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An exact quantum mechanical expression for the generalized radiative damping force in the 
stochastic equation for a relativistic electron is derived. The effect of saturation of the radiative 
damping coefficient at frequencies w higher than mc2/h is established. Finally, it is shown 
that the Lorentz-Langevin quantum equation satisfies the causality principle and does not contain 
unstable solutions inherent in the classical theory. O 1996 American Institute of Physics. 
[S1U63-7761(96)00711-1) 

1. INTRODUCTION pect in solving the problem of radiative damping is the al- 
lowance of the time lag in the interaction between the 

The classical expression for the radiative damping force, electron and the quantized field. 

2 e2  d 3  To  solve the stated problem, we employ the method of 
F,(t)= - -z -srj(f), j= 1,2,3 (1) non-Markovian Langevin equations for nonlinear quantum 

3 c  dr  systems suggested in Ref. 10 and developed in Refs. 11 and 

leads to instability of electron motion and to the self- 12. In contrast to the results of a number of works in non- 

acceleration paradox.192 Actually this means that the causal- Markovian relaxation,13-'* the kinetics and fluctuations in 

ity principle is violated. Indeed, the equation nonlinear quantum systems interacting with dissipative sur- 
roundings, a heat bath, were studied in Refs. 10-12 within a 

d2 2 e2 d3 
nl - 7 r , ( t ) - ~  dr 7 ~ r , ( t )  

= e ~ ~ ( w ) e - ' ~ ' + e E ~ ( o ) e ' ~ '  

in accordance with the definition 

( r j ( o ) ) = x ( ~ ) e E j ( w ) ,  

unified setting. In Refs. 4 and 7 the method of Langevin 
equation was actively used to analyze the problem of radia- 
tive damping without resorting to the microscopic approach. 

(2) The present paper fills this gap. It is devoted to develop- 
ing a microscopic theory of the Brownian motion of an elec- 
tron in a photon heat bath. Consistently deriving the stochas- 
tic equations for the variables of a relativistic electron in a 

t3) microscopic setting makes it possible to obtain a rigorous 

yields the following expression for the linear susceptibility: expression for the generalized radiative damping force and 
fluctuation sources with a definite procedure for calculating 

1 2 e2  correlation functions of any order. The theory of radiative 
,y(w)= - - [ - ~ ~ ( l + i r ~ w ) ] ~ ,  T O = - 7 ,  

3 mc (4) damping developed in this paper is believed to be free of the 
paradoxes inherent in classical electrodynamics. 

which has a pole in the upper half-plane of the complex 
variable w,  and this contradicts the causality principle.3 In 
addition, the fact that the radiative damping force (1) is zero 
when the electron acceleration is constant contradicts the 
Larmor formula, and hence the energy conservation 
law.2 Finally, within classical theory, it is impossible to con- 
sistently derive a relativistic expression for the rad~ative 
damping force. The generally accepted procedure for transi- 
tion from the approximate formula (1) to the relativistic 
range via Lorentz transformations (see Refs. 1 and 2) cannot 
be considered satisfactory. 

All these questions, which emerged at the beginning of 
the 20th century, still remain at the f ~ r e ~ r o u n d . ~ - ~  Neverthe- 
less, the unflagging interest did not result in any solution 
within the classical electrodynamics setting. Physically 
speaking, the problem of radiative damping must be solved 
with allowance for quantum effects2 The main reason for 
the paradoxes of the classical theory of radiative damping 
stems from the fact that the theory does not allow for 
vacuum fluctuations of the electromagnetic field and quan- 
tum properties of the electron. Moreover, an important as- 

2. BROWNIAN MOTION OF A RELATIVISTIC ELECTRON IN 
APHOTONHEATBATH 

Below we give a consistent microscopic derivation of 
the expression for the radiative damping force on a relativ- 
istic electron that interacts with a quantized electromagnetic 
field, a photon heat bath. We begin with the Hamiltonian of 
the dynamic subsystem consisting of an electron in an exter- 
nal field V(r): 

where a and p are the Dirac matrices. 
The photon heat bath, whose Hamiltonian we denote by 

F ,  acts as a dissipative system. The relativistic nature of the 
dissipative system determines the relativistic setting of the 
problem of radiative damping. Using the single-particle ap- 
proach in describing the dynamic subsystem without resort- 
ing to second quantization methods makes it possible to em- 
ploy, if necessary, the classical picture in describing the 
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motion of charged particles in external fields and to use the 
expression for the radiative damping force obtained in quan- 
tum theory. 

