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This paper proposes a method for quantum-mechanically analyzing the dynamics of a 
hydrogenlike system, based on the representation of the electron wave function in a basis of 
displaced Coulomb states. This method can be used to construct an approximate model for the 
generation of the high harmonics of a strong light field by a hydrogenlike system. A 
plateau is present in the calculated spectra of the harmonics, with a high-frequency limit (when 
the width of the laser pulse is greater than 15-20 optical periods) in the region where the 
photon energy equals 1 + 3 U ,  where I is the ionization energy and U is the ponderomotive energy. 
If the laser pulse is shorter, a significant lengthening of the plateau occurs; the dependence 
of the high-frequency limit of the plateau on the pulsewidth is investigated. The generation of high- 
order harmonics in the field of a pulse with phase modulation (chirp) is also studied; these 
harmonics broaden somewhat and shift toward higher frequencies if the pulse is negatively chirped, 
and the harmonics shift toward lower frequencies if the pulse is positively chirped. Several 
possible mechanisms leading to this effect are discussed. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

The generation of high-order harmonics, observed when 
intense laser radiation interacts with gases'-4 and plasma:*6 
is one of the most interesting nonlinear optical phenomena 
and is being actively studied in modem laser physics. An 
atom or an ion in the field of a high-intensity (greater than 
10'%/cm2) electromagnetic wave interacts with it in an 
essentially nonlinear manner. In particular, it emits electro- 
magnetic waves at frequencies that are multiples of the fre- 
quency of the incident radiation. 

A plateau is observed in the spectrum, containing tens of 
odd harmonics and terminating in a rather sharp high- 
frequency limit. It was shown in the numerical experiments 
of Ref. 7 that this limit lies in the region of photon energies 
close to 1 + 3 U ,  where I is the ionization potential and U is 
the ponderomotive energy of an electron; consequently, the 
order of a generated harmonic cannot appreciably exceed 

1 + 3 u  
N,,=- 

iio ' 

where o is the frequency of the extemal radiation. 
On the whole, the experimental results agree with this 

conclusion, although it is difficult to check Eq. (1.1) exactly. 
It is difficult to analytically study the process of gener- 

ating high-order harmonics, mainly because perturbation 
theory cannot be used for calculating processes in an atom in 
a strong field. In this connection, several simplified models 
have been proposed for theoretically analyzing the genera- 
tion of high-order harmonics. These include the semiclassi- 
cal model,8 the two-level system of Ref. 9 (which cannot be 
described by any potential in space), and quantum- 
mechanical models using various model potentials: a one- 
dimensional potential of the type I / J ~ , ~ ~ . "  a three- 
dimensional 8-function potential,'2 and several others. The 

plateau in the spectrum of the harmonics is, to all appear- 
ances, a fundamental property of a nonlinear system and is 
present in all the models enumerated above. Even when a 
one-dimensional classical anharmonic oscillator oscillates, 
there is a plateau in the Fourier components of its 
d i ~ ~ l a c e m e n t . ' ~  

The case of a hydrogenlike system is important in prac- 
tice and is considered in the analytical quantum-mechanical 
theories for the generation of high-order harmonics of Refs. 
14 and 15. A serious disadvantage of these theories is that 
they cannot take into account the nonmonochromaticity of 
the extemal field (if it is not small), i.e., the finite width of 
the laser pulse, its chirp, or the presence in it of radiation of 
different wavelengths of comparable intensity. It is crucial to 
create theories that are free from these drawbacks; the prac- 
tical importance of this is associated, in particular, with the 
fact that, in recent experiments4 involving the use a short 
laser pulse, harmonics were observed with orders up to one 
and a half times that given by Eq. (1.1). 

This paper proposes a method for quantum-mechanically 
analyzing the processes that occur in an atom, based on the 
representation of the electron wave function in a special 
basis-a basis of displaced Coulomb states. We should point 
out that the basis of displaced harmonic-oscillator states is 
used in quantum mechanics.16 A basis of displaced Coulomb 
states can be used in calculating the dynamics of a hydro- 
genlike system in various problems. In this paper, it is used 
to study the generation of high-order harmonics. The pro- 
posed model of the generation of high-order harmonics is not 
absolutely rigorous but gives results close to those of Refs. 
14 and 15 for the case of a monochromatic field. At the same 
time, it can be used to calculate the generation of high-order 
harmonics in the field of a short chirped pulse. The results 
agree with the experimental data of Ref. 4. 

