein equation the limit of large optical thick- 
ness the transition can be accompanied by transition to a 
large-scale (hydrodynamic) approximation39 consisting in 
the integration of the operator (1 19) with respect to frequen- 
cies, provided that asymptotic expressions are used for k: 
and q(w)  in the wings of the spectral line. 

We note that in unbounded space the distribution of 
populations is not necessarily determined by radiation pro- 
cesses, owing to the confinement of radiation. In this limit 
there is no contribution from surface terms, and the volume 
term I: is exactly cancelled by the term I2 in (72) if we set 

N2=const in (1 18). If N2(r1) is taken outside the integral 
si.gn in (1 18) at r '  = r ,  i.e., if the probability of emission of 
radiation 8 from a bounded volume is used,' then for O(r) 
we can obtain Iy+12= 128(r) ,  

Here r ,( l l)  denotes the radius vector of a point on the sur- 
face (bounding the volume occupied by the medium), ob- 
served from the point of emission r in the direction a. In an 
optically thin medium (k,rG 1 ) 8 becomes equal to unity. In 
disperse media (&I--, 1 ,E"< 1 ) and for narrow spectral lines 
(hTGT)  we obtain the well-known expression for B(r) 
(Ref. 1) from (122)): 

Here cp(w) is the line profile, normalized to unity, whose 
derivation requires that h s  be neglected in comparison with 
T in (59), that contributions -N,A; be omitted in the de- 
nominator, and that the wave number k be replaced by 
W/C. Expression (122) goes over to (123) in the wings of the 
spectral line. 

In problems of the propagation of a transient radiation 
pulse, as in problems where spatial dispersion is significant, 
it is necessary to abandon approximations that lead to equa- 
tions of the type (43) and (70) (the quasiclassical 
approximation5~23) and to work directly with the Dyson equa- 

tions, in which the polarization operators I 1  ""'(xl ,x2) incor- 
porate delay and nonlocality effects. For quasistationary 
problems and for T>kvT the above equations (55), (70) (the 
time derivatives need to be discarded from the latter), and 
(72) generalize the standard transport equations to the case of 
dense, dispersive media and can be used to solve a wide 
range of physical significant problems. 

6. NUMERICAL MODELING OF RESONANCE RADIATION 
TRANSPORT IN HIGHLY ABSORBING MEDIA 

To illustrate the above transport theory for resonance 
radiation, we carry out numerical calculations in the case of 
the resonance doublet of the sodium atom: the 3 s  1 1 2 - 3 ~  
transition, A I = 5895.92 A ( D  line); the 3 ~ ~ ~ ~ - 3 p ~ ~ ~  transi- 
tion, hl=5889.95 A (D2 line). The atomic constants for 
these transitions are well known. The oscillator strengths (in 
absorption) are f ,  = 0.327 and f 2  = 0.653 (the subscripts I 
and 2 refer everywhere to the D l  and D 2  lines, respectively), 
and the spontaneous emission probability is A = 6.25X 0107 
s-' (see, e.g., Ref. 40). The collisional widths under our 
stated conditions are related to the resonance transfer of ex- 
citation and, according to published data,41 are equal to 
v l  = 4.68X I O - ~ N  and v2=7.62X IO-'N, where N [ ~ m - ~ ]  
is the density of sodium atoms, and vi are expressed in hertz. 

The temperature dependence of the density N of the so- 
dium vapor is determined from data in Ref. 42. The colli- 
sional width dominates the radiation width beginning with 
densities N=10I4 cm-"~>550 K). The Doppler width 
kovT in the investigated temperatu!e interval is kovT- 10'  
s- '  (corresponding to Ah- A) and is greater than the 
collisional width up to densities N- 1017 cm-3 (T-800 K). 

Since we are interested in the qualitative aspects of the 
problem, we restrict the numerical analysis to an approxima- 
tion in which fine structure is ignored, and the main calcula- 
tions are carried out for the sodium D 2  line. This approxi- 
mation becomes formally valid at high densities (for which 
the most interesting phenomena are observed), when the col- 
lisional width r exceeds the fine structure of the resonance 
doublet Ah-6 (this is the case at a vapor temperature 
T> 1 I00 K). 

