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We develop a theory of intracavity four-wave interaction. As a result of such interaction, two 
photons of the pump fields produce a pair of photons of the cavity's signal mode with 
the same frequency. In addition to taking into account the parametric process of photon 
transformation and dissipation processes, we allow for the effects of phase self-modulation of the 
signal mode and its cross modulation due to the pump fields. We find an exact steady-state 
solution of the Fokker-Planck equation for the distribution function of the quasiprobability of the 
amplitude in the generalized P-representation of the density matrix. This solution is then 
used to calculate the moments of the signal-mode operators, the distribution function for the 
number of photons, and the Wigner function. The results are applicable to all oscillating 
modes, including the threshold and above-threshold regions and the bistable mode. We study 
critical phenomena and the quantum statistical effects of photon correlation, the 
squeezing of fluctuations of the quadrature component, and sub-Poisson statistics. We find, in 
particular, that the pair correlation of photons increases significantly in the threshold 
region with the bistable oscillating mode present. We also show that squeezing in the threshold 
region is manifested only in the absence of bistability. Finally, we analyze the threshold 
characteristics of the nonlinear system and the characteristic features of the transition to 
nonthreshold behavior at high levels of quantum noise and large nonlinearities. O 1996 
American Institute of Physics. [S 1063-776 1 (96)004 1 1 -81 

1. INTRODUCTION quantum fluctuation levels are usually very high. To allow 

An important problem that emerges while investigating 
nonlinear processes in quantum optics is the study of prop- 
erties of the light fields generated in the vicinity of various 
critical points, such as the lasing threshold and points of 
metastability and instability, where quantum fluctuations 
play an important role. The problem is common in the QED 
theory of lasing and in studying optical bistability phenom- 
ena with analogs in phase transition theory. Recently new 
problems have emerged in this area of research, problems 
related to the description of the properties of nonclassical 
states of light-specifically squeezed states-in critical 
(above-threshold) regions of generation of such states. , - - 

Nonlinear systems in quantum optics are usually studied 
by applying the method of stochastic Langevin equations of 
motion for the complex-valued amplitudes of the generated 
fields combined with a linearization procedure near semiclas- 
sical solutions. Such an approach was used in studying the 
main nonlinear optics process, including parametric fre- 
quency division of the light in the cavity,'-' four-wave 
mixing-lo second-harmonic generation,'-6'", e t ~ . ' ~ , ' ~  It 
leads to results for the intensities and phases of the interact- 
ing modes of the light field in the semiclassical approxima- 
tion and also makes it possible to study quantum fluctuation 
effects in the lowest linear approximation. Actually, the very 
notion of a critical point or a lasing threshold emerges in a 
natural manner in such an approach when one analyzes the 
stability of the semiclassical steady-state equations for the 
amplitudes. 

Clearly, linearized theories are limited in scope and, in 
particular, do not describe the critical region, where the 

for quantum fluctuations in a meaningful manner with the 
aim of building an exact quantum theory of nonlinear optical 
processes, we can use the solutions of the Fokker-Planck 
equation for the quasiprobability distribution function. The 
pioneering work in this field was done in Refs. l(b) and 
14-17, where the generalized P-representation of the density 
matrix was used to study two-photon absorption, nonlinear 
dispersion or phase self-modulation in the cavity, subhar- 
monic and second-harmonic generation, and nondegenerate 
parametric frequency division of the light in the cavity. Find- 
ing the quasiprobability distributions is extremely difficult, 
however, and solutions that are exact in quantum fluctuations 
have been established only for relatively simple systems. 

In this paper we give a new example of a nonlinear 
optics system for which an exact analysis of the problem is 
possible and results can be obtained within the scope of the 
nonlinear quantum-fluctuation theory. We discuss parametric 
four-wave interaction in a X(3)-nonlinear medium in a cavity, 
induced by two laser pump fields with frequencies wl and 
0 2 ,  for the case in which one mode with a frequency close to 
wo=(w,+w2)/2 is excited in the cavity 
(w , + w2--, wo + wo). If we employ the approximation of in- 
exhaustible pump sources, then in addition to the parametric 
excitation of the signal mode w,, we take into account phase 
self-modulation of the signal mode and its cross modulation 
due to the pump fields. 