In analyzing the interaction of an electron with the pho- 
ton heat bath it is convenient to fix the gauge symmetry by 
selecting the transverse gauge for the field potentials: 

div A(r, t )  = 0.  (6) 

The scalar potential Ao(r,t),  responsible in this case for the 
Coulomb interaction, leads to no observable effects in the 
single-particle problem and can be ignored in the system 
Hamiltonian. 

Thus, the initial Hamiltonian of the complete system can 
be written as 

The problem of the theory of radiative damping consists 
in eliminating the heat bath variables from the Heisenberg 
equations for the dynamical variables of the electron and 
obtaining, as a result, an explicit expression for the radiative 
damping force. For the sake of definiteness, we write the 
Heisenberg equation for the projections of momentum 

in the form 

whose classical relativistic analog is the well-known Lorentz 
equation 

The remarkable thing about the right-hand side of Eq. (8) is 
that instead of a partial derivative of the vector potential, it 
contains the total derivative, which makes to possible to 
write the radiative damping force in a more compact form. In 
the Heisenberg representation the field potentials are func- 
tions of the operator of the electron's coordinate. It is there- 
fore convenient to write the field potentials in the form of 
Fourier expansions: 

The Fourier components Aj(k, t)  do not explicitly contain 
the electron operators and act as the variables of the photon 
heat bath. 

We use the expression (7) forthe Hamiltonian to find the 
variables of the dynamical subsystem that are the canonical 
conjugates of Aj(k, t)  via the following relationship: 

where 

are the components of the electron velocity operator. 
Next we assume that the interaction of the electron and 

the photon heat bath is turned on adiabatically in an infinitely 
distant point in time. Prior to turn-on of this interaction, the 
photon heat bath was in thermodynamic equilibrium at a 
temperature T. In particular, T =  0 corresponds to an electro- 
magnetic vacuum state. In this case the unperturbed poten- 
tials ~ y ( k , t )  can be interpreted as Gaussian variables. Then, 
according to the general theory," the full evolution in time 
of the potentials Aj(k, t)  can be written as 

where 

x ( 2 ~ ) ~ G ~ ( k +  k,) (14) 

is the so-called photon Green's function. In the adopted 
gauge (6) the photon Green's function has the form'9 

where k= 1 kl . The presence of i ~ s g n o  ( E  > 0 )  ensures the 
correct traversal of the pole in the retarded Green's function. 

The effect of the heat bath on electron motion is deter- 
mined by the vector potential (lo), which is convenient to 
express in symmetric form: 

Plugging the fundamental solution (13) into (16) yields 
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The unperturbed heat bath variables A;(k,t) in (17), which i 
have a fixed parametric effect on the electron, contribute to - t,)-[e'kr(') 

h 
,e-ikr('l);l(tl)]- B(t- t 

the nonlinear dynamics and at the same time determine the 
fluctuation sources. + 5 3 t ) .  (23) 

Using the basic assumption that the unperturbed poten- 
tials AY(k,t) are Gaussian makes it possible to clearly dis- 
tinguish the nonlinear dynamics in the parametric terms, and 
provides a rigorous definition of fluctuation sources on the 
basis of a quantum fluctuation analog of the Furutsu- 
Novikov formula" 

where the expression for the functional derivative 

is the differential response to an external potential." 
The correlation function Mjl(k, t - t ,) is determined by 

the following relationship: 

In accordance with the Kallin-Welton fluctuation- 
dissipation theorem, the imaginary part of the photon 
Green's function, 

D ; ~ ( ~ , ~ ) = ~ I T ~ s  ( k2-- S. ~1 -T kfl) sgn o ,  (21) 

determines the spectral density of the fluctuations of the field 
potentials: 

where T=O automatically corresponds to an electromagnetic 
vacuum state. The definition (18) of the fluctuation sources 
$(t) actually means that all pairing between the factors 
exp[ikr(t)] and ~ g ( k , t )  has been eliminated. The rules of 
calculating the mathematical expectations of Gaussian opera- 
tors established in Ref. 11 make it possible to find the cor- 
relation functions of fluctuation sources of any order. 

