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The cross section for the photoproduction of an axion on a relativistic electron ( y + e + e + a )  in 
a constant external electromagnetic field is calculated in a model with tree-level axion- 
electron coupling. An estimate of the contribution Q?) of this Compton process to the axion 
luminosity of the magnetized, highly degenerate relativistic electron gas in the outer 
layers of a neutron star is obtained. The condition QLC'<Q,, where Q, is the known luminosity 
due to neutrino synchrotron emission (e+e  + v+ yields bounds on the axion-electron 
coupling constant and the axion mass: g o e s  1 X 10-13, m,54X eV. These bounds are 
consistent with those previously found for other conditions and axion processes. O 1996 
American Institute of Physics. [S 1063-776 1 (96)003 1 1-31 

1. Theories which generalize the standard model of the 
interactions of elementary particlesi by expanding the Higgs 
sector allow the appearance of new light (pseudo)scalar 
bosons associated with the spontaneous breaking of addi- 
tional global symmetries (see, for example, the reviews in 
Refs. 2 and 3). The axion is one such pseudo-Goldstone 
boson, which provides a fairly natural solution to the prob- 
lem of a priori strong CP violation in the standard 
According to experimental data: the constants of the pos- 
sible coupling of an axion with ordinary particles are very 
small (the "invisible" axion). Therefore, axions can play an 
appreciable role in a s t r ~ ~ h ~ s i c s ~ . ~  under the conditions of 
dense stella matter, high temperatures, and strong external 
electromagnetic fields. 

An analysis of various processes leading to the produc- 
tion of axions and astrophysical methods for obtaining 
bounds on the parameters of axion models was given in Ref. 
3, where, however, the possible influence of strong external 
fields was not taken into account. In Ref. 7 we investigated a 
new mechanism for producing axions, viz., the synchrotron 
emission of axions by relativistic electrons in a magnetic 
field ( e ~ e + a ) ,  calculated its contribution to the energy 
losses of a magnetized neutron star, and obtained a new, less 
stringent bound on the axion-electron coupling constant: 

We stress that in the absence of an external field this process 
is forbidden by the energy-momentum conservation law. 

Strong external fields have a significant influence on the 
processes that take place in their absence (see, for example, 
Ref. 8). These "free" processes include the Compton pho- 
toproduction of axions on electrons ( y +  e + e  + a ) ,  which is 
the main mechanism of axion emission from horizontal 
branch stars,3 which should also be taken into account 
[along with bremsstrahlung emission on nuclei: 
e + (Z,A)+ (Z,A) + e + a ]  in red  giant^.^,^ The external 
fields can be neglected under these conditions. On the other 
hand, in neutron starsi0 strong magnetic fields significantly 
alter the probabilities of free processes and open up new 
reaction channels. 

In this paper the axion Compton effect ( y e ~ e a )  on 
relativistic electrons in a constant electromagnetic field is 
considered on the basis of a model with tree-level axion- 
electron coupling. The corresponding interaction Lagrangian 
has the form3 

where nr is the electron mass, and y5= - iYoY' y2 y3, a sys- 
tem of units in which A = c =  1, (u=e2/4.rr= 11137, and a 
metric with the signature (+ - - -)  are used. We note that 
in models in which an axion is coupled only with heavy 
fermions on the tree level there is an effective low-energy 
direct interaction of an axion with a photon? which provides 
for the Primakoff mechanism for the photoproduction of ax- 
ions. The Primakoff effect on relativistic electrons in an ex- 
ternal field was investigated in Ref. 11. In our case [see (2)] 
this mechanism is a radiation correction to the Compton 
mechanism (it corresponds to the familiar triangular y a y  
diagram with a fermion loop3). 

