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1. INTRODUCTION 

A mathematically correct quantization procedure for the 
theory of gravitation in four-dimensional space-time which 
was derived on the basis of dynamic quantization is pre- 
sented in this paper. The dynamic quantization method that 
we developed has been successfully applied to the theory of 
gravitation interacting with a Dirac field in 
( 2  + 1 )-dimensional space. Regularization, which conserves 
the general covariance of the theory, has been performed, 
and a perturbation theory has been d e ~ i s e d . ' , ~  The reasoning 
behind the dynamic quantization method is Dirac's theory 
for the canonical quantization of systems with constraints, 
particularly generally covariant systems. 

Let us briefly describe the essence of dynamic quantiza- 
tion. As we know,3 in generally covariant theories the Hamil- 
tonian is an arbitrary linear combination of the constraints 
,yn of the first kind. If 1 .  4) is some physical state, then 

/d)=O. Let 1.11 ) = a + l .  4) be another physical state, 
where a +  is a creation operator. Since the Hamiltonian an- 
nuls all physical states, [ x ,  , a + ] = O .  We assume that the 
theory has an infinite number of creation ( a ; )  and annihila- 
tion ( a N )  operators that convert some states into others and 
exhaust all the local physical degrees of freedom in the sys- 
tem. All the operators { a N  ,a;}  are integrals of motion, since 
they commute with the Hamiltonian. Hence it follows that 
any set of operator pairs { a N  ,aNf}" can be regarded as a set 
of second-class constraints in the Dirac sense.' This fact cre- 
ates the possibility, in principle, of performing regularization 
in the theory under consideration. This technique for per- 
forming regularization is the basis of the dynamic quantiza- 
tion method. The system is regularized by imposing an infi- 
nite series of second-class constraints 

tions of motion conserve their classical form (see Sec. 4), 
which signifies conservation of the general covariance in the 
regularized theory. This fact plays a significant role, since 
the equations of motion underlie all the calculations in the 
regularized theory in the dynamic quantization method. In 
addition, by leaving only a "small" number of physical de- 
grees of freedom and states in the theory, we obtain a fun- 
damentally new possibility for developing a perturbation 
scheme with respect to the number of degrees of freedom. 

Without attempting to perform a complete survey of the 
other approaches to the canonical quantization of gravitation 
theory, let us focus our attention on the results of one of the 
most rapidly developing ones, which can be represented by 
Ref. 4 (see also the references therein). The possibility, in 
principle, of correct nonperturbative quantization has been 
established within the technique for quantizing gravitation 
developed in Ref. 4. The physical states of the theory are 
subject to explicit description and form a normed space. A 
theory of linear operators, which include first-class con- 
straints or the Hamiltonian, has been devised in this space. 
The problem of const~vcting physical states that annul the 
EIamiltonian has been solved. In this case the commutation 
relations between the constraints do not contain undesirable 
Schwinger terms. This filled us with enthusiasm, since, in 
our opinion, the correctness of our method, which leads to 
the same general results, has been indirectly confirmed. 

The dynamic quantization method was devised using the 
principles of canonical quantum theory. Therefore, the ma- 
chinery for classical Hamiltonian mechanics must first be 
developed in the theory under consideration to apply it. This 
problem is solved in Sec. 2. Section 3 presents the formal 
derivation of the quantum theory. Since formal quantization 
is mathematically incorrect in gravitation theory, the presen- 
tation in this section has an heuristic character. A logically 
and mathematically correct systematic quantum theory of 

Thus, only a finite number of degrees of freedom corre- gravitation is devised in Sec. 4. Section 5 proposes an itera- 
tive procedure for solving the Heisenberg equations that cor- sponding to the operators a ;  and a N  with I N I  <No  remain in 
responds to the dynamic method. 

the theory. The finite set of remaining operators { a N  ,a;}'  
corresponds to a set of physical states that adequately de- 
scribe the system under study. As a result, each Poisson 

2. CANONICAL FORMALISM 

bracket is replaced by a corresponding Dirac bracket. It is Let us consider the action of four-dinlensional pure 
critically important that under such regularization the equa- gravitation in the Palatini form: 
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R;;= apwZb- W;,wp,h- w" wg "Kb. " 
Here the e; are tetrads, so that g,,= vabe>by is a metric 
tensor in the local coordinates x"=(xO,xi); 
p, v, . . . = 0,1,2,3 are the coordinate indices; 
a,b,c, . . . = 0,1,2,3 are the local Lorentzian indices; 
vUb= diag( 1,- 1,- 1,- 1) is the Lorentzian metric; and 

-a? is a connection in the orthogonal reference 
frame e; so that the covariant derivative of the vector 
tu= e:tfi has the form 

vPp= d p p +  wZbtb. 