Combining ( 1  8) and (19) with the expression (17) for the 
vector potential, we obtain 

A,(r(t),t)= :Im c - m  dr ,  dk(Djl(k,t 2n- 

The expression for ;,(t)A,(r(t), t) on the right-hand side of 
Eq. (8) can be written in a similar manner. Thus, by employ- 
ing the Gaussian statistics for the unperturbed variables of 
the heat bath, the field potentials Ag(k,t), we can eliminate 
the heat bath variables from the equations of motion for the 
electron variables and find the expression for the radiative 
damping force. In particular, Eq. (8) assumes the form 

~ e - ' ~ ~ ( ' l ) i ~ ( t , ) -  ~ ( t -  t , )  +(,(t) I 
where the radiative damping force Fj(t)  allows for both the 
response of the photon heat bath to electron motion, which is 
given by the Green's function Dj,(k,t- t , ) ,  and the para- 
metric effect on the electron of vacuum and thermal fluctua- 
tions of the heat bath, which is given by the correlation func- 
tion Mj,(k, t - r The expressions for the fluctuation 
sources ti([) are similar to that for the .$(t) in (18). 

3. THE GENERALIZED RADIATIVE DAMPING FORCE 

In the chosen model of the photon heat bath, which does 
not allow for the interaction of the heat bath and the 
electron-positron vacuum, the expression (24) for the gen- 
eralized radiative damping force Fj(t)  is exact. The classical 
limit of the problem of radiative damping of a relativistic 
electron is of special interest and requires a separate discus- 
sion. Here we note once more that the paradox of a self- 
accelerating electron cannot be resolved in classical electro- 
dynamics. Thus, the radiative damping force must be 
calculated with allowance for quantum effects. The quantum 
stochastic equation (24) is most suitable for this purpose. 
Using Eq. (24) in analyzing physical effects requires addi- 
tional assumptions that simplify the explicit expression for 
Fj(O. 
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We assume that the electron interacts with a uniform 
electric field Ej ( r )  and that the energy of this interaction is 

V(r )=  - r,(t)eE,(t)= -r,f,(r). (2.5) 

We write Eq. (24) with the perturbation (25) in the reference 
frame linked to the electron: 

where Fj ( r )  is strictly determined by (24). 
The solution of Eq. (26), r j ( t ) ,  can be represented in the 

form of a series expansion in powers of the external force: 

In accordance with (27), the response to the external 
force f l ( t )  conjugate to r l ( t )  is2' 

where the Heaviside unit-step function O ( r  - t automati- 
cally takes into account the causality principle, and 

is the quantum Poisson bracket for the coordinate projection 
operators r,(t) and r l ( t  The nonlinear nature of Eq. (26) is 
determined entirely by the nonlinear dependence of the ra- 
diative damping force F,(t) in (24) on the coordinate opera- 
tors r j ( t )  and r l ( t l ) .  Since F j ( t )  is proportional to the fine 
structure constant a = e 2 / h c ,  the nonlinearity of Eq. (26) is 
effectively small and hence, in accordance with nonlinear 
fluctuation-dissipation theorems:',22 we can ignore the fluc- 
tuations of the responses (28) in comparison to the average 
values of the responses. 

We use the above reasoning in calculating the radiative 
damping force F j ( t )  in (24), assume that the Poisson brack- 
ets (29) are c-numbers, and replace them by their average 
values in the expression (24) for F j ( t ) ,  i.e., 

In view of homogeneity of time and isotropy of space, for 
(30) we have 

Using condition (30) with (3 l), we can write the products of 
the exponential factors in F,(t) in the following manner: 

e - i k r ( r i )  i k r (1 ) -  ibk2 i k h r  e - e e ,  (32) 

In calculating F j ( t )  we also employ the fact that the opera- 

tors i 1 ( t l ) ,  ;,(t), and ;,(t) commute with the factors 
exp(ik - r(r)) and ex&-ik . r ( t , ) ) ,  which follows from (28) 
and (29) and the gauge conditions for the Green's function 
and the correlation function, 

kjDp(k , t - t l )=O,  k lMj l (k , t - t l )=O,  (33) 

in accordance with (6). 
Thus, the assumption (30) leads to the following expres- 

sion for the radiative damping force: 

where we have introduced the so-called retarded correlation 
function 

~ ~ ~ ( k , t - r , ) = ~ ~ , ( k , t - r , ) O ( t - t ~ ) ,  (35) 

which allows for the causality principle in the parametric 
terms F j ( t ) .  Introducing the function (35) makes it possible 
to exclude the unit-step function O(t- t l )  from the exponen- 
tial factors in (34). 

We define the spectral density of the retarded correlation 
function (35) as follows: 

where the spectral density Sj,(k,w) can be determined from 
the Kallen-Welton fluctuation-dissipation theorem, and 
i ( w  - 0 + i ~ )  - is the spectral representation of the Heavi- 
side unit-step function O(r). Using Cauchy's residue theo- 
rem and (36),  we arrive at an extremely useful f ~ r m u l a : ' ~  

i h w  477 
-- Pck ( Gjl - q) ~ ~ t h  1. 