This system has been studied by the present authors in 
approximations that are semiclassical and linear in quantum 
 fluctuation^.'^^'^ It was found that this situation leads to 
above-threshold lasing even when the energy exchange be- 
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tween the modes is negligible, with the sources of pump 
fields inexhaustible. The physical reason for such a lasing 
mode is the existence and stabilizing effect of phase self- 
modulation of the signal mode. We also note that signal- 
mode generation in a similar configuration with four-wave 
interaction was observed in the experiments of Grandclement 
et 

The aim of the present work is to develop an exact quan- 
tum theory for the specified nonlinear optics system in a 
stationary regime that allows for energy dissipation, and to 
examine critical phenomena. We also study the quantum sta- 
tistical effects of quadrature-component fluctuation squeez- 
ing, photon correlation, and the distribution of the number of 
photons for the generated signal mode over the entire lasing 
range, including the threshold and above-threshold regions. 
We attempt to establish how bistability in the quantum sta- 
tistical characteristics of the signal mode is induced; how 
nonclassical effects show up in the critical region, where 
quantum noise plays a large role; and finally, what features 
are inherent in the four-wave interaction in highly nonlinear 
media. From a fundamental viewpoint, interest in the nonlin- 
ear optics system discussed here can also be explained by the 
fact that this system clearly exemplifies the transition from 
classical behavior to quantum behavior. 

2. THE FOUR-WAVE INTERACTION AND THE 
FOKKER-PLANCK EQUATION 

The system we are considering here consists of a cubic- 
nonlinear  medium in a single-mode ring cavity with 
natural frequency w . .  Two laser pump fields of frequency 
wl and w propagate in the same direction in the cavity and 
act on the medium. As a result of parametric four-wave mix- 
ing, the pump fields excite a signal mode in 
the cavity (w+w2--,wO+wo) if the frequency 
wo= ( a l  + w2)/2, which is determined by the phase-locking 
condition, is close to the resonant frequency w,. Here the 
cavity is assumed transparent at the pump frequencies, and 
the pump fields are thought of as being inexhaustible and 
obeying classical field theory. The signal mode of the cavity 
is described quantum mechanically and, in addition to taking 
into account the four-wave mixing process, we allow for 
phase self-modulation and phase cross-modulation due to the 
pump fields. These effects emerge in a natural way in the 
interaction of waves in a ~(~)-rnediurn ,  but are often ignored 
in elementary descriptions of the four-wave interaction. 
However (see, e.g., Refs. 21 and 22), allowing for them can 
lead to significant changes in the four-wave interaction in 
comparison to a "pure" parametric process. 

The system Hamiltonian in the resonance approximation 
with mode damping in the cavity can be written in the fol- 
lowing form: l9 

Here the first term is the free part of the Hamiltonian, where 
a +  and a are the signal-mode creation and annihilation op- 
erators. The terms of the effective Hamiltonian H e f f  describe, 
respectively, parametric four-wave mixing and phase self- 
modulation of the signal mode and its cross modulation due 
to the pump fields. In the expression for H e f f  the coupling 
constant x is proportional to the third-order susceptibility 
X ( 3 ) ,  and E l  and E 2  are the complex-valued amplitudes of 
the pump fields. The last two terms in (I)  describe mode 
damping in the cavity in terms of the thermostat operators 
r and r+, which determine the damping factor y. 

Following the standard procedure (see, e.g., Refs. 13 and 
23) of eliminating the thermostat variables combined with a 
transformation to operators that slowly vary in time, 

we use Eq. (1) to obtain the following equation for the den- 
sity matrix p in the interaction picture: 

where A =  oo- w, is the detuning of the cavity, and we have 
ignored the contribution of thermal fluctuations on the as- 
sumptions that the temperature of the thermostat is low 
(kTGhw). Equation (3) is used to obtain the Fokker-Planck 
equation for the quasiprobability distribution 
function P ( a , P )  in the generalized complex-valued 
~ - r e ~ r e s e n t a t i o n ~ ~ ~ ~ ~  of the density matrix: 

where l a )  and IP*) are coherent states, with a1 a)= a1 a )  
and ( P * ( a + =  P(P*I. In contrast to the diagonal Glauber- 
Sudarshan P-representation, in the complex-valued 
P-representation the quantities a and P are independent 
complex-valued c-number variables ( P  # a * )  corresponding 
to the operators a and a + ,  and integration with respect to 
these variables must be carried out along separate contours. 
The Fokker-Planck equation for the distribution P ( a , P )  can 
be obtained from (3) in the standard manner,13924 and has the 
form 

d a 1 d2 
- P ( a ) =  -A +-- 
dt [da,  2 da,da, 0," I p(ff)* (5 )  

where we have used the vector notation n 
= ( a l  , a 2 ) = ( a , P ) ,  and p,v= 1, 2. The coefficientsA I and 
A2 in (5) are 
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and the D,, are the elements of the following diffusion ma- 
trix: 