Furthermore, &pvXp(.50'23= 1) and &abcd(&0123= 1) are to- 
tally antisymmetric unit pseudotensors belonging to the co- 
ordinate and Lorentz reference frames, respectively. 

Let us proceed to devising a canonical formalism for the 
Palatini action (2.1) in a form that is convenient for our 
purposes. This problem has been treated repeatedly in the 
canonically conjugate variables wyb and 

(see, for example, Ref. 5). The dot indicates the derivative 
with respect to the time t=xO. However, because the system 
(2.1) contains second-class constraints, the Poisson brackets 
in the variables {wyb ,.P Lb} are very complicated. In addi- 
tion, the equations of motion and the constraints are quite 
cumbersome in these variables. On the other hand, both the 
equations of motion and the constraints appear exceptionally 
simple in the variables {myb ,ejc). This circumstance is ex- 
tremely important to us, since the equations of motion play a 
major role for calculations in the dynamic quantization 
method. Another reason for preferring the tetrad-connection 
variables is that the property of supersymmetry is formulated 
in just these variables in the theory of supergravitation. 
Tnerefore, it seems more efficient to us to develop a Hamil- 
tonian formalism in the variables {myb ,ef}, which have a 
direct physical meaning. 

By definition, 

where q denotes the generalized coordinates. In our case the 
Hamiltonian has the form 

Here V,e';= ape',+ wibeh,, and wtjh and e; are arbitrary 
functions, which play the role of Lagrange multipliers. We 
represent the action in the form 

From the condition SA=O we find two equations for 
and i f :  

Equation (2.6) has a solution only under the additional con- 
dition 

where gikgkj= a i .  Equation (2.7) should be regarded as a 
second-class constraint. This is seen from the fact that the six 
equations (2.7) reduce the number of independent variables 
wyb(x) at each point x from 18 to 12. The number of inde- 
pendent variables ey(x) is also equal to 12. From (2.6) under 
the condition (2.7) we find 

In addition, the constraints xab=O and Eq. (2.7) give 

As we know, a connection can be uniquely expressed on the 
basis of Eqs. (2.8) and (2.9) in terms of tetrads and their 
derivatives. Equation (2.5) defines dab to within the term 
~ ~ ~ ~ e i e f s ~ ~ ,  sij=sji .  The equations of motion can ultimately 
be determined after requiring conservation of the constraint 
(2.7) in time. We write out the equations of motion for a 
connection: 

u bl-r) + ?el ei eo e C j k & , k ~ e ~ ~ f f  mod (x,b, +r). (2.10) 

Here and in the following &a=-g-l&ubcde:e$e~, 
g=det gij ,  and (a b) (or [a  b]) denotes symmetrization 
(or antisymmetrization) with respect to the pair of indices in 
the brackets. 

We note that Eq. (2.10) and the constraints +,=O are 
contained in the equations 

According to the definition of a Poisson bracket, the 
equations of motion (2.8) and (2.10) can be written in the 
form 

Here [ . . . , . . . ] is the Poisson bracket of A and H, and A is 
any function of the dynamic variables. 

Equations (2.5) and (2.6), as well as the condition 
[ e Y ( x ) , ~ j ~ ( ~ ) ] = O ,  uniquely specify the following Poisson 
brackets: 
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More lengthy calculations are needed to find connection- 
connection Poisson brackets. Since connection-connection 
Poisson brackets will not be used explicitly below, they are 
not written out here. 

To complete the description of the Hamiltonian formal- 
ism, we show that with consideration of the second-class 
constraints (2.7) xab and 4, are first-class constraints. 

It follows from (2.3), (2.8), and (2.10) that the xub(x )  
generate local Lorentz transformations at the point x. In par- 
ticular, 

Any vector quantity has a Poisson bracket with xUb similar 
to those written out. Therefore, the equation of motion for 
xUb has the form 

Thus, 

Differentiating the curvature tensor (2.1) with respect to 
the space-time coordinates, we find 

where 

Next, differentiating Eqs. (2.8) and (2.9) and utilizing 
(2.14), we obtain 

The relations (2.15) indicate that the Bianchi identities 
hold in the canonical formalism. 