To simplify the further calculations we take into account 
that in first-order perturbation theory with respect to the cou- 
pling constant g,, the Lagrangian (2) is equivalent to the 
pseudoscalar interaction ~ a ~ r a n ~ i a n ~  

which was also used in Ref. 7. Equation (3) is derived from 
(2) using the divergence of the axial current for a free Dirac 
field, d , ( $ y ~ g $ ) =  -2im(&y5@). 

The cross section of the Compton process ye+ea in a 
constant external field is calculated below, and its contribu- 
tion to the luminosity of a neutron star is evaluated and then 
compared with the corresponding contribution of the axion 
synchrotron emission e + e a  (Ref. 7). 

2. The amplitude S,.; of the axion Compton effect in an 
external electromagnetic field to lowest order in the con- 
stants e and g, ,  of the e y e  and e a e  interactions follows 
from (3) and the known Lagrangian of the electromagnetic 
interaction: 
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x exp(iklx- ikx') + ds(x,xt ) y5 

Here @, (I ,hpt) and S(x,xl) are, respectively, the exact wave 
function of the initial (finite) electron and the propagator of 
an electron in a given external field; kp= (w,k) and 
k 'p=(w' ,kt)  are the four-momenta of the incident photon 
and the axion emitted; e^=  ype, ; ep is the polarization four- 
vector of the photon (ek=O); and V is the normalization 
volume. 

As in Ref. 11, we choose a constant crossed field 
(EL H, IEl= ]HI = F = const) as the external field. As we 
know,8.12 for processes with ultrarelativistic electrons a 
crossed field simulates an arbitrary constant field with inten- 
sity ~ < ~ ~ = m ' c ~ / e h  = 4.41 x 1013 G. The intensity tensor 
of a crossed field is 

and in the special reference frame in which np= (1,n) and 
Bp= (0,- F,O,O) the 3-vectors E= (F,O,O), H= (O,F,O), 
and n = (0,0,1) follow the right-hand rule. 

The state of an electron in a crossed field is assigned by 
the four-quasimomentum pp=  ( s  ,p), p 2  = m2. When the 
field is removed, it transforms into the four-momentum of a 
free electron. The electron wave function has the formI2 

5, = e/2(np), and cp = nx. The bispinor u(p) is normalized 
by the condition iiu = 2m and satisfies the Dirac equation for 
a free electron: (b - m)u(p) =O. For the electron propagator 
we choose the representationJ2 

To simplify the calculations we confine ourselves to the 
following kinematic condition: 

or [see (91 
k,F pw= 0, 

i.e., in the special reference frame the photon momentum 
kf Tn. The same condition was utilized to investigate the 
original Compton effect (ye+ey)I3 and the Primakoff 
effect.' We note that one feature of the kinematics (9) is that 
in this case the photon decay process y--te+e- is forbidden 
and the Dirac equation allows an exact solution for an elec- 
tron in an external field having the form of the superposition 
of the crossed field (5) and a monochromatic plane wave of 
arbitrary intensity propagating along n (Ref. 13). We also 

neglect the axion mass ma in the case of high-energy elec- 
trons under consideration, i.e., k P 2 = 0  [it is known from as- 
trophysics that mas eV (Ref. 9)]. 

We substitute (6) and (8) into (4) and integrate over the 
coordinates x and x ' ,  using the Fourier transform of the 
functions E,(x) with respect to the phase variable cp [Ref. 
121. Then, integrating over the virtual quasimomentum qp  
[see (8)] with the aid of four-dimensional 6 functions that 
express the quasimomentum conservation law at the vertices 
x and x', we obtain the amplitude of the process (4) in the 
form 