3. STEADY-STATE QUASIPROBABILITY DISTRIBUTION AND 
THE MOMENTS OF THE SIGNAL-MODE OPERATORS 

Finding exact quantum statistical results that describe 
the behavior of the system in the critical regions and in the 
presence of quantum noise of arbitrary intensity requires 
solving the Fokker-Planck equation (5) in a time- 
independent setting exactly and calculating, the normal- 
ordered moments of the signal-mode operators 

where C and C' are the integration contours. 
To find the steady-state solution P, (a ,P)  of Eq. (5), we 

use the method of potential We can easily 
verify that this solution of the Fokker-Planck equation with 
the coefficients (6) and the diffusion matrix (7) does exist, 
since the appropriate potential conditions are met: 

where 

and N is a normalization constant. 
Plugging this solution into (8) and expanding the expo- 

nential exp(2cup) in a power series separates the variables in 
the integrals. Combining this with the normalization condi- 
tion yields 

Clearly, the contour integrals in (1 1) are similar to the fol- 4. STEADY-STATE INTENSITY 

lowing integral representation of the (complete) beta func- 
tion B(zl ,z2) of complex variables:25 In this section we study the average intensity of the gen- 

erated signal mode at the cavity output in the steady state: 
0 for a  odd, 

1 ~ ~ ~ = ( a & , a , , , ) = 2  y (a+a)  

2i sin( a b ) B (  b + 1 ,+) for a  even, (here a,,,, is the field operator at the cavity output26). Ex- 

(12) pressing the beta function in (13) and (14) in terms of 
gamma functions, B(x,y) = T(x)T(y)lT(x+ y) ,  using the 

where the contour C is a figure eight encompassing the well-known properties of the latter, and performing some 
points r =  2 1. This leads to the following result for arbitrary simple transformations, we obtain 
moments (8) in the stationary regime: 

MI,, 
( a + n l a n ) =  -, 

Moo 

Below we discuss expressions (13) and (14) for the spe- where 
cia1 cases describing the intensity and second-order signal- 
mode moments. P,= I + ( ~ , + ~ ~ - d - 3 ~ + 2 j 6 ) ~ .  (1 8) 
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Here the moments MA,, differ from the moments (14) by a 
constant factor, 

and we have introduced the dimensionless parameters 

where IIg2= I E , , ~ ~ ~  are the pump field intensities. 
Now let us turn to the results of numerical analysis of 

the intensities via (15)-(17) in graphical form for equal 
pump intensities, I I =I2= I ( J l  = J 2 = J ) .  Figure 1 (curves 1 
and 2) depicts the dependence of J ~ " ' = ~ I ~ ~ ' / ~ ~ ~  on J for 
various values of d and 6. A increase (decrease) in d leads to 
an increase (decrease) in IOU', and also to broadening (nar- 
rowing) of the range of signal generation at some significant 
intensity. 

Having in mind subsequent discussions, we also give the 
results obtained in semiclassical theory and in an approxima- 
tion that is linear in quantum  fluctuation^.^^ 

The semiclassical equations of motion and an analysis of 
stability of their steady-state solutions under small fluctua- 
tions suggest two stable solutions for the amplitude a. (and 
hence the intensity (a f  a ) =  lai12 in units of the average 
number of photons) of the signal mode. One is the vanishing 
solution, which corresponds to the subthreshold radiating 
mode at the spontaneous noise level, while the other solution 
is nonvanishing and corresponds to the above-threshold ra- 
diating mode. In the latter case the result for the semiclassi- 
cal signal-mode intensity at the cavity output, 
Io"'=2 ylaoI2 (without allowing for the negligible contribu- 
tion of quantum fluctuations in their linear approximation), 
has the form 

The corresponding stationary phase cpo of the signal mode 
( a o =  1 aolexp(iqo)) is given by 

where cpl  and p 2  are the phases of the pump fields 

E1,2= ex~(icp1.2). 
When J 1 = J 2 = J ,  the stability range of the specified 

steady-state solution is determined by the inequalities 

where 

The quantity JA is the threshold value of the pump intensity 
parameter J, and J, is the value at which the system returns 
to the radiating mode at the spontaneous noise level: J<JA 
and J>J, correspond to conditions for a stable nonvanish- 
ing steady-state solution, and over these ranges the semiclas- 
sical intensity is zero: 10"'=O. 

We see that the above-threshold lasing mode sets in 
when the cavity's detuning A is greater than f iy .  Note that 
IoL" vanishes at J>JB because of phase cross-modulation. 
Indeed, as the equations of motion imply, the role of phase 
cross-modulation reduces to replacing the ordinary cavity de- 
tuning A with the pump-intensity dependent effective detun- 
ing Aeff= A - ~ ( 1 ,  +I2)  (see (6)). As the pump intensities 
I, and I2 grow, Aeff diminishes, which carries the system 
away from the resonant mode of operation (in relation to the 
cavity's natural frequency w,).  