902 JETP 83 (5), November 1996 1063-776119611 10902 -07$10.00 O 1996 American Institute of Physics 902 



2. BASIS OF DISPLACED COULOMB STATES 

This section describes a method for approximately solv- 
ing Schrodinger's equation, using the basis of displaced Cou- 
lomb states. 

Schrodinger's equation for the electron wave function 
q ( r , t )  in the one-electron approximation, neglecting relativ- 
istic and spin effects, is written as 

where A(r, t )  is the vector potential of the external electro- 
magnetic field of the wave, f ( r )  is the potential of the 
nucleus (or of the atomic cone), and ~ is the momentum 
operator. Here and below, we use the atomic system of units. 
The solution of the wave equation can be written as 

CO 

where q,(r)  and ,y(k,r) are the eigenfunctions of some 
Hamiltonian. How rapidly the series in. Eq. (2.2) converges 
for a specific problem depends on the choice of the basis 
{q , ( r ) ) .  The eigenfunctions of the unperturbed energy op- 
erator (the so-called Coulomb states) are usually chosen as 
basis functions. 

We shall use the basis consisting of the Coulomb states 
centered at the position of a free classical electron in the field 
of the electromagnetic wave, 

where pi are the Coulomb states (subscript j is equivalent to 
the set of subscripts n ,  I ,  and m-the principal, orbital, and 
magnetic quantum numbers), and R is the position of the free 
electron: 

here E(t)  and w are the electric field and frequency of the 
external wave. The displaced Coulomb states are the eigen- 
functions of the energy operator ,02/2 + f ( r -  R) .  

Let us substitute the expansion given by Eq. (2.2) into 
Eq. (2.1). After replacing p= r-R and doing some manipu- 
lations, we get in the long-wavelength approximation 

where E ,  is the energy of the (undisplaced) Coulomb state 
c p , ,  and 6Wn(t) denotes a term that depends on c (k , t ) .  This 
system of (an infinite number of) integrodifferential equa- 
tions, combined with a similar equation for c (k , t ) ,  is equiva- 
lent to Schrodinger's equation, Eq. (2.1) and consequently is 
exact (in the long-wavelength approximation). 

However, it is not possible to solve such a system, while 
retaining SW,,(t). The main approximation used in this pa- 
per is that 6W1,(t) is neglected in Eq. (2.4). Below (for brev- 
ity) we call the system of displaced states of the discrete 
spectrum the basis. If the series in Eq. (2.2) converges rap- 

idly enough, it can be cut off at a finite number of terms. 
After this, Eq. (2.4) reduces to a system of a finite number of 
ordinary differential equations, 

which can be solved numerically. The conditions under 
which the approximations used here are justified are dis- 
cussed at the end of this section. 

Note that the action of the external field on the atom has 
been reduced to a time-dependent shift in the argument of 
the potential. The atom-field interaction is described in the 
same way in the Kramers coordinate system (see, for in- 
stance, Ref. 17); however, our approach has the advantage 
that the explicit form of the function q j ( p )  is known from 
the very beginning, whereas it is difficult to obtain an ana- 
lytical expression for the eigenfunctions of the Kramers- 
Henneberger potential for a hydrogenlike system. 

To solve the system of Eqs. 2.5, it is necessary to com- 
pute the matrix elements 

Below, the entire treatment is carried out for a hydrogenlike 
system in the field of a plane-polarized wave. 

It is well known from the general theory18 that quantities 
such as that given by Eq. (2.6) differ from zero only for 
m = m'. Below, it is assumed everywhere that nt = 0 holds, 
since this is the only value of the magnetic quantum number 
that is possible in the initial 1 s state of the atom, from which 
the transitions to the excited states occur. There are no other 
selection rules for the matrix elements given by Eq. (2.6). 

It is natural to carry out the integration in Eq. (2.6) in 
spherical coordinates { p , 8 , q ) ,  choosing the direction of R 
to be along the axis. We represent V ( p + R )  by the well- 
known expansion in Legendre polynomials Pk(-  cos @: 

The dependence of qnro on 0 is also expressed in terms 
of Legendre polynomials. Integration over 8 in Eq. (2.6) re- 
sults in the integrals 

This is a particular case of the so-called 3 j symbols, whose 
values are given in Ref. 18. They differ from zero only when 
k satisfies the condition ( I  - l ' ( ~  k ~ l +  I' (the angular 
momentum-addition rule). Thus, only a finite number of 
terms remain in the sum over k in Eq. (2.6). 