We now establish that 

Equations (2.14) and (2.16) indicate that x,b and 4, are 
first-class constraints. From the definition of the 4, we have 

The last equality is based on Eq. (2.8) and the identity 
(2.15a). Using (2.9) and (2.15), we represent the right-hand 
side of (2.17) up to terms containing xUl, or (6, in the fol- 
lowing manner: 

The quantity in the square brackets in (2.18) can be written 
in the form SgISe :  which is equal to zero by virtue of the 
equations of motion. The equality (2.16) is thereby estab- 
lished. 

3. FORMAL QUANTIZATION 

When we go from classical to quantum mechanics, the 
classical Poisson bracket must be replaced by a quantum 
bracket. It is usually assumed that the quantum Poisson 
brackets for fundamental variables differ from the classical 
analogs only in the multiplier i, which appears on the right- 
hand sides of (2.12) and (2.13) in our case. The Heisenberg 
equations i A = [ A , H ]  for the variables er and wqh maintain 
their classical form to within the arrangement of the opera- 
tors. 

It follows from transposition relations like (2.12) and 
(2.13) that the set of variables {ep(x)}  is a complete set of 
commuting variables. The possible values of these variables 
satisfy the condition 

We write out the formula for a connection operator. 
Since a formal quantum theory is considered in this section, 
the question of correctly ordering the operators in the equa- 
tions presented here is meaningless. Using the classical Pois- 
son brackets (2.12) and Eq. (2.7), we find 

X { g i j e d k - g j k e d i - g i k e d j > -  (3.1) 

Here the operator field .rrl(x) satisfies the commutation rela- 
tions: 

The second term in (3.1) is uniquely specified by Eq. (2.7). 
We now move on to the solution of the problem of find- 

ing the conserved operators that embody all the physical de- 
grees of freedom of the system. 

In generally covariant theories it is also reasonable to 
refer to conserved operators as gauge-invariant operators. It 
is far more convenient to solve the problem posed of deriv- 
ing complete sets of gauge-invariant operators axiomatically, 
as was done in Ref. 2 during the quantization of gravitation 
in three-dimensional space-time. 

We introduce the following natural hypotheses or axi- 
oms regarding the structure of the space F of physical states 
of the theory. 

Axiom 1. All the states of the theory that have physical 
meaning are obtained from the ground state 10) using the 
boson creation operators a; : 

a,! 0) = 0. 

The states (3.3) form an orthonormalized basis of the space 
F of physical states of the theory. 
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The numbers n I , . . . ,ns take positive integer values and 
are called occupation numbers. 

Axiom 2. The states (3.3) satisfy the conditions 

Axiom 3. The state ey(x)ln ,Nl ; . . . ;ns ,N,y)  contains a 
superposition of all the states of the theory, in which one of 
the occupation numbers differs in absolute value by unity, 
while the others coincide with the occupation numbers of the 
state (3.3). 

Here the operators a; and their conjugates a N  have the 
usual commutation properties: 

For the case of interest to us of a compact x space without 
the generality restriction it can be assumed that the index 
N, which labels the creation and annihilation operators, be- 
longs to a discrete finite-dimensional lattice. A norm is easily 
introduced into the space of indices. 

It follows from (3.3) and (3.4) that 

where the Hamiltonian operator H is assigned according to 
(2.3). 

Thus, the gauge-invariant operators of interest to us have 
been formally indicated. They comprise the set of annihila- 
tion and creation operators {aN ,a;), which exhaust all the 
physical degrees of freedom of the system. We note that the 
commutation relations (3.6) are a consequence of the general 
covariance of the theory. A set of operators with the proper- 
ties (3.6) that exhausts the physical degrees of freedom of the 
system does not exist in the other theories. 

We present some consequences of Axioms 1-3. 
Let I N ) = u ; ~ o ) .  It follows from Axiom 3 that 

Here the fields e i i (x)  are linearly independent and do not 
contain creation and annihilation operators: 

Since the operator ey(x) is Hermitian, the following expan- 
sion exists as a consequence of (3.7): 

The field T r ( x )  does not contain the operators U N  and a; in 
the first power, but it contains a zeroth-order contribution 
with respect to these operators, which we denote by e:(O) 
x (XI. 