Here 

The functions Ao(s) and A ,(s) = dAo(s)lds, which are char- 
acteristic of a crossed field,12 are expressed in terms of the 
Airy function 

according to the relation 

1 
Ads)=- (4~)- ' I3  exp 

J;; 

where the argument of the Airy function (12) is 

We note that the presence of the 6 function S(sl) and its 
derivative 6 ' (s t )  in the integrand in Eq. (10) results from the 
choice of the special kinematics (9), which greatly simplifies 
the structure of the amplitude. After the trivial integration in 
(10) over s ' ,  for the square of the absolute value of the 
amplitude averaged (summed) over the spin states of the ini- 
tial (final) electron, we obtain 
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where T is the "observation time," L ,  is the normalization 
length corresponding to the phase cp in the wave function (6) 
(Ref. 12), with 

where Fpv= (ll2)rPvapFap is the dual tensor of the field, 

are invariant parameters, and the variable X' equals 
x (p+p1) .  Using (22), we obtain 

Averaging the coefficients (19) over the photon polarizations - 
according to the relation eLle"= -gpv/2 and expressing the 
result in terms of the variables (22), from (21) and (18) with 
consideration of the relationship between the functions 
A,,= dnAo Idsn and the Airy function [see ( 1  2) and (1 3)], we 
obtain an integral representation for the total cross section of 
the process: 

The functions T(s) and Ao(s) were defined in (1 1) and (13), 

The calculation of the trace in (16) gives 

+co2AoA,* + C12A ,A,*). 

Here 
Here 

where IT= KIU, ~ = x / u ,  and the argument of the Airy func- 
tion is 

i C , , = b 1 l ( b 1 F 1 + 2 ~ 5 F 2 ) ,  

where z = a + i b .  In (19) we also introduced the notation 

M =(prp)-m2,  We have also introduced the parameter 

which specifies the influence of the external field on the 
process8 (see also Refs. 11 and 13). In (25) we performed the 
integration over the variable I), using the fact that the spec- 
trum d 3 u l d u d r d ~  does not depend on $ and the relationI2 

From (IS), where W f i  is the transition probability per 
unit time, we find the differential cross section of the process 

Therefore, the cross section (25) does not depend on the 
unphysical quantity L ,  , as should be expected. 

where the flux is j=(kp) l (Vws) .  Using the four- 
dimensional 6 function appearing in WJi , we integrate (2 1) 
over p' and s. We transform the remaining phase volume by 
introducing the following invariant variables instead of the 
components of the axion momentum k t  (Refs. 12 and 13): 

3. The integrand in (25) determines the differential cross 
section of the process d 2 u l d u d r  for an ultrarelativistic elec- 
tron in an arbitrary constant external field of intensity 
F G  Ho (for the exact formulation of the applicability condi- 
tions see Ref. 8). In the case of a constant magnetic field ( H 
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parallel to the z, axis), which is of interest for astrophysics, 
the variables (22) and the parameters (23) take on the form 

Here E = (ni2 +pf +p:) 'I2 is the energy, p, and p, are the 
transverse and longitudinal components of the electron mo- 
mentum with respect to H, and by virtue of (9) the photon 
momentum satisfies k t  TH. The result (25), which was ob- 
tained for a crossed field, is also applicable to a magnetic 
field (F,JJ;"">O, F,,F.L~=o), if the photon moves along 
the field [see (9)] and the following conditions 

where the invariants fi equal 

In the limit 74 1, on the smooth distribution of the free 
process ( 7= 0)  

2 duo  r,, u2 
-= T- O C U S K ,  
du  K ( 1 + ~ ) 3 1  

we impose the characteristic oscillations caused by a weak 
external field, and the cross section duldu decreases mono- 
tonically in the region u> K, which is forbidden in the ab- 
sence of a field for u 9  K the decrease is exponential). 

As follows from (34), in the limit 7% 1 the spectrum 
dcrldu has a maximum at U-X&K, and there are no oscil- 
lations over a considerable region. 