The radial part of q,,,, is a generalized Laguerre poly- 
nomial multiplied by a power of p and an exponential of 
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FIG. I. Matrix elements given by Eq. (2.6); curve I corresponds to n = 1, 
I=0; n'=2,1'=1.Curve2correspondston=1,l=0; n'=7,1'=1.Cuwe 
3 corresponds to n=2, l = l ;  n 1 = 7 ,  I f =  I .  

p ,  and therefore the integral over the radial variable is found 
by integrating by parts. The final expression for the matrix 
elements of Eq. (2.6) is extremely cumbersome; the impor- 
tant thing is that it contains only finite sums, and therefore 
the calculation of the matrix elements by computer presents 
no fundamental difficulties. 

Figure 1 presents some results of this calculation. It can 
be seen that the absolute values of the matrix elements cor- 
responding to transitions to the upper levels are small. This 
means that the occupations bib; of these levels will increase 
slowly with time, and the series in Eq. (2.2) converges rather 
rapidly. 

The matrix elements for small R, i.e., for high frequency 
(or) weak fields, are especially small [see Eq. (2.3)]. 

From a physical viewpoint, the expediency of using a 
basis of displaced Coulomb states in the case of high fre- 
quencies can be explained by the following considerations: It 
can be concluded from an analysis of the results of exact 
numerical experiments (for example, Ref. 19) that, in a high- 
frequency field, even when the mean electron energy exceeds 
the ionization energy, the electron continues to oscillate near 
the nucleus for many light periods. These oscillations are 
taken into account explicitly in the basis of displaced Cou- 
lomb states, and it is therefore obvious that it gives a better 
description of such an electron state than does the system of 
undisplaced states of the discrete spectrum. 

If the external field is weak, one can use perturbation 
theory, the results of which are described in detail in the 
literature. This makes it possible to use the case of a weak 
field in testing the numerical calculations in models that use 
a basis of displaced Coulomb states. 

If the initial state of the atom is strongly excited, our 
approximations are justified for fairly strong and low- 
frequency fields. Actually, the matrix elements of transitions 
from the upper states are small for any R; the continuous 
spectrum of the basis of displaced Coulomb states can be 
neglected because an electron in a strongly excited state is 
far from the nucleus and is almost free; consequently, the 

probability that it will absorb a photon and be ionized is very 
small. 

If the electron was in the ground state before the field 
was switched on, and the field is strong and has a low fre- 
quency, calculations in which the states of the continuous 
spectrum of the basis of displaced Coulomb states are ne- 
glected can be regarded only as model calculations. How- 
ever, this case is important in practice in the problem of the 
generation of high-order harmonics; therefore, the next sec- 
tion chiefly relates to intense, low-frequency external fields. 

3. GENERATING THE HIGH-ORDER HARMONICS OF A 
HYDROGENLIKE SYSTEM 

This section is devoted to a description of one possible 
application of the basis of displaced Coulomb states- 
calculation of the radiation of a hydrogenlike system in the 
field of an electromagnetic wave. 

As is well known, the radiation intensity (in the dipole 
approximation) is proportional to d(t)2, where d(t) is the 
dipole moment of the atom: 

d( t )=  - (q ( r , t ) J r  cos SIq(r , t ) ) ,  

here 6 is the angle between r and the z axis, directed along 
the external field. After we expand q ( r , t )  in the basis of 
displaced Coulomb states, we get 

The matrix elements appearing in this expression, 

zkj=('~k(p)Ip Cos ~ I ( P ~ ( P ) ) ,  

are calculated analogously to Eq. (2.6). 
In order to compute d,, it is sufficient to find the spec- 

trum d, of the quantity d(t), since dm= - w2d,. However, 
by using Ehrenfest's theorems, it is immediately possible to 
find the spectrum of the acceleration d, or the velocity d, of 
the electron. From Ehrenfest's second theorem, 
( 2 )  = - (E), where E is the total field acting on the electron: 
E= Ewave+ Earnm, we get 

The derivative of the matrix elements given by Eq. (2.6) with 
respect to R in this equation can be calculated numerically. 