Information regarding the configuration of the fields 
e;,(x) can be obtained by studying the matrix elements of 
several invariant operators relative to the states (3.3). For 
example, let us consider the quantity V =  $r13x fi, which 
is invariant with respect to pelmutations of the coordinates in 

three-dimensional space. The expression on the right-hand 
side of (2.8) is known to give the variation of a tetrad in 
response to infinitesimal variation of the coordinates. On the 
other hand, the right-hand side of (2.8) is equal to the Pois- 
son bracket of a tetrad and the Hamiltonian. Since the Hamil- 
tonian annuls physical states, we have 

This equality readily yields the relation 

which is valid for any field P ( x ) .  
To proceed further, we assume that Heisenberg tetrad- 

connection fields can be represented in the form of formal 
series in the operators a, and a; For tetrad fields the begin- 
ning of this expansion is assigned according to (3.9). For a 
connection operator the naturalness of this hypothesis fol- 
lows from Eq. (3.1). We use wyh(0)(x) to denote the zeroth- 
order (in the operators a N  and a:) contribution to the con- 
nection. This contribution can be expressed in terms of the 
fields ef(O)(x) using (2.8) and (2.9). 

Now, from (3.10) we obtain the conditions for the fields 
e$; : 

The superscript (0) means that all the operators and fields 
bearing it depend only on the zeroth approximation of the 
tetrad fields eY(O) and the connection fields wYb(O). 

We use ey(S)(x) and wyb("(x), where s=0,1 , .  . . , to 
denote the contributions that are of order s with respect to 
the creation and annihilation operators to the tetrad and con- 
nection fields, so that 

Here the creation and annihilation operators are normally 
ordered. There are similar formulas for a connection field. 
All the information on the evolution of the system with time 
is contained in the fields e i I  , Nsj(x), w , , ,;(x), etc. 

( s  = 0,1, . . . ). The set of these fields is denoted by (x).  
The group of motions or the gauge group (a set of expo- 

nential functions of the Hamiltonian) is denoted by .'$. This 
group acts in the space of the fields (x). The Lie algebra 
of the group .'6 is the set of operators {,yuh(x),+,.(x)}. The 
operators ,yLlb(x) and +,(x) are first-class constraints in the 
Dirac sense [see (A7)]. Therefore, they can be represented as 
vector fields on :G, whose components depend in the general 
case on @, , (x). 
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The group F'contains the subgroup G of local Lorentz 
transformations, which can easily be described. Let the ma- 
trix field s : ( ~ )  satisfy the condition 

The group formed by the set of elements {S: (x ) )  is denoted 
by G. Each element of G corresponds to a transformation of 
the tetrad and connection fields: 

The operator 

is a right-invariant vector field on G,  which transforms the 
point Sg(x) to an infinitely close point S:(x)  
- w;l,(x)S;(x).  

The vector field on .F corresponding to the operator 

generates the next displacement of the tetrad fields [see (2.3) 
and (2.8)]: 

Now it is not difficult to represent the field & x ) ,  which 
is conjugate to the tetrad field ey(x)  [see (3.2)], in the lowest 
approximation with respect to the operators a$ and a N .  For 
this purpose we must supplement the set of the fields 
e$ , (x )  in (3.9) to obtain the complete orthonormalized set 
{ e c i ( x ) ) .  This gives 

where ~ ; ) M N =  0, if M # N, and TNN= 1 or - 1 for a space- or 
time-like field e i i ,  respectively. Here is a normalization 
factor, which has the dimensions of length. Besides the or- 
thonormality condition (3.13) there is a completeness condi- 
tion: 

The set of the operators a; and aN should also be supple- 
mented so that the commutation relations (3.5) are replaced 
by the commutation relations 

Taking into account Eqs. (3.9), (3.14), and (3.15), we obtain 
the following representation for the operator 71-: 

The second term in (3.16) is a vector field on F, so that 

It is seen from Eqs. (3.1), (3.9), and (3.14)-(3.17), first, 
that to lowest order in the operators a s  and aN the tetrad and 
connection fields satisfy the quantum Poisson brackets (2.12) 
and (2.13) and, second, that the connection fields, like the 
tetrad fields, contain all these operators in first order with 
respect to a: and a, .  