We also note that the existence of a stable above- 
threshold lasing mode under conditions of inexhaustible 
sources of pump radiation results from phase self-modulation 
of the signal mode. Let us discuss this point in greater detail. 
In four-wave mixing with inexhaustible sources of pump ra- 
diation but without allowance for phase self-modulation of 
the signal mode, the only stable steady-state solution van- 
ishes, which corresponds to the subthreshold radiating mode. 
When the threshold is passed, the vanishing solution loses 
stability and the system goes to an unstable nonstationary 
lasing mode with a signal-mode intensity that increases ex- 
ponentially in time. Phase self-modulation leads to the emer- 
gence of a stable above-threshold lasing mode by the 
negative-feedback principle in the following manner. Be- 
cause of this the signal-mode phase acquires an increment 
proportional to the number of photons in the mode. Hence an 
increase in the instantaneous number of photons for J>JA 
violates the phase-locking condition, which precludes effi- 
cient parametric amplification of the cavity mode during the 
mode's subsequent passage through the nonlii~ear medium. 
As a result of this compensation, the intensity of the signal 
mode stabilizes at the nonvanishing value given by Eq. (21). 

Bistability, threshold behavior, and dependence on the 
nonlinearity parameter 

The above results of the semiclassical approximation im- 
ply that for d >  2 the regions of stable vanishing and nonva- 
nishing steady-state solutions overlap, resulting in optical bi- 
stability. Examples of the behavior of the normalized 
intensity X~0U'/4y2 as a function of J are depicted in Fig. 1 
(curve 3).  

At the same time, numerical analysis of (15)-(17) sug- 
gests that the corresponding dependence in nonlinear quan- 
tum theory is not hysteretic. Such behavior is the result of 
the general nature of bistable systems (see, e.g. Ref. 27) and 
corresponds to a strictly statistical interpretation of the quan- 
tum mechanical mean intensity. 

An approach that is logically equivalent to the quantum 
statistical description of optical bistability involves the ap- 
propriate (quasi)probability distribution function of either a 
general potential or the corresponding metastable states (see 
Refs. Ib and 27). In this approach, a detailed study of bista- 
bility requires investigating quantum tunneling effects and 
analyzing the characteristic times, statistically speaking, that 
the system takes to reach the steady state. However, this 
problem requires special treatment for the nonlinear system 
we are considering here, and its solution lies outside the 
scope of the present paper. Qualitatively, the problem can be 
interpreted on the basis of the results of Sec. 7 for the distri- 
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J OW JO'" FIG. I .  Normalized signal-mode 
44 0.P intensity at the cavity output, 

a b ~ ~ ~ ' = ( ~ / 4 ~ ~ ) 1 ~ ~ ' ,  as a function o f  
the pump intensity parameter 
J =  (XI ?)I. Curves I and 2 repre- 

0.2- sent the results o f  nonlinear quan- 
tum theory: (a) d =  5 and 
S=0.025 ( C U N ~  1); and (b)  d = 2  
6= 0.01 (curve I )  and 6=0.1 

0.1- (curve 2). Curve 3 represents thc 
results o f  the semiclassical ap- 
proximation (with the correspond- 
ing values o f  d ) ;  the dashed part or 

04 . . . . . . . . . . . . . . . . . . . . . . . . .  curve 3 in Fig. I(a) corresponds 

0 1 2 3 4 5  6 0 0.5 1.0 1.5 2.0 2.5 to solution,lg the unstable steady-statc 
J J 

bution function of the number of photons in the cavity. 
Concluding this section, we note the nature of the thresh- 

old behavior of IOU'  for different values of the nonlinearity 
parameter S=x/4y.  Generally speaking, the common defini- 
tion of a lasing threshold as a critical point in nonlinear 
optics systems emerges from the analysis of semiclassical 
solutions and their stability regions. In this sense the lasing 
threshold for the system under investigation is determined by 
the value of JA (see (20)). Here Eq. (17) readily shows that 
the semiclassical result for the normalized intensity 
X~0U'/4y2 expressed in terms of the dimensionless pump in- 
tensity J= c J = c I l  y is independent of X/ y. Thus, the param- 
eter 6 is a scaling factor and, in addition, determines the 
range of J over which the linear approximation of quantum 
fluctuations is applicable: the smaller the value of S, the 
broader the range of J ,  up to a small neighborhood of the 
system's critical points, in which the results of the linearized 
theory are valid; conversely, the larger the value of J ,  the 
larger the neighborhood of critical points within which these 
results are inapplicable.') 

In nonlinear quantum theory, we see (Fig. 1) that instead 
of a lasing threshold there is a critical, or threshold, region. 
Here the signal-mode intensity lo"' increases considerably at 
values of J smaller than JA. At the same time, X~0Ut/4y2 
depends explicitly on S=x/4y.  The smaller the x l y ,  the 
closer the transition to a lasing mode with a significant non- 
vanishing intensity is to a jump (numerical analysis shows 
that such a situation is realized up to values of XI y-0.1 at 
d= 5, and at smaller values of XI y for smaller d's). 