2ck [ k 2 - ( ~ ~ ~ ) 2 ]  

(37) 
Thus, the assumption (30) considerably simplifies the ex- 
pression for the generalized radiative damping force. 
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4. THE RADIATIVE DAMPING COEFFICIENT 

The stochastic equation (24) or (26) with allowance for 
formula (34) obtained in the approximation (30) makes it 
possible to study a broad range of effects of a similar physi- 
cal nature: renormalization of mass with allowance for tem- 
perature dependence, the frequency and Lamb shifts, radia- 
tive damping, and fluctuation processes. 

In the present paper we limit our discussion to an analy- 
sis of the important features of radiative damping that stem 
from the quantum properties of the electron and the photon 
heat bath. To this end we simplify the expression (34) for the 
radiative damping force F j ( t )  still further. Ignoring the con- 
tribution of the nonlinear terms containing V j  and discarding 
the factor exp(ik . Ar)  responsible for the fluctuations of the 
electron velocity in the reference frame linked to the elec- 
tron, we obtain the following expression for the radiative 
damping force: 

where 

Since in the given approximation the radiative damping is 
isotropic, Eq. (39) is determined by the following functions: 

Combining Eq. (26) with (38), we arrive at the equation 

If we now apply the Fourier transformation to Eq. (41), 

we obtain the following expression for the linear susceptibil- 
ity: 

where 

is called the radiative damping coefficient. 
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After renormalization of the mass, the real part y' ( a ) ,  
i.e., T ( w ) =  y r ( w ) -  y t ( O ) ,  determines the frequency shifts, 
and the imaginary part y"(w) is responsible for radiative 
damping. 

Below we give the expression for the imaginary part of 
the radiative damping coefficient, y"(w) ,  which is deter- 
mined to first order in the fine structure constant. In this case, 
when calculating the quantum Poisson bracket (29),  we as- 
sume that the electron motion is free. 

If we ignore the rapidly oscillating relativistic terms, we 
arrive at the following expression for the Poisson bracket 
(29) : 

Plugging (45) into (39) and allowing for the definition (44, 
we arrive at an intermediate expression for the imaginary 
part of the radiative damping coefficient: 

where cx=e2/hc and ~ o = m c 2 / h .  
After integration with respect to x we get 

where 

Finally, plugging (47) into (43),  we arrive at the follow- 
ing expression for the linear susceptibility: 

5. CONCLUSIONS 

A fundamental feature of (47) is that at frequencies w 
exceeding no the radiative damping coefficient becomes 
saturated. More precisely, the limit of y"(w) does not exceed 
2 aI3: 

2 
Y"(w)-5  a sgn w ,  w ~ f l ~ .  (49) 

Due to this the susceptibility (48) contains no poles in 
the upper half-plane of the complex variable w ,  which is in 
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full agreement with the causality principle. In accordance 
with this, the Lorentz-Langevin equation (41) with allow- 
ance for (47) has no unstable solutions inherent in classical 
theory. 

Let us now discuss the possible approximations of the 
solutions for frequencies w e f l , .  What is important here is 
the order of the two small parameters a and w / R o  in the 
given problem. First we must use the fact that a is small. 

Due to the saturation effect, Eq. (48) to first order in a 
can be written as 

Next we assume that I w / w o / 4  1. Equation (50) then yields 
the classical expression for the susceptibility (not containing 
the Planck constant): 

If we now go back to the Lorentz equation, we arrive at 
a classical equation well-known in practical calculations: 

Here we have given a rigorous substantiation of this 
equation based on the quantum-theory approach. Note that 
using the small parameters in reverse order leads to the well- 
known paradox of classical theory. Strictly speaking, there is 
no way in which Eq. (52) can be justified from the classical 
viewpoint, since the radiative damping force (1) becomes 
arbitrarily large in the course of an extremely short time 
T- To = 10-23s. 

This, we have suggested a possible approach to solving 
the radiative damping problem based on a rigorous micro- 
scopic derivation of the generalized radiative damping force 
F j ( t )  in Eq. (24), which is fundamentally relativistic. The 
nonrelativistic approximation was used in calculating the fre- 

quency dependence of the radiative damping coefficient (47) 
and is therefore valid for w<f lo .  Nevertheless, the approxi- 
mate formula (47), which allows for quantum effects, re- 
solves the main paradox of classical theory. In a more pre- 
cise calculation of radiative damping in the ultrahigh 
frequency range w > a o  one must discard the nonrelativistic 
approximation and at the same time allow for the contribu- 
tion (determined by the factor exp(ik - A r ) )  of fluctuations to 
the radiative damping force. 
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