The first derivative of the dipole moment can be com- 
puted without the help of numerical differentiation. In fact, 
using Ehrenfest's first theorem, (i) = (p,) + A ,  l c ,  we get 

where ck  and c j  are the energies of the kth and jth states. 
Since the motion of the electron is calculated approxi- 

mately, the values of w2d,, wd,, and i, may not coincide. 
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A comparison of these values can be used to evaluate the 
correctness of the approximations that have been made. 

The general procedure of a numerical experiment is as 
follows: The system of the first N differential equations from 
Eq. (2.5) was solved numerically by a fourth-order Runge- 
Kutta method over several tens of optical periods. The num- 
ber N was chosen so that including additional equations no 
longer changed the results substantially, and ranged from 21 
to 34. Before the beginning of the pulse, the electron is in the 
I s  state. The external field amplitude either attained its 
maximum value in about the first 20-30 optical periods and 
then remained constant (a "long" pulse) or smoothly in- 
creased and then decreased (a "short" pulse). The spectrum 
of the harmonics was calculated in the long-pulse case over 
several optical periods in the region where the field ampli- 
tude was established; for a short pulse, the spectrum of the 
harmonics was calculated over the entire duration of the 
pulse. 

The correctness of the numerical calculations was 
checked by means of several test problems. If the external 
field is weak and its frequency is close to that of the transi- 
tion between some two levels, the atom can be regarded as a 
two-level system, the dynamics of which are well known; the 
results of numerical calculations were extremely close to the 
latter. Another test problem is the generation of harmonics in 
a weak field, which can be studied by means of perturbation 
theory. In this case, the amplitude of the nth harmonic is 
proportional to En,  where E is the amplitude of the external 
field. Our numerical calculations agree with this conclusion. 

The closeness of the spectra of the harmonics calculated 
in terms of the various derivatives of the dipole moment is 
not only a criterion of the applicability of the approximations 
that are used but is also an effective test of the numerical 
calculations, since the population of each state makes differ- 
ent contributions to the right-hand sides of Eqs. (3.1), (3.2), 
and (3.3). In our computations, all three spectra were close. 
The wd, spectrum was the least noisy; below, all the results 
are given for this spectrum. 

The specification of a smooth shape for the turning-on of 
the external field was important for obtaining low-noise 
spectra of the harmonics. In the case of a long pulse, the field 
amplitude increased according to the law 

where T is the duration of the leading edge, and t varies from 
0 to several times T. In a short pulse, the field amplitude 
varied according to the law 

where t varies from minus several times T to plus several 
times T. 

Even with this smooth shape of the turning-on of the 
external field and with the maximum accuracy of the numeri- 
cal calculation, some noise is present in the spectrum. Its 
level can be reduced by averaging over several (complex) 
spectra. In the case of a long pulse, these spectra are taken in 
different time intervals. In the case of a short pulse, the spec- 

. 2  
IdJ , rel. units . 

FIG. 2. Spectrum of the harmonics generated in a field with an intensity of 
8 X 1013 w/cm2 and a quantum energy of 0.11. The solid curve shows the 
calculation in a model that uses a basis of displaced Coulomb states. The 
crosses show the calculation in the ionization model. 

tra were calculated for peak amplitudes of the field that dif- 
fered slightly (by several percent) and were then averaged. 

The resulting spectra of the harmonics possess a plateau 
with a high-frequency limit whose position in the case of a 
long pulse is well described by Eq. (1.1). Figure 2 shows the 
spectrum calculated for hw=Il lO and U = 0.451 ( I  is the 
ionization potential of the atom). The harmonics with 
N< 10 are hard to distinguish, since the spectrum is affected 
by the resonance frequencies of the atom; the harmonics with 
higher numbers are easy to distinguish, and their intensities 
decrease appreciably beginning with N=25 (the high- 
frequency limit of the plateau). The same figure shows the 
spectrum of the harmonics obtained in the "ionization" 
theory of Ref. 15. The closeness of the results is evidence 
that the described model is applicable for fields with a pon- 
deromotive energy at least up to 112 and a quantum energy 
greater than I /  10. 

In the spectrum of the harmonics generated by a short 
pulse, the high-frequency limit of the plateau shifts toward 
higher frequencies and becomes less sharp. If the position of 
this limit is described by the equation 

cu varies from 3 for large T to 5-7 for small T. These results 
qualitatively agree with the experimental data of Ref. 4. It 
can be seen from Fig. 3 that the minimum pulsewidth at 
which a theory of the type of Refs. 14 and 15 is still appli- 
cable (i.e., the external field amplitude can still be considered 
slowly varying) is about 20 optical periods. 