In the approach described at the end of this section [be- 
ginning from Eq. (3.13)] the tetrad and connection fields 
clearly have more degrees of freedom than are necessary on 
the basis of kinematic arguments. In fact, besides the degrees 
of freedom that correspond to the gauge group Y and are 
included in the fields Qi l . (x ) ,  there is an overfull system of 
degrees of freedom that are included in the set of all the 
creation and annihilation operators. However, this is not a 
problem, and it even facilitates further progress for the fol- 
lowing reasons. First, all these creation and annihilation op- 
erators are gauge-invariant, and, second, when regularization 
is performed, almost all the creation and annihilation opera- 
tors are eliminated, and only the "minimum" necessary 
number of operators remain. On the other hand, the gauge 
group remains unharmed. 

The presence of extra degrees of freedom above the ki- 
nematically required number in the tetrad and connection 
fields is similar to the analogous phenomenon in a more 
common example. Consider any gauge theory containing a 
Dirac field @. The gauge group transforms the Dirac field 
according to the formula @ ( x )  -+ S ( x )  @ ( x ) .  Therefore, it can 
be assumed that the field @ contains the degrees of freedom 
of the gauge group S ( x )  in addition to the kinematically 
required fermion degrees of freedom. 

We now have all the necessary tools to devise a regular- 
ized theory. 

4. REGULARIZATION 

The presentation in the preceding section had a formal 
character, since divergences were not taken into consider- 
ation. The formulas written out in Sec. 3 have a heuristic 
character. In this section we perform regularization and 
thereby impart strict meanings to all the operators and equa- 
tions used. 

The commutation relations (3.5) and (3.6) are important 
because any set of pairs of the operators aN and a: can be 
treated as a set of second-class constraints according to 
~ i r a c . ~  This makes it possible to perform regularization in 
the following manner. 

We identify a finite set {aN ,a:)' of pairs of annihilation 
and creation operators and number them in such a manner 
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that IN1 < N o .  Operators from the set { a N  ,a;)' satisfy the 
commutation relations (3.5). Since physical information is 
contained in the wave functions eg i (x ) ,  this choice is actu- 
ally determined by the choice of the set { eg i (x ) } '  of linearly 
independent wave functions corresponding to the step of op- 
erators { a N  ,a ; } ' .  The choice of the functions in { eg i (x ) } '  is 
determined by the physical conditions of the problem. For 
example, if the x-space is a torus, periodic traveling waves, 
whose wave numbers are restricted in absolute value, can be 
taken as the wave functions of this set. Such a choice of 
{ eg i (x ) ) '  corresponds to the problem of gravitational waves. 

Regularization of the theory involves equating to zero all 
the pairs of creation and annihilation operators except the 
selected pairs, i.e., all the pairs with IN(>N0 

An infinite system of second-class constraints is thereby im- 
posed. As a result, the commutation relations (2.12), (2.13), 
etc., should be replaced by the corresponding Dirac commu- 
tation relations, and the regularized equations of motion 
should be investigated. 

Let us prove an important theorem for our method, 
which imparts meaning to the entire dynamic quantization 
procedure. 

Theorem: Imposition of the second-class constraints 
(4.1) does not alter the forms of the Heisenberg equations 
and conserves their classical character. 

Proof: Let 1 .  /d l) ,  I . ,  1 "), . . . be the basis vectors (3.3) 
constructed using the restricted set of operators { a N  ,a ; } ' ,  
and let F' be a Fock space with these basis vectors. The 
imposition of constraints (4.1) means that the space of physi- 
cal states F is confined to the regularized subspace F ' C F .  
Only the matrix elements of the form (. /dtIA/. 1 ") are con- 
sidered for any operator A in the regularized theory. There- 
fore, the matrix elements of the quantum Dirac bracket') of 
A and B corresponding to the constraints (4.1) are repre- 
sented in the form 

According to the definition of a quantum Dirac bracket, the 
operators aN and a$ with I N [  > N o  contained in the operators 
A and B from (4.2) are normally ordered and then set equal 
to zero. The Poisson bracket [ A , B ]  is formally distinguished 
from the Dirac bracket (4.2) by the fact that in the calculation 
of the matrix elements (. /dlIIA,B]I. 1 ') using a formula 
similar to (4.2) the summation is carried out over all the 
intermediate states (3.3). We assume that the operator B is 
diagonal in the basis (3.3) and does not depend on the op- 
erators a N  and a;  with INI>N,. Then it is seen from (4.2) 
that 

if we set a N =  0 and a;  = 0 for I N [  > No in the matrix ele- 
ment on the right-hand side of (4.3). Now, we need only note 
that all the operators of the occupation numbers nN=a;aN 

commute with the Hamiltonian of the theory according to the 
axioms introduced. Moreover, because of the commutation 
relations (3.6) the Hamiltonian does not depend on the op- 

+ erators a N  and a,,, Therefore, the Hamiltonian H can be 
substituted for the operator B.  This implies the validity of the 
theorem. 