In this case the threshold "value" of J (in the region 
where X~0Ut/4y2 experiences a jump) proves to be well- 
defined. As XI y increases, the X~0U'/4y2 vs. J curve in the 
critical transition region becomes smoother, and relating 
such behavior to a threshold loses all meaning (cf. curves 1 
and 2 in Fig. 1). This agrees with the results obtained below 
for quantum fluctuations of the number of signal-mode pho- 
tons and the second-order correlation function. 

5. QUANTUM FLUCTUATIONS OF THE NUMBER OF 
PHOTONS AND PHOTON CORRELATION 

which characterizes the variance of the number of signal- 
mode photons, with ((An)2) = ( ( ~ + a ) ~ ) -  ( ~ + a ) ~ ,  and the 
normalized second-order correlation function 

The quantities F and g(2) are linked by the obvious relation- 
ship 

F =  1 + ( ~ + a ) ( g ( ~ ) -  I ) ,  (27) 

and their shared typical properties for chaotic, coherent, and 
nonclassical light fields are well-known (see, e.g., Refs. 12, 
13, 28, and 29). 

Using the general expressions for the moments (see Eqs. 
(13) and (14)) and transformations similar to those employed 
in calculating !Out, we arrive at the following expression for 
the correlation function g(2): 

where the moment M;2 is given by 

(29) 

and M&, Mi, ,  and Pi are given by Eqs. (16)-(18). Having 
such an expression for ( a + a ) = M i , l ~ &  we can easily go 
from the correlation function g(2) to the Fano factor (27). 

The results of a numerical analysis of the correlation 
function g(2) and the Fano factor F as functions of the pump 
intensity parameter J are depicted in Fig. 2 for various values 
of S and d. A general feature of the behavior of y(2) is that 
there is a supergrouping of photons ( g ( 2 ) ~  1 )  for values of 
J below the critical region. This property reflects the pair 
production of photons belonging to the lased signal mode in 
the parametric four-wave mixing process. Above the critical 
region, in which the average intensity of the signal mode 

Let us now turn to the quantum statistical characteristics increases considerably and phase self-modulation becomes 
of the signal mode in a steady-state lasing mode. To this end important, the function g(2' becomes less than unity (for 
we present the results of analyzing the Fano factor small S), which indicates nonclassical antigrouping of pho- 
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tons. Photon antigrouping in this region is accompanied by 
suppression of quantum fluctuations of the number of pho- 
tons in comparison to fluctuations in the coherent state 
(((An)2)<(n)),  i.e., the photons obey sub-Poisson statis- 
tics. To characterize the effect of fluctuation suppression 
quantitatively, we must examine the Fano factor F. For in- 
stance, for 6= 5 and 6= 0.01 the minimum of F proves to be 
roughly 0.82, and occurs at J= 1.43, while for d =  10 and 
6=0.001 we have F z 0 . 6 7  at 5-2.26. As S increases and 
d decreases, suppression of fluctuations in the number of 
photons worsens. 

As we move away from the critical region (J>JB)  sub- 
stantially, photon correlation acquires grouping features 
(g(2)), which can be related to the fact that in this region the 
system reverts to radiation at the level of spontaneous noise. 

Now let us return to the results in the critical threshold 
region. Here for small values of the nonlinearity parameter 
6= x/4y, the Fano factor has a sharp peak, which suggests a 
sharp increase in quantum fluctuations and sub-Poisson sta- 
tistics for the photons ( F B  1). For instance, for d = 5  and 
S=O.l, the peak value of F (at J= 1.36) is roughly 57. Note 
that the value of J corresponding to the peak in the Fano 
factor lies in the range where the X1°u'/4y2 vs. J curve is 
steep (cf. the corresponding curves in Figs. 1 and 26). This 
value can be identified (for small x l y )  with the lasing 
threshold in nonlinear quantum theory. But as XI y grows, 
the situation changes-the peak becomes lower and broader. 
Hence the threshold nature of the behavior of the nonlinear 
system-which is determined by the characteristic features 
in the shape of the intensity curves and by the behavior of 
the fluctuations in the number of photons-loses all meaning 
in nonlinear quantum theory with large nonlinearities. 

We also note that the increase in fluctuations or in the 
peak of the Fano factor at small XI y also exists in the vicin- 
ity of the second critical point of the system, J = J B .  But at 
the same value of X/ y, this peak is less evident than the peak 
in the vicinity of the lasing threshold, which is due to a 
weaker variation of the intensity JoU' in the vicinity of 
J=JB.  

One interesting feature of the behavior of g(2) in the 
critical regions must be noted. Just like the Fano factor, in 
the bistable lasing mode the function g(2' exhibits a sharp 
peak (for small values of ,yl y) in the near-threshold region. 