Reference 4 proposed a possible explanation for the dis- 
placement of the high-frequency limit of the plateau: An 
atom in a laser field with a rapidly increasing intensity (the 
leading edge of a short pulse) cannot become ionized at 
those intensities at which it is ionized when the field in- 
creases slowly; when it is ionized at higher intensities, the 
atom emits harmonics with higher numbers. In our model, 
the escape of an electron to the upper states can be regarded 
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FIG. 3. Length of the plateau vs the pulse duration. The triangles are for an 
external field with (I= 0. I I1 and fiw = 1/20.. The crosses are for an external 
field with U=0.45/ and f io=ll lO.  

as an analog of ionization. Figure 4 shows the dependence of 
the occupation Ib,(r)12 of the first state on the field ampli- 
tude E(r )  for three different pulse rise times r. The points on 
the figure represent the occupations at the instant at which 
R =  0, i.e., when the displaced states coincide with the usual 
states; for clarity, the points on the figure are connected with 
line segments. The results shown in Fig. 4 support the as- 
sumption made above concerning the character of the ioniza- 
tion of the atom when the laser field increases rapidly. 

In the model described here, it is possible to study the 
generation of high-order harmonics in the field of a short, 
chirped pulse. Figure 5 shows the results of a calculation in a 
field with U = 0.251 and h w = 115 (the high-frequency limit 
of the plateau is N =  9) for a chirp given by 

E(r), atomic units 

FIG. 4. Occupation of the Is  state vs the external field for three different 
p ~ ~ l s c  rise times. The squares correspond to ~ = 6  optical periods. The rhom- 
buses correspond to T= 10 optical periods. The triangles correspond to 
T= 20 optical periods. 

FIG. 5. Spectrum of the harmonics for various chirps of the laser pulse: (a) 
positive chirp, (b) pulse without chirp. (c) negative chirp, (d) frequency- 
modulated pulse. 

(T is the optical period) and a pulsewidth of T= 32T. Al- 
though the spectra are very noisy, the qualitative features 
noted in Ref. 4 can be seen in them: when the chirp is posi- 
tive, the harmonics shift toward lower frequencies; when the 
chirp is negative, the harmonics shift toward higher frequen- 
cies, and their half-widths are greater than in the absence of 
chirp. The dependence of the frequency shift of the harmon- 
ics on the chirp of the laser pulse can be used to tune a 
source of coherent short-wavelength radiation. 

Several mechanisms are possible by which pulse chirp 
affects the frequency and halfwidth of the emitted harmon- 
ics. Reference 4 makes the assumption that, in the field of a 
negatively chirped laser pulse, an atom is ionized more 
slowly than in the absence of chirp or with a positive chirp 
and, consequently, a wider range of frequencies of the exter- 
nal field is delayed before the atom is ionized, which also 

906 JETP 83 (5), November 1996 V. T. Platonenko and V. V. Strelkov 906 



explains the broadening of the harmonics. In our opinion, the 
retardation of the ionization in the case of negative chirp can 
be associated with the fact that the presence of chirp intro- 
duces asymmetry into the pulse of ponderomotive energy 
[and into the pulse of R ,  see Eq. (2.3)]; its leading edge 
becomes more sloped for negative chirp and becomes steeper 
for positive chirp; therefore ionization occurs later in the 
case of negative chirp. 

Another possible mechanism is associated with the fact 
that the phase of a harmonic depends on the intensity of the 
external field.20 Therefore, a harmonic emitted even by an 
unchirped pulse is chirped. Depending on whether this chirp 
is compensated by the chirp of the external field or is added 
to it, these features can be present in the spectrum of the 
harmonics emitted by a chirped pulse. 

The behavior of high-order harmonics generated in the 
field of a chirped pulse is possibly associated chiefly with the 
frequency variation of the field within one optical period. 
This mechanism can be deduced by means of a semiclassical 
model of the generation of high-order harmonics: in the pres- 
ence of chirp, the durations of the half-period during which 
the field tears the electron away from the nucleus and of the 
half-period when the field returns it to the nucleus and re- 
combination occurs are different. This (very small) differ- 
ence causes the recombination to occur differently (in par- 
ticular, earlier or later) than it does when these two half- 
periods are equal. This can cause a certain displacement and 
broadening of the harmonics emitted by an electron during 
multiple ionization and recombination. 

