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A quantum electrodynamic perturbation theory is developed for two-electron systems in which 
the interaction between bound electrons is treated as a first order perturbation. The effects 
of the gauge dependence in calculations of terms in the I s31-configuration of helium-like atoms 
are discussed for the first time based on the principles of quantum electrodynamics. It is 
shown that the relativistic Breit operator in the Coulomb and Feynman gauges yields identical 
results for the diagonal matrix elements in a local potential, but different values for the 
nondiagonal matrix elements. Numerical estimates are presented and a physical interpretation is 
given for the nondiagonal matrix elements. O 1996 American Institute of Physics. 
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I. INTRODUCTION computational scheme in a relativistic atomic theory, i.e., of 

Progress in increasing the accuracy of spectral measure- 
ments of helium-like atoms has become a steady trend over 
the last few years.''2 Thus, measurements of the frequency of 
the 2 3 ~ ,  - 3 po transition of neutral helium 4 ~ e  with an 
accuracy of 2.4X 101° have recently been reported1 which 
make it possible, on one hand, to verify quantum electrody- 
namical calculations for helium-like atoms and, on the other, 
to make independent estimates of a number of physical con- 
stants, such as the fine structure constant a and the root- 
mean-square nuclear radii of the isotopes 4 ~ e  and 3 ~ e .  The 
possibility of measuring the fine structure intervals of helium 
for terms in the Is31-configuration with an accuracy of 1 
MHz has been considered3 (laser cooling of atomic beams 
makes it possible to lower this value by roughly an order of 
magnitude) and this makes it possible, in principle, to inves- 
tigate the previously unstudied spin-spin mixing effect for 
helium states with different orbital angular momenta of the 
same parity. For helium-like atoms with high nuclear charges 
Z (multiply charged ions), the contribution of the radiative 
corrections becomes comparable in order of magnitude to the 
fine structure intervals and an adequate description of the 
currently observed spectra of multiply charged ions2 must 
include the combined correlation, relativistic, and quantum 
electrodynamical effects. 

Thus, a rigorous theory of the spectra of helium-like 
atoms must account for higher-order effects, since their con- 
tribution to the observed spectral characteristics becomes an 
extremely in~portant element in the analysis of precision ob- 
servations. One such effect is the gauge dependence in rela- 
tivistic calculations of the spectra of atoms and ions: since, 
in a number of cases, its effect is comparable to the error in 
contemporary measurements of the fine-structure intervals in 
helium-like ions."t is interesting to note in this regard, that 
the amplitude of the effect depends on the choice of basic 

quantum electrodynamical methods and methods based on 
the relativistic self-consistent field equations, and their re- 
finements which take many-particle effects into a c c o ~ n t . ~  

The goal of this paper is a theoretical and numerical 
analysis of the gauge dependence in quantum electrodynami- 
cal calculations of the correlation energy of helium-like at- 
oms for all terms of the Is31-configuration, taking into ac- 
count the spatial-spin symmetry of the vector model of the 
atom in a jj-coupling scheme for the angular momenta. 

2. MATRIX ELEMENTS OF THE BRElT OPERATOR AND 
THEIR DEPENDENCE ON THE CHOICE OF GAUGE FOR 
THE PHOTON PROPAGATOR 

The field theory methods applied to helium-like ions are 
generalizations of the quantum-electrodynamical approach to 
systems with a discrete spectrum and are based on an analy- 
sis of Feynman graphs for a bound electron corresponding to 
the lowest-order terms in the expansion of the S-matrix. 

In the evolution-operator formalism the change AE, in 
the energy of an isolated nondegenerate state In) is given by 

where Uo(r,to) is the evolution operator, which is introduced 
as the time displacement operator, i.e., t ) = ~ ( t , r ~ ) l t ~ ) .  and 
allows us to obtain the state vector It) at time t from a 
known state vector Ito) at the initial time to. The limiting 
transition 7 = t - t 0 m  is taken in the final state of the calcu- 
lations. In calculating the correlation energy it is convenient 
to represent U(t,to) in the form 
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where TQ is the Wick chronological operator, which acts 
only on the operators of the electron-positron field, 
j c "=( l /2 ) [ (F IY~,~]  is the Ccurrent, [a,b] is the commutator 
of operators a and b ,  and cu is the fine structure constant. 
The photon Green's function D(x ,x2) satisfies the equation 

where Ivac) is the vacuum state, g,, is the metric tensor? 
and A,(x) is the potential of the electromagnetic field. The 
function D ( x l  ,x2) defined in Eq. (3) depends only on the 
difference x l  -x2=x of the 4-coordinates and has the form 

d4k exp( - ikx) 
D ( x I - x 2 ) =  - ( k2+i0  4 rr3 

dw dk, (4) 

where kc"=(wlc,k) and c is the speed of light in vacuum. 
Carrying out the integral with respect to k in Eq. (4), we 
obtain the following one-dimensional integral for D(x) 