In the equations for the spontaneous emission probabil- 
ity (35) and the spectral intensity of the radiation (31) we 
distinguish the integrals 

The subscript n = 2 corresponds to A, and n = 3 corresponds 
to J, . We have introduced the dimensionless variable 
t = k c l w  in the integrand of (124). If the permittivity E does 

923 JETP 83 (5), November 1996 Zemtsov et a/. 923 



not depend on the wave number k, the integral 1, corre- 
sponding to the spontaneous emission probability A is com- 
puted exactly [cf. (36)l: 

I, = Re 6. (1 25) 

The integral I, corresponding to the intensity J ,  diverges in 
this approximation, but for a "narrow" line such that the 
&function 

can be distinguished in the integrand, the integral l3 is com- 
puted approximately [cf. (64)l: 

For I, in this approximation we have [cf. (25)] 

The results of numerical calculations of the integrals I, 
and I j  are shown in Fig. 1. It is evident from Fig. l a  that 
I2 differs little from unity at low densities N <  1015 cm-3 
(T<600 K), for which the spontaneous emission probability 
is therefore close to its value in vacuum. At high densities 
N >  1017 cm-3 (T>800 K) the integral I, differs consider- 
ably (by -30%) from unity for a frequency separation (from 
resonance) A = +  y/2, tending to a limit (saturating) as the 
density increases. Consequently, at high pressures the line 
profile for frequency separations of the order of the colli- 
sional width r can differ locally by an appreciable amount 
from the vacuum value. This effect disappears in the wings 
of the line. The amount of deviation of the integral I, com- 
puted by the exact integration of (124) for n = 2 from the 
approximate value (125) is shown in Fig. lb. 

The results of calculations of the equilibrium spectral 
intensity J ,  [integral I,, Eq. (124)l are shown in Fig. lc. At 
low densities (N< 10" ~ m - ~ )  we have 1,- 1 at all frequen- 
cies. As N increases, 1, increases at the center of the line, 
attaining a value I,= 10 for N- 10,' cm-,. Consequently, 
the local value of the intensity J, in the spectral range IAl 
< r can differ substantially (by an order of magnitude) from 
the Planck value. 

We also perform numerical calculations of the integral 
operator (1 18) [evaluating the integrals with resect to k in 
(1 18)] with a view toward comparing its kernel with the 
kernel of the Biberman-Holstein operator (1 19). It follows 
from these calculations that for frequency separations greater 
than the linewidth r and for virtually any optical thickness 
the two kernels of the integral operators agree within very 
small error limits. If we bear in mind that the main contribu- 
tion in the integrals with respect to o (1 18) and (1 19) for 
large thicknesses is from the far wings of the line ( A a l ' ) ,  
we find that these calculations provide an opportunity for 
greatly sin~plifying the problem of the spatial distribution of 
populations of excited atoms by solving, instead of Eq. (72), 
the Biberman-Holstein or the simpler 
Abramov-Dykhne-Napartovich integral equations in the 
large-scale approximation. 39 

Figure 2 shows the results of calculations of the spectral 
intensity J ,  according to (30), based on the numerical solu- 

FIG. I .  a )  Ratio o f  the spontaneous emission probability to its vacuum 
value, I , = A ( w ) l A o  (124); b )  ratio l , l ~ e &  (125);  c )  ratio o f  the spectral 
intensity to its Planck value, 1 3 = J , l J ~  (124).  Sodiuni line 3s, , ,-3p3,,  . 
Legend: 0) T = 5 0 0  K ,  N =  1.8X 10'' cm-'; 0) T = 6 1 0  K ,  N =  1.1 X l0I5 
cm '; 0) T = 7 0 0  K ,  N =  1.2X 1016 cm-'; X )  T = 8 2 5  K ,  N =  1.4X 10" 
cni '; @)  T =  1000 K ,  N =  1.5X loi8 c m - ' ;  A )  7'= 1300 K ,  
N =  1.8X 10'" cm '; T =  1700 K ,  N =  1.2X 10" cni '. 
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FIG. 2. Radiation profile at the center of a plane layer (0.1 cm). Parabolic 
temperature profile (T=600-1200 K). I) Solution of Eqs. (55). (70). (72). 
and ( 1  14); 2) Planck intensity; 3) approximation (63). The abscissa repre- 
sents the ratio of the frequency separation to the Doppler width at T 
=600 K. 

tion of the combined system of equations (55), (70), (72) 
subject to the boundary condition (1 14) for a homogeneous, 
heated, plane layer of sodium vapor. Clearly, the intensity 
 center ( p  = 0 )  at the center of the layer (curve I) corresponds 
to the equilibrium intensity in an absorbing medium at 
,= ~ e n r e r  and exhibits good agreement with the calculations 

represented in Fig. l c  and obtained from the approximate 
analytical equations (65) and (66). Also shown in this figure 
for comparison is the Planck intensity J: (curve 2) and the 
intensity obtained by the numerical solution of Eq. (63) 
(curve 3). At the center of the layer the radiation intensity is 
practically isotropic and is more than three times the Planck 
value. The approximation (63) is inapplicable under these 
conditions. 