When u 9 K, holds the mechanism of axion emission be- 
comes essentially a synchrotron mechanism, and the differ- 
ential probability dw= j d a  takes on the factorized form 
typical of processes involving soft photons: 

In the reference frame in which p,=O holds the conditions 
(30) take on the form 

&=pL bun, H 4 H o ,  w4m,  w9oH=eH/€ .  
(32) 

4. We perform the integration in (25) over the variable 
7 using known relations from the theory of Airy functions 
(see, for example, Ref. 12). We obtain the cross section in 
the form 

Here 

with the argument 

and we have introduced the characteristic radius 

The dependence of the form of the spectrum daldu [the 
integrand in (33)] on the parameter 7 given in (28) is typical 
of processes that take place in the absence of an external 
field [compare this with the ordinary Compton effect 
ye-ey (Ref. 8, p. 86)]. The features of the spectrum are 
directly related to the properties of Airy  function^.'^." 

Here dwsE is the probability of synchrotron axion emission 
( e - e ~ ) : ~  

where x ~ = ( u I ~ ) ~ ~ = x ( K = o )  [see (34)]. In (36) we intro- 
duce the wave intensity parameter12 t=eF,lnrw, where 
F, is the amplitude of the field intensity of the wave corre- 
sponding to the incident photon: V F ~ I ~ =  w. 

We note that the result (36) is similar to the correspond- 
ing result for the ordinary Compton effect in a constant ex- 
ternal field in the same kinematic regionI3 (see also Ref. 8, p. 
80). Its applicability is restricted by the condition that the 
wave field be weak:8v13 

The infrared divergence of the probability (36) [and the cross 
section (33)] is totally eliminated as K ~ O ,  as in the case of 
the ye+ey process.8 In the region just indicated only the 
total probability of axion synchrotron emission (e--tea), 
stimulated emission (e+eay),  and Compton scattering 
(ye-tea) has physical meaning, and a correction -ij2 due 
to the interference contribution to the amplitude of the 
y e - + e a y  process, where the final photon y is identical to 
the photons of the incident wave, must be taken into account 
in the probability of the e-+ea process. All the diverging (as 
K ~ O )  terms in the total probability dw are reduced, and we 
have dw=dwsE. We note that the infrared divergence ac- 
companying the absorption of soft photons was examined for 
decay processes in a wave field in Ref. 12. 

We present the asymptotic forms of the total cross sec- 
tion (33) with respect to the parameter (28). The method 
used to obtain them is the same as in the case of the cross 
section of the Primakoff effect. 

In the limit q 4  1, an external field causes a correction 
a ,  -x2  to the cross section cro of the free process [the inte- 
gral of (391: 
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where K ,  = K +  1 = ( k  +p)21m2 is the normalized Mandel- 
stam variable s. 

In the limit 7% 1 ,  the influence of the external field 
dominates. In the region K < X <  1 ,  from (36) we obtain the 
probability estimate 

where it has been taken into account that the main contribu- 
tion to the integral over u is made by u - X .  The criterion 
(37) for the applicability of perturbation theory follows from 
the condition w < w S E  (compare Ref. 8, p. 81). In the limit 
,y% 1 ,  from (33) we find the asymptotic form of the cross 
section 

The corresponding probability w = j u  has the form 

We note that the asymptotic form of the total probability of 
axion synchrotron emission for X B  1 is 

Therefore, for X B  1 we have w e  W S E  for 

t 2 ( X /  K ) ~ <  

5. We evaluate the contribution QF) of the process con- 
sidered above to the axion luminosity of a magnetized, 
highly degenerate relativistic electron gas under the condi- 
tions of a neutron star.'' The luminosity elc), i.e., the rate 
of energy loss by a unit volume of the gas due to the axion 
Compton effect y e 4 e a ,  is expressed in terms of the cross 
section duldu (33) in the form 

X [ 1  -nF(&' ) lns (w) .  