This last expression is convenient for use in analyzing 
the effect of the interelectronic interaction, since it can be 
used to go directly to the limit C + W  corresponding to turn- 
ing off the retardation effect. Equation (5) has been written 
in the Feynman gauge for the electromagnetic potentials. By 
changing the gauge, we can represent the right-hand side of 
Eq. (5 )  in the follolving form: 

where X is an arbitrary parameter. In particular, X = - i cor- 
responds to the transverse gauge (Landau gauge), while, for 
example, X = 2  corresponds to the Fried-Yennie gauge 
which has been in active use in recent years for calculating 
radiative corrections.' For carrying out relativistic calcula- 
tions in a Coulomb gauge it is convenient to isolate the part 
DC(x) of the function D(x) corresponding to the purely 
Coulomb interaction, 

and the part D;,,(x) (I and m are indices running from 0 to 
3) corresponding to a transverse photon. The explicit expres- 
sion for D;,,,(X) has the form6 

where D(x) is defined above by Eq. (5), V, denotes the lth 
component of the gradient, and the function F(x,w) is given 
by 

The correction to the Coulomb interaction for the elec- 
trons, V ( . =  IlrlZ, owing to exchange of a transverse photon, 

is usually referred to as the Breit interaction V B .  Using Eqs. 
(2) and (8) it is easy to show that V ,  in the Coulomb gauge 
is given by the operator 

Here CY is the Dirac m a t r i ~ . ~  In Eq. (10) the imaginary past 
corresponding to the contribution to the radiative width of 
the level has been omitted. As Eq. (10) implies, the operator 
V ;  depends explicitly on the rate of exchange for transverse 
photons of frequency w. The expression for V ,  in the Feyn- 
man gauge has the form 

Despite the rather substantial external difference between 
these two representations for V , ,  their use in relativistic cal- 
culations leads to identical results when basis wave functions 
which are solutions of the Dirac equation with a local poten- 
tial are employed. This situation arises, for example, when 
perturbation theory in the parameter 1/Z is used (i.e., when 
the electron-electron interaction is small compared to the 
electron-nuclear interaction) or in the case where a local ap- 
proach is applied to the electron-electron interactions in self- 
consistent field methods (the Dirac-Hartree-Fock-Slater 
method). In this case the equivalence of the representations 
(10) and (I 1) follows from the properties of the commutation 
relation 

used to write the second term in Eq. (10). In Eq. (12) Hi is 
the one-particle Dirac hamiltonian: 

where p is the particle momentum. Using the formula for a 
double commutator containing an arbitrary function s ( r  12), 

and applying it to Eq. (12), we obtain the following result: 

exp(iwr 12 /c ) -  l 
- 

r12 
(15) 

Thus, Eqs. (10) and ( I  I) are completely identical (in all 
orders with respect to the retardation parameter i w r I 2 / c ) .  

When the basis functions are used with a nonlocal po- 
tential (e.g., in self-consistent field methods), the comrnuta- 
tion relation (12) ceases to be valid and a gauge dependence 
begins to show up, even in the lowest ortlers of the expan- 
sions (10) and (I I) in the retardation para~iieter iwrI2/ ( . :  
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For example, it has been shown4 that the average value 
for A V B  (20 cm-') is of the same order of magnitude as the 
error in the measurement of the energy of the 
Z 3  P,- 2 3 ~ 1  -transition for helium-like argon (32 cm- I). 
Note that when the wave functions are used with a local 
potential, applying Eq. (12) to the first term of Eq. (16) again 
yields A VB = 0. 

A gauge dependence also appears in relativistic calcula- 
tions of the nondiagonal matrix elements in the case where 
an intermediate scheme for coupling of the angular momenta 
is used to determine the state vector of an atom. For helium- 
like systems the simplest prototypes of these states are the 
two singly excited 1 s2p-states with total angular momentum 
J =  I ,  since in the intermediate coupling scheme these states 
are written in terms of linear combinations of the 
l s ,,2p1, and 1 ~ , / ~ 2 p ~ , ~  states. The energies of the 2pl12 
and 2 p I 2  one-particle states are separated by the fine struc- 
ture interval. Thus, the Breit operator in the forms (10) and 
(I 1) evidently cannot be used in relativistic calculations of 
the nondiagonal matrix elements since, according to Eq. (2), 
conservation of energy must hold for arbitrary initial and 
final states after integrating with respect to the time variable 
in Eq. (2). In order to eliminate this contradiction, a gauge 
dependent generalized Breit operator 

has been introduced? which corresponds to the scattering 
amplitude between arbitrary initial IAB) and final (CD)  one- 
particle states in the two representations: 

and 

The functions F and G are given in Ref. 10. By using the 
explicit forms of these functions, it is easy to show that for 
the diagonal matrix elements with a local potential, Eqs. (18) 
and (19) transform identically into one another, but that for 
the nondiagonal matrix elements, Eqs. (18) and (19) are no 
longer identical because of Eq. (16). 