FIG. 2. The correlation function 
g'2' (a) and Fano factor F (b) as 
functions of J .  Here d = 5  and 
S=0.025 (solid curves), d =  5 and 
S=0.25 (dashed curves), and (1=2 
and S= 0.001 (dot-dash curves). 

However, in the vicinity of the second critical point JB , and 
in the vicinity of JA in the absence of bistability, no peak 
shows up in the function g ( 2 ) .  At the same time, in the Fano 
factor, as noted earlier, the peak behavior in critical regions 
is present irrespective of whether or not there is bistability. 
We have therefore discovered that the critical increase in 
g(2) in the near-threshold region is not related directly to the 
increase in fluctuations of the number of photons; instead, it 
is a reflection of the bistable behavior of the system. 

6. SQUEEZING OF FLUCTUATIONS OF THE QUADRATURE 
COMPONENT 

In this section we analyze the nonclassical squeezing of 
the fluctuations of the quadrature component of the signal 
mode, 

~ l 9 = ~ ~ - i a + ~ + ~ i l 9  

where 6 is the arbitrary phase of the reference wave. The 
effect consists in the suppression of the mean-square fluctua- 
tions 

below the level of vacuum fluctuations: (AX"< I .  Here we 
have allowed for the fact that the average amplitude of the 
signal mode, (a) ,  is zero, which follows directly from the 
general expression for moments with m = 0 and n = 1 . 

If we employ Eqs. (13), (14), and (19), we arrive at an 
expression for the anomalous correlation (a2): 

+ i E  [ (2k+ I)!! 

k = l  (2k)!! ( J I J ~ ) ' ( E  j= I P j )  - 'I] 9 

(32) 
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where cpl and q2 are the pump field phases, we have em- 
ployed the notation (18)  and (20) ,  and M,& is defined in (16) .  
Hence, if we select the phase 

corresponding to the minimum variance (30) ,  we get 

where M I I  is defined in (17) .  
Figure 3  shows  AX')^),^, as a function of J = , y l / y  

for various values of d= A/ y and 6 = ~ / 4 y .  Analysis of (34)  
shows that in the absence of bistability ( d < 2 ) ,  fluctuations 
of the quadrature components are squeezed over the entire 
range of J .  When bistability is present, there is a critical 
increase in fluctuations above the vacuum level in the thresh- 
old region, and a return of the squeezing effect in the above- 
threshold region. Squeezing peaks in the vicinity of the sec- 
ond critical point (e.g., for d =  5 and S=0.1 we have 
( ( ~ ~ ' ) ~ ) , ~ , = 0 . 5 7 ,  i.e., the squeezing amounts to 43% at 
J - 5 )  and, as we see, significant suppression of fluctuations 
is observed over a broad range of pump intensities. For the 
sake of comparison, we note that in conventional parametric 
frequency division of light in a cavity (see, e.g., Ref. 16) 
significant squeezing can only be observed in the threshold 
region, and as the pump intensity increases, squeezing rap- 
idly decreases. We also note that increasing the nonlinearity 
parameter 6= x / 4 y  worsens the squeezing effect. 

7. PHOTON NUMBER DISTRIBUTION 

For a fuller analysis of the quantum statistical character- 
istics of the signal mode, we now calculate the distribution 
function of the number of photons in the cavity, 
p ( n ) = ( n ) p ) n ) ,  in a steady-state lasing mode. Using the 
P-representation ( 4 )  of the density matrix, we find that 

FIG. 3. The minimum variance o f  floctuations of the quadrature coniponcnt 
 AX")^),^,, as a function o f  J .  Here tl=5 and 8=0.025 (solid curve), and 
c l = 2  and S=0.25 (dashed curve). 

Plugging this into the expression (9) for the steady-state 
distribution P , ( a , P )  and integrating by the method dis- 
cussed in Sec. 3, we obtain 

where 

and Moo is defined in Eq. (14) ,  where we must set 
n  = m = 0 .  For convenience of analysis, we transform Eq. 
(37)  by using the well-known relationship between the beta 
function and the gamma function and the properties of the 
latter. The final expressions for integer n  are 

where 

and M& and Pj are defined in (16)  and (18), respectively. 
The results of numerical analysis, which are depicted in 

Fig. 4, show that the following features in the behavior of the 
distribution p ( n )  for various values of the pump intensity 
parameter J  and fixed values of S  and d are the most general. 
For values of J  that are lower than those in the critical 
threshold region, the function p ( n )  has a peak at n=O,  in 
accordance with the spontaneous nature of emission below 
the lasing threshold. In the above-threshold region, p ( n )  
consists of a single "hump" with the most likely value of 
n  differing from zero, which guarantees that the average 
number of photons ( n )  = ( a  + a )  = C, ,np (n )  is nonzero. Here, 
in accordance with the sub-Poisson statistics of the photons 
in this region (see Sec. 5), the distribution p ( n )  proves to be 
narrower than for a Poisson distribution with the correspond- 
ing value of ( n ) .  As J  grows (and approaches J , ) ,  the hump 
moves toward vanishing values of n  and its width increases. 
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FIG. 4. Distribution function of the number of photons in the cavity, 
p ( n ) :  d = 5 ,  6=0.025, and J =  1.4 (solid curve); d = 5 ,  S=0.025, and 
J =  3 (dashed curve); and d =  5 ,  S= 0.5, and J =  1.66 (dot-dash curve). 