Figure 3 shows the results of calculations of the intensity 
J Y g e  of radiation emitted from the layer along the normal to 
the boundary. We see that in the vicinity of the center of the 
line the dip in the intensity curve is not as deep as that 
obtained by solving the equation of standard radiation trans- 
port theory, even in spite of self-reversal effects. The inten- 
sity of the emitted radiation near the center of the line is 
more than seven orders of magnitude greater than the value 
obtained from the conventional theory, and it has a typical 
double-humped structure mirroring the specific nature of ra- 
diation emanating from warmer layers, where the radiation 
intensity exceeds the Planck level at the corresponding local 
temperature. We note that the vapor density at the cold 
boundary of the layer is rather small, and phenomena asso- 
ciated with boundary reflection do not play a significant part 
( R =  I ) .  In the wings of the line and in the vicinity of the 
intensity maximum the results obtained from the solution of 
the generalized theory and by numerical integration of both 
Eq. (63) and the standard transport equations virtually coin- 
cide. The asymmetry in the intensity of radiation emitted 
from the layer at the principal maxima in Fig. 3 is attribut- 

FIG. 3. Radiation emitted from a plane layer (0.1 cm). Parabolic tempera- 
ture profile (T=600-1200 K). I) Solution of Eqs. (55). (70). (72). and 
(1 14); 2) classical theory; 3) approximation (63). 

able to the inclusion of the factor exp(-hAln in Eqs. (55) 
and (57), and its experimental observation is important for 
testing the validity of the earlier theory'0v27 and the theory set 
forth here. The local thermodynamic equilibrium approxima- 
tion is quite accurately satisfied under the given conditions 
for calculations of the populations of excited atoms. The cal- 
culations of the intensity of radiation emitted from a homo- 
geneous heated layer are in good agreement with Eq. (100). 
The comparatively high residual intensity obtained from 
these calculations for radiation emitted from an inhomoge- 
neous heated layer with its characteristic spectral dependence 
should be an interesting effect to observe experimentally in 
regard to verifying the validity of the theory. The appreciable 
excess of the intensity in the interior of the layer over the 
Planck level could be confirmed by injecting the interior of 
the medium with a small amount of impurities for which the 
frequency of transition from its ground state exhibits acci- 
dental coincidence with the resonance transition frequency in 
Na and for which the optical thickness of the layer is small in 
comparison with unity, i.e., the cumulative radiation in the 
layer could be used for resonant impurity pumping. 

Here we call attention to the complexity of the numerical 
solution of the combined system of equations (55), (70), (72) 
with the boundary condition (114). The problem is that the 
kernels of the integrals in (72) contain sharply varying func- 
tions with properties close to those of a delta function. To 
correctly include the integral terms, we use nonequilibrium 
grids with allowance for the singularities of the integrand. 
For example, in the calculations for Figs. 2 and 3 the number 
of nodes of the k-grid is roughly 400 at the center of the line 
and more than 16000 in the wings. The computing time for 
one set of input data on a computer using a Pentium 100 
processor is 40-80 min. 

In closing, we reiterate that the transport equations ob- 
tained in the present study for resonance radiation in dense, 
dispersive media are approximate. The application of the 
scalar radiation intensity in inhomogeneous layered media 
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can be inadequate if polarization effects are at issue. Under 
these conditions it is necessary to analyze Green's functions 
~ , i + ( w , z , z ' )  of the type (86) and (82) directly, which 
makes it significantly harder to get final results. Since this 
theory predicts new qualitative results, such as the consider- 
able excess of the spectral intensity J ,  in the interior of a 
highly absorbing medium over the Planck level J: and the 
high residual intensity level of radiation emitted from an 
inhomogeneous heated layer, the most acceptable verifica- 
tion of the validity of the new theory would be the experi- 
mental corroboration of these effects. 
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