3. RESULTS AND DISCUSSION 

In this section we present results of numerical calcula- 
tions for the nondiagonal matrix elements corresponding to 
singlet-triplet mixing of the l s 3 p ' 3 3 ~  and l s 3 d i s 3 ~  states: 

and 

TABLE I. Gauge dependence of Ule nondiagonal matrix elements. 

z Q ~ ( ~ z )  - Q'(~z) ~ " ( a z )  - pC(az) 

Here the E ,  ( A  = 1,2) are the eigenvectors of the Hamil- 
tonian of the atom and 0 is the singlet-triplet mixing 
angle.6." The nondiagonal matrix elements owing to the 
spin-spin interaction between the 1 s3s3s1  and l s3d3D I 
states have been examined in detail in a recent paper." 

For the relativistic calculations of the nondiagonal ma- 
trix elements (18) and (19) we have used the basis Dirac 
wave functions in a j-j-coupling scheme for the angular mo- 
menta. The details of the calculations of the angular and 
radial integrals have been described elsewhere" and are 
omitted here for brevity. We note only that the use of ana- 
lytic methods for calculating the radial integrals1' makes it 
possible, in principle, to calculate the matrix elements (18) 
and (19) with arbitrary accuracy. The results of the calcula- 
tions for the nondiagonal matrix elements are shown in Table 
I, which lists the differences of the functions Q(aZ)  and 
P ( a Z )  (in the Coulomb and Feynman gauges). These func- 
tions determine the relativistic correlation energy to first in 
the interelectronic interaction according to the formulas') 

and 

The functions Q(aZ)  and P ( a Z )  are dimensionless and 
can be written in the form of expansions in powers of the 
relativistic parameter ( a ~ ) ~  

Q((YZ) = q(0)+ q ( 2 ) ( a ~ ) 2  + q ( 4 ) ( a ~ ) 4 +  . . . , (24) 

and 

P(CXZ) =p(0)+p(2)(a~)2+p(4)(a~)4+ . . . (25) 

An analysis of the numerical data obtained in this paper 
yields the following conclusions: 

1. In relativistic calculations of the correlation energy of 
helium-like atoms there is a first order dependence of the 
correlation energy on the choice of gauge for the Breit op- 
erator used to account for the electron-electron interaction 
effects. The contribution of the gauge dependence for the 
3 3 ~ 1  - 3 'p l  transition is 1.5 X and 8 X lop6%, respec- 
tively, for Z = 3 0  and Z=  100 (Fig. 1 and Table I). For the 
3 b 2  - 3 '0, transition this contribution is I .6 X and 4 
X respectively. For Z>20 the difference 
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FIG. 1. The functions Q(aZ) and P(aZ)  as functions of nuclear charge 
z .  

Y , = M : -  M: of the amplitudes (18) and (19) is approxi- 
mated, to fairly high accuracy, by the following simple for- 
mulas: 

2. The nondiagonal matrix elements, which contain the 
generalized Breit operator, depend on the nuclear charge Z 
and change sign at Z >  70 for the 3 P , - 3 'P transition and 
at Z>60  for the 3 3 ~ 2 - 3 ' ~ 2  transition (see Fig. 1). The 
sign change is caused by a contribution from the retardation 
effect snd by higher-order relativistic effects which are im- 
portant for high nuclear charges Z. 

3. The expansion coefficients in Eqs. (24) and (25) cal- 
culated with a Coulomb gauge are shown in Table 11. The 
effects of the gauge dependence begin to show up only in 
coefficients of sixth and higher orders and, as an example, 

TABLE 11. Leading terms in the expansions of the functions P and Q in 
terms of the relativistic parameter ( 0 2 ) ~ .  

Coefficients Values Coefficients Values 

q(o) -0.42726. lo-' p ( ~ )  -0.24219 lo-' 

q ( 2 )  0.1 1676.10-I p ( 2 )  0.1 1663.10-~ 
q ( 4 )  0.28273. lo-' p ( 4 )  0.18216. lo-' 
q ( 6 )  0.20279. lo-' p ( 6 )  -0.42390. lo-' 
q(8) -0.11513~10-~ p(8)  -0.62353. lo-' 

for the 3 P - 3 'P transition the differences in the values of 
q(6' and q ( 8 )  are equal to 0.55297 X and 
- 0.56201. lop5, respectively (for the coefficients p ( 6 )  and 
p ( 8 )  similar calculations yield 0.23165 X and 
-0.41291 X lop8). These results are consistent with 
estimates4 for singlet-triplet mixing of the 2 ' P ,  and z3PI 
states of helium-like atoms. 

4. The contribution of the gauge dependence is ex- 
tremely small numerically even for high Z (see Table I) and 
because of this it is impossible at present to make a compara- 
tive analysis with observational data, which is of fundamen- 
tal interest. A similar conclusion also follows from relativis- 
tic calculations of the second order correlation energy.'' This 
circumstance justifies a critical attitude toward self- 
consistent field methods in relativistic variants employing the 
exact Breit operator4 (the Dirac-Hartree-Fock method). 
Contradictions of this sort do not arise when a local approach 
to the theory of the self-consistent field (the Dirac-Hartree- 
Fock-Slater method) is applied. 
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