For J > J B  the peak in p (n )  again occurs at n=O, which 
means that the system has returned to the radiating mode at 
the level of spontaneous noise because of phase cross- 
modulation. 

Let us now follow the p(n)  curve in the threshold re- 
gion, where the semiclassical intensity exhibits bistable be- 
havior. In this region, in addition to the peak at n = 0, there 
emerges a second local maximum (hump) at n # 0. The 
height of the second local hump grows with J (within the 
limits of variation of J, from J =  1.36 to J =  1.42, for the case 
of d = 5 and S= 0.025 depicted in Fig. 4) and at the same 
time the probability at n=O decreases. As a result we get 
two local maxima at n = O  and n # 0 on the curve p (n )  (or 
two most likely values of n). These most likely values of n 
correspond to the lower and upper stable branches of the 
semiclassical intensity curve, while the local minimum be- 
tween them corresponds to the unstable section of the semi- 
classical curve. The relationship between p (n )  and the semi- 
classical result for the intensity of the signal mode in the 
cavity can be demonstrated even more transparently by 
building the curve representing the dependence of the posi- 
tion of the local maxima and the local minimum on J (see 
Fig. 5). We see that for small values of S the given curve fits 
the semiclassical curve fairly well. At the same time, as the 
nonlinearity parameter S increases, the curve corresponding 
to the most and least likely values shifts in relation to the 
semiclassical result. 

In the distribution function p(n)  an increase in S shifts 
the position of the second hump toward smaller values of 
n, which lowers the absolute value of (n)= X,np(n). More- 
over, an increase in 6 leads to a situation in which the two 
local maxima coexist over a much broader range of J. This 
leads to a smoother nonthreshold behavior of the intensity 
curve lout in the critical transition region, in accordance with 
the results of Sec. 4. 

8. WIGNER FUNCTION 

Studying nonclassical states of light often involves, in 
addition to the distribution P ( a , P )  and other distributions, 
the Wigner function W(a) .  In the case of a single-mode light 
field, 

FIG. 5 .  The dependence of  the values of n corresponding to the maxima and 
the local minimum between the maxima (provided that there are two local 
maxima in the bistable mode) of the distribution p ( n )  on the pump intensity 
parameter J at d = 5 :  A corresponds to S=0.025, and to S=0.25. The 
specified most likely and least likely values are plotted with a scaling factor 
~ 1 2 y ;  for the sake of comparison the result for the semiclassical intensity 
J ~ ~ ' = ( ~ I ~ ~ ~ ) I ~ ~ '  is also given (see curve 3 in Fig. la); it is expressed in 
terms of the number of photons in the cavity, no= in the semiclassical 
approximation on the same scale ( X / 4 y 2 ) ~ o u ' = ( ~ / 2 y ) n o .  The distribution 
maxima lie near the stable branches of the semiclassical intensity curve, and 
the minima lie near the unstable branch. 

For certain problems, the Wigner function has certain 
advantages over other quasiprobability distributions. In par- 
ticular, being a function of a single complex variable-the 
joint quasiprobability distribution of the two quadrature com- 
ponents ("coordinate" and "momentum") x = R e a  and 
p = Im a-it has proved convenient in analyzing the proper- 
ties of nonclassical states of light in phase space. Further- 
more, and importantly, the Wigner function can be experi- 
mentally reproduced by optical homodyne tomography30 by 
measuring the distribution of the quadrature components of 
the light field. Thus far, it has been reproduced for a light 
field in the vacuum state and for squeezed light obtained via 
parametric frequency division of the light in a 
X(2)-nonlinear ~ r ~ s t a l . ~ ' * ~ ~  This stresses the importance of 
theoretically analyzing the properties of the Wigner function 
for specific nonlinear optics systems with allowance for 
quantum fluctuations and dissipation. 

For the nonlinear system under consideration, the 
Wigner function can be calculated using the function 
P(a ,P ) .  Our calculations show that the function is quite 
simple. Indeed, starting with the definition and passing to 
normal ordering of operators and the P-representation (4), 
we find that the function W(a)  is linked to P ( a , P )  by an 
integral transformation, 
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Note that in obtaining this result we used the integral 

with Re s>O. 
Plugging the expression (9) for the steady-state distribu- 

tion function into (40), we note that the exponential factor 
exp(-2SP) in (40) is canceled by the factor exp(2SP) in the 
function P,s(S,P), which leads to separation of the variables 
in the respective contour integrals. This simplifies integration 
considerably and, making use of the integral representation 
of the Bessel function J,(z) (with the same integration con- 
tours as in (12); see Ref. 25), we arrive at the following 
result in the steady-state lasing mode: 

Here the inessential constant factors that appear in the inte- 
gration have been absorbed into the normalization constant 
N. 