Here 

are, respectively, the Fermi and Bose distribution functions 
of the initial electrons and photons at the temperature T ,  
n F ( e r )  is the distribution of the final electrons, and p is the 
chemical potential of the electron gas. The energy of an 
emitted axion w' can be expressed in terms of only the en- 

ergy of the initial electron E and the variable u (29) over a 
significant range of emission angles when the condition (30) 
holds: 

This permits the use in (40) of the spectrum 

Let us examine, as in Refs. 1 1  and 7 ,  the case of a highly 
degenerate relativistic gas in a nonquantizing magnetic field, 
in which the following conditions hold 

where n,  is the electron density. Under the conditions (43) 
the quantization of the transverse momentum p ,  of the elec- 
tron in the magnetic field can be neglected8 ( p :  = 2 e H n ,  
n = 0,1,2, . . . ), and the quasiclassical formula (33) can be 
used for the cross section d u  in (40) after replacing the sum- 
mation over the electron states by integration over the phase 
volume. 

The further calculations are similar to those performed in 
Ref. 1 1  for the Primakoff effect. The Fermi factor 

has a narrow maximum at p = p F ,  which is determined by 
the overlap of the transition regions of the Fermi "satel- 
lites:" le - E ~ I  S T  and le ' - & , I  S T .  Hence, taking into ac- 
count (41)-(43), we find that in the region 
Ip -pFI 5 T < p F ,  which makes the main contribution to the 
integral over p ,  we presumably have 

since ~ ~ T < E ~ - E - E ' .  
We restrict ourselves to the case 

where y F = p F  lm 1 .  This condition holds over a broad 
range of values of n, and T for neutron  tars.'^.'^ With con- 
sideration of (43), (45), and (46) it is not difficult to obtain 
estimates of the effective values of the variable u ,  the kine- 
matic parameter K ,  and the ratio u l x  (Ref. 1 1 ) :  

Therefore, the effective values of the argument x (34) of the 
Airy functions in (33) are 

x ~ ( u / ~ ) ~ ~ - ( T ~ T ~ ) ~ ~ <  1 .  (48) 

Taking into account (48), from (33) we obtain the following 
approximate expression for the differential cross section in 
(4): 

where we have used XIK-T,.TI@ I and taken 
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We perform the integration over p in (40) by setting 
p = p F  everywhere, except in F given by (44). The remaining 
integral is calculated in a first approximation with respect to 
T / p F e  1 : 

We substitute into (40) the cross section (49), where we 
should set 

Here 0 is the angle between p and H. Then, taking into 
account (50) and ( 4 9 ,  we obtain the luminosity in the form 

Here d R q  is an element of a solid angle in the direction of q, 
x= UPFIT, and y = WIT. The lower limit of the range for y is 
associated with the effective mass m y  of a photon in the 
medium: 

We stress that the expression (51) has an approximate 
character. It was derived with the use of the cross section 
(33) of the elementary process ye+ ea , which was obtained 
for a fixed direction of the incident photon [see (9)]. In the 
general case, in which the angle between k and H is arbi- 
trary, the cross section of the process depends not only on 
the parameters x and K (23) and on f l  and f2 (31), but also 
on three additional parameters:8 

In the calculation of QLC) we neglected the dependence of 
the cross section of the process on the parameters f i  : 

This is possible, if the following conditions hold (compare 
Ref. 8, p. 84): 

In the case under consideration [see (23) and (47), as well as 
(60) below] we obtain the following estimates of the param- 
eters: 

We have noted that the main contribution to QLc) given by 
(51) is made by angles between k and p that are smaller than 
or of the order of mlpF< 1. Consequently, f i - ~ 4 x  for 
i =  1,3,4,5. Therefore, the use of the asymptotic form of the 
spectrum d a l d u  (49) following from (33) in (40) gives only 
an estimate of Q:" 

We took into account the influence of the medium (a 
dense, highly degenerate electron gas) on the propagating 
photon fairly roughly by introducing a photon mass in (52), 
but we neglected the variation of the dispersion law, as well 
as of the electron propagator. We note that the motion of a 
photon in a magnetized gas was investigated in detail in Ref. 
15. To obtain an estimate we identify m y  with the plasma 
frequency w,, in a highly degenerate relativistic gas (see, for 
example, Ref. 16): 

Then, for the integral over y in (51) we obtain the estimate 
(under the assumption y o< 1) 

The remaining integrals reduce to tabulated expressions: 

where the numerical coefficient A is 

For applications we represent the result (56) in the "astro- 
physical" form: 

where H I 3 = ~ ( 1 o i 3  G ) - I  and T ~ = T ( ~ O ~  K)-I. 