There is also a classical variant of this theorem. 
Theorem. Imposition of the second-class constraints 

(4.1) does not alter the classical form of the Hamilton equa- 
tions for the remaining degrees of freedom. 

To prove it we write out the formula for a Dirac bracket 
in the classical theory. 

Let {x,}  and { K , )  be finite or infinite sets of first- and 
second-class constraints, respectively. By definition, this 
means that 

Following Dirac, we use the symbol - to denote equality 
with respect to the absolute values of the terms containing 
K,  or x, .  We note that the matrix c,: in (4.6) is a nonde- 
generate matrix, which depends in the general case on the 
dynamic variables. The Hamiltonian H of the system is a 
first-class quantity: 

In the classical theory the Dirac bracket of any two quantities 
is defined by the formula 

It is obvious that for any 5 and K,  we have 

Hence it follows that the second-class constraints K ,  can be 
set equal to zero before the Dirac brackets are calculated. As 
a consequence of (4.8) and (4.9), we have the weak equality 

The weak equality (4.10) means that the equations of motion 
obtained using the Poisson brackets and the Dirac brackets 
essentially coincide. 

According to (3.6), the weak equalities (4.5) and (4.8) 
transform into strong equalities within our method. There- 
fore, it follows immediately from (4.9) that [( ,HI = [ t , H ]  * 
for any 5. This means that the theorem is correct. 

Corollary. The regularized theory is generally covariant. 
In fact, this follows directly from the theorem just 

proved. The equations of motion which the fields ey (x )  and 
wyh(x) obey in the regularized theory coincide in form with 
the classical equations of motion, which are generally cova- 
riant. The corollary is thereby proved. 

Precisely because the regularization is ideally matched 
to the dynamics of the system in the method employed, we 
called this quantization method dynamic. We again note that 
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the regularization does not in any way affect the gauge 
group, which remains the same in the regularized theory as it 
was in the classical theory. 

To conclude this section we present a more abstract pro- 
cedure for solving our problem. Although this procedure is, 
perhaps, less natural, it has great logical harmony and sim- 
plifies the calculations, since only regularized quantities are 
treated within it. 

The basis of this approach is ab initio. 
Proposition. The theory is regularized in such a manner 

that the following axioms hold. 
Axiom R1. All the states of the theory having physical 

meaning are obtained from the ground state 10) by means of 
the creation operators a; with (N(<No: 

The states (4.1 1) form an orthonormalized basis of the space 
F' of physical states of the theory. 

Axiom R2. The states (4.1 1) satisfy the conditions 

Axiom R3. The dynamic variables e p ( x )  transfer the 
state (4.1 1) into a superposition of states of the theory like 
(4.1 l), which contains all the states in which one of the oc- 
cupation numbers differs in absolute value by unity, while 
the remaining occupation numbers coincide with the occupa- 
tion numbers of the state (4.1 1). 

Axiom R4. The equations of motion and the constraints 
for the physical fields e : ( x )  and o y b ( x )  coincide in form 
with the corresponding classical equations and constraints to 
within permutations of the operators. 

Axioms R1-R3 are analogs of Axioms 1-3 in the un- 
regularized theory. Axiom R4 replaces the theorem itself. It 
postulates the correct form of the equations of motion and 
the constraints in agreement with classical mechanics. Since 
it is no longer necessary to derive equations of motion, the 
role of the Hamiltonian is diminished. 