The Wigner function can assume both positive and nega- 
tive values. The fact that W(a)  can be positive is a manifes- 
tation of the nonclassical nature of the light field. In particu- 
lar, W(a)  assumes negative values for Fock and 
superposition In this connection we note that the 
Wigner function (41) obtained for the four-wave interaction 
process considered here is positive over the entire range of 
a. 

9. CONCLUSION 

One of the main features of the nonlinear optics system 
considered in this paper is that it can achieve an above- 
threshold single-resonance mode of lasing of nonclassical 
light with low energy exchange between the pump fields and 
the signal mode. Such an "uncommon" lasing mode (in the 
absence of exhaustion of the pumping source) is realized 
because, in addition to parametric four-wave mixing, we al- 
low for phase self-modulation of the signal mode, which has 
a profound stabilizing effect above threshold. We believe 
this is important in selecting this system as a highly stable 
generator of squeezed and sub-Poisson light. 

Below are some remarks concerning the fundamental as- 
pects of our results. 

What is important is that for the given system we were 
able to find a steady-state quasiprobability distribution 
P , ( a , P )  as an exact solution of the Fokker-Planck equation 
in the complex-valued P-representation, and could carry out 
an exact quantum statistical analysis without resorting to lin- 

earization in quantum fluctuations. As a result we have thor- 
oughly studied the intensity, photon correlation effects, vari- 
ance of the number of photons and of phase-dependent 
quadrature components, and distribution of the number of 
photons. The results can be applied at an arbitrary level of 
quantum noise and in the lasing threshold region. Under- 
standably, with this approach we attempted primarily to 
study large values of x l y ,  at which the level of quantum 
noise is high and the exact quantum results differ signiti- 
cantly from the corresponding approximate results of the lin- 
earized theory. 

As Secs. 5 and 6 show, an increase in XI y leads to a 
worsening in both the nonclassical squeezing of fluctuations 
of the quadrature component and the sub-Poisson statistics of 
the photons. Moreover, instead of the lasing threshold as a 
critical point of the nonlinear system in the semiclassical 
theory, in exact quantum theory there emerges a critical re- 
gion of behavior of physical quantities. Here, although the 
hysteretic dependence of the steady-state intensity I O U '  disap- 
pears as a result of exact quantum statistical averaging, bi- 
stability manifests itself in the distribution function p ( n )  in 
the form of two local maxima in the critical transition region. 
As XI y increases, X~0Ut/4y2 rises more smoothly as a func- 
tion of J in the critical region, and may even start at zero. 
Clearly, identifying such behavior with a threshold makes no 
sense. 

The quantum "threshold" behavior can be analyzed by 
studying the Fano factor, which has a sharp peak in the criti- 
cal regions, due to a significant increase in the level of quan- 
tum fluctuations. But for this quantity too, threshold behavior 
shows up only at small values of X/ y and disappears when 
XI y becomes larger. 

To better illustrate these results, we used XI y-0.001- 1 
in our numerical analysis. In real physical systems this ratio 
is lower; in particular, in high-Qcavities and atomic gases 
the ratio may reach - -10-~-10-~  at best (at 
X(3)- esu and y- lo6 s- I ) ,  although for highly non- 
linear condensed media (liquid crystals), ,yl y can be higher. 

Among the interesting results of the present work is the 
behavior of the correlation g(2) in the critical region, where 
g(2' has a sharp peak only if the system is bistable. To our 
knowledge, we have identified critical growth of the pairwise 
correlation of photons for parametric processes in the near- 
threshold lasing region for the first time. For instance, for 
parametric lasing in a X(2)-medium (three-frequency interac- 
tion) the behavior of g(2) in the threshold region was studied 
in Refs. 14 and 15, but only in the absence of a bistable 
lasing mode. As a result, g(2' exhibited no singularity in the 
threshold region, considered as a function of the pump inten- 
sity. 

It is also important, we believe, that we found an exact 
analytic expression for the Wigner function W(a) ,  the joint 
quasiprobability distribution of the two quadratic compo- 
nents of the light field, x= Re a and p = Im a. Of course, 
this result requires further study. We also note that for para- 
metric processes that allow for energy dissipation, the 
Wigner function has only been calculated approximately for 
three-frequency paran~etric lasing." 
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 or numerical estimates in the general case, one must turn to calculations 
of the quantum fluctuations of the intensity and the signal-mode phase in 
Ref. 19. 
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