6. We compare the axion luminosity (57) with the neu- 
trino synchrotron luminosity ( e - t e  + v+ obtained in Ref. 
14 for the same conditions: 

Assuming Q:"< Q,, from (57) and (58) we find the upper 
bound on the axion-electron coupling constant: 
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For the outer layers of a neutron star we have'0914 
n e -  1030-1037 ~ m - ~ ,  T-  1 0 ~ - 1 0 ' ~  K, and H- 1 0 ' ~ - 1 0 ' ~  G. 
As in Ref. 1 1, we assume 

Then the basic parameters [see (43), (46), and (53)] take the 
following values: 

The conditions for the applicability of Eq. (57) are now sat- 
isfied. With consideration of (60), we obtain the following 
upper bound from (59): 

which is consistent in order of magnitude with the bound (1) 
obtained in Ref. 7 from an analysis of axion synchrotron 
radiation, as well as with the bound a U 5 0 . 5 X  or 
g,,= ( 4 ~ c u , ) " ~ s 2 . 5 ~  lopi3,  which was found in Ref. 9 for 
the conditions of red giants. 

We compare the efficiencies of the Compton and syn- 
chrotron mechanisms of axion emission in neutron stars. In 
Ref. 7 for the axion synchrotron luminosity we obtained 

Using this value and (57), we find 

for the values of the parameters in (60), i.e., under these 
conditions the Compton mechanism is an order of magnitude 
more efficient than the synchrotron mechanism. We stress 
that although the process ye-+ea also takes place in the 
absence of a field, under the conditions of a neutron star the 
influence of the magnetic field is decisive: the spectrum 
du ldu  given by (49) differs significantly from the free spec- 
trum ( 3 9 ,  leading to a strong dependence of QLC) in (57) on 
the field intensity. 

On the other hand, the bound (1) was obtained from 
n, = ~ m - ~ ,  T= lo8 K, H = lo i2  G [compare (60)l. Un- 
der such conditions we have w, = 4 X 1 o9 K, i.e., w, l T 9  1 .  
Therefore, at sufficiently low temperatures the Compton con- 
tribution is suppressed relative to the synchrotron contribu- 
tion by the exponentially small factor [see (51)-(53)] 
exp(- w,/Tj. 

In conclusion, we obtain a bound on the axion mass 
mu within the Dine-Fishler-Srednicki-Zhitnitsky (DFSZ) 
model,3 which relates mu to g, ,  by the expression399 

where cosp is a model-dependent parameter (cosp= 1 is usu- 
ally assumed for estimates). 

Substituting the estimate (61) into (62), we find the up- 
per bound on the axion mass 

which is consistent with the bound found in Ref. 9 
m a 5 9 X  10-~cos~/3  eV, as well as with the estimate 
nza5 eV obtained in Ref. 11 from an analysis of the 
Primakoff effect. 

We note that the result (1) (Ref. 7) corresponds to a 
more stringent bound on the mass: 

Thus, under the conditions of neutron stars the synchro- 
tron and Compton mechanisms of axion emission compete 
with one another: at sufficiently low temperatures (T-4  w,) 

the synchrotron mechanism predominates, while at T 2  w, 
the Compton mechanism prevails. The bounds on the axion- 
electron coupling constant and the axion mass obtained from 
an analysis of the contributions of these processes to the 
axion luminosity are consistent with the bounds found for 
other conditions. 
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