To test this assumption, we calculated the spectrum of 
the harmonics generzted in the field of a frequency- 
modulated pulse with a modulation period of eight optical 
periods (Fig. 5d). The mean value of Idwldtl was chosen to 
be the same as in the pulses for which the spectra of the 
harmonics in Figs. 5a and 5c were recorded. Since the 
frequency-modulation depth is very small, the first two 
mechanisms discussed above for displacing and broadening 
the harmonics are not important in this case. At the same 
time, it can be seen that the spectra of the harmonics gener- 
ated in a pulse without a chirp (Fig. 5b) and in a frequency- 
modulated pulse (Fig. 5d) differ strongly. In particular, the 
characteristic splitting of harmonics 7 ,9 ,  11, and 13 is traced 
in the spectrum of the harmonics in Fig. 5d. It is apparently 
associated with the fact that, in the time interval in which the 
frequency increases, harmonics are generated that are dis- 
placed toward lower frequencies, whereas, when the fre- 
quency decreases, the harmonics are displaced towards 
higher frequencies. This displacement is close to the fre- 
quency displacement in the field of a chirped pulse (Figs. 5a 
and 5c). The displacement of the harmonics can thus be de- 
termined by the rate of frequency variation and not by the 
frequency variation during the entire pulse. 

To all appearances, different mechanisms for the dis- 
placement and broadening of the harmonics by the chirp of a 
pulse can make different contributions, depending on the fre- 
quency and intensity of the external field, the pulse duration, 
and the number of the harmonic. 

We should point out that these results do not exhaust all 
the possibilities of the model. In particular, the model makes 

it possible to study the generation of high-order harmonics in 
a bichromatic field. Experiments with such fields are de- 
scribed in Ref. 21. 

4. DISCUSSION OF THE RESULTS; CONCLUSION 

As mentioned above, the neglect of the continuous spec- 
trum of the basis of displaced Coulomb states when the low- 
frequency external field is strong cannot be justified rigor- 
ously. This can be partially deduced from the fact that the 
functions of the discrete spectrum of the basis of displaced 
Coulomb states describe states (of the undisplaced basis) 
with an energy that is both larger and smaller than the ion- 
ization energy; i.e., they (partially) describe the electron 
states in the continuous spectrum of the undisplaced basis. 
From a mathematical viewpoint, this means that the subspace 
of functions {cp,(r-R)) overlaps the subspace x(k,r). 
Thus, electron ionization is partially taken into account in 
our model. 

Comparison of the results with the results of the theory 
of Ref. 15, which explicitly takes ionization into account, has 
essential significance for the foundation of this model. A 
representation of the electron wave function in a complete 
basis of plane waves is used in a the ionization model. How- 
ever, this can only be solved in a first approximation. The 
model described in this paper, on the other hand, uses an 
incomplete basis of discrete, displaced Coulomb states, but 
the solution of the system of Eqs. 2.5 is obtained exactly. In 
this connection, the ionization model and the model that uses 
a basis of the displaced Coulomb states in a certain sense 
complement each other. 

Thus, this paper has introduced a basis of displaced Cou- 
lomb states that can be used in various problems involving 
the dynamics of a hydrogenlike system in an external field. 
Using this basis, an approximate model has been constructed 
for generating the high-order harmonics of a hydrogenlike 
system. The model has been used to study the generation of 
harmonics in the field of a short pulse, and it has been shown 
that, for a pulse that lasts less than 15-20 optical periods, 
harmonics are efficiently generated with orders that signifi- 
cantly exceed the high-order limit of the plateau in the spec- 
trum of harmonics generated in the field of a pulse of longer 
duration. This effect is associated with nature of the ioniza- 
tion of an atom when the external field amplitude grows 
rapidly. The generation of high-order harmonics in the field 
of a chirped pulse has been studied; the harmonics emitted in 
the field of a negatively chirped pulse are somewhat broad- 
ened and are shifted toward higher frequencies, whereas the 
harmonics are shifted to lower frequencies in a field of a 
positively chirped pulse. Different mechanisms resulting in 
this effect have been considered. 

The authors express their gratitude to A. M. Popov for 
discussing several aspects of the basis of displaced Coulomb 
states. 
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