It seems to us that under the quantization approach de- 
scribed here the problem of ordering the operators in the 
equations of motion can be solved in the following manner. 
We use the single symbol @ ( x )  to denote e f ( x )  and 
wYb(x) and the symbol h ( x )  to denote the fields e : ( x )  and 
w g h ( x ) .  The problem of ordering the operators arises in con- 
nection with the problem of establishing the self-consistency 
of the the01-y.~ We write out the Heisenberg equations in the 
general form 

Let us consider the quantity ( S 1 S 2  - S2 S 1 ) @ ,  which we de- 
note by 4 ,  21@.  A necessary condition for self-consistency 
of the theory is the possibility of ordering the operators in 
(4.13) so that the following weak equality holds: 

Here the field X [ ,  2] is a bilinear antisymmetric form with 
respect to the fields X ,  and X 2  and, generally speaking, de- 
pends on the field cD. The first-class constraints xUh and 
4, , being vector fields on the group .%, do not contain cre- 
ation and annihilation operators. The latter property is uti- 
lized explicitly in the calculations in the next section. 

5. PERTURBATION THEORY 

In this section we show how the field coefficients in the 
expansion of the tetrad and connection fields in operators 

+ a,,, and a, can be found systematically. This is done first 
without consideration of the quantum corrections (loops). 
Then the result is refined with consideration of the quantum 
fluctuations, which is formally equivalent to expansion in the 
number No.  As is shown below, formal expansion in No is, 
in turn, equivalent to expansion in the dimensionless param- 
eter ( A K ) ~ ,  where A is the cutoff momentum of the theory. 
If the cutoff momentum is much smaller than the Planck 
momentum, then ( A  ~ ) ~ 4  1 . 

The presentation in this section is very schematic. A 
detailed study of perturbation theory and consideration of 
concrete problems using this method should be left for spe- 
cial studies. 

The calculations begin from the zeroth approximation, 
i.e., from e;(O)(x) and opb(0) (x ) .  The tetrad and connection 
fields in the zeroth approximation satisfy the constraints 
(2.8), (2.9), and (2.1 1) and do not depend on the creation and 
annihilation operators. However, in the zeroth approximation 
the tetrad and connection fields are operators on the group of 
gauge transformations F, according to (3.1), (3.16), and 
(3.17). Thus, the fields ep(O)(x) and wpb(O'(x) satisfy the 
equations of motion (2.8) and (2.10), and the constraints 

and &.O), which are composed of these fields, annul the 
single state 10) in the zeroth approximation by definition. 
Using reasoning similar to that used to obtain (3.10), we find 
that (0  I Xbyl 0)  and (01 +;')I 0) do not depend on the operator 
parts of the fields in the zeroth approximation. This means 
that under the matrix elements all fields can be regarded in 

In (4.13) f  is a local function of the fields X ( x )  and @ ( x )  the zeroth approximation as purely classical and as satisfying 

and depends linearly on the field A. By definition, if X is an the equations of motion and the constraints (2.8), (2.9), and 

operator field, it is positioned to the left of @ in the function (2.1 I ) .  

f ( X , @ ) .  According to (4.13), for the arbitrary fields X I and In the first approximation all the quantum states (4.1 1) 

X 2  we have from the regularized space are included in the treatment. The 
tetrad and connection fields are expanded in the first approxi- 

(iiQ,= G t j f ( h i  ,a), i =  1,2. mation in the following manner [see (3.9) and (3.12)]: 
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We note that under our approach the fields e: and w;lh, 
which play the role of Lagrange multipliers, remain numeri- 
cal: 

Substituting the fields from (5.1) into Eqs. (2.8), (2.9), and 
(2.1 1) and taking into account Eqs. (5.2) and the fact that the 
fields ef(') and o:b(0) satisfy all the classical equations, we 
obtain 

u h ( 0 )  d l ) +  2 e ; ( 0 ) ~ ( O ) w a h (  1 )  
E a b t d E ~ ~ k { R ~ j  e k  I J )=O, (5.3) 

E l j r ( ~ ~ o ) e a ( l ) - e ( o )  ~ h ( l )  
I b r a ,  )=O- 

&(o) ~ ( 1 )  + e ; ( 0 ) ~  w u h ( l ) + e c ~ i o )  M ! )  
~ a h c d ~ i j k { ~ O i  e j  0 I o ; O j  }=o, 

(5.4) 

Equations (5.3) are constraints, and Eqs. (5.4) are the equa- 
tions of motion for the tetrad and connection fields. Placing 
Eqs. (5.3) and (5.4) between the bra and ket (01 . . . I?!), we 
find 

Thus, the constraints (5.5) and the equations of motion (5.6) 
break down into individual equations with the assigned num- 
ber N .  The fields e i l  , , , N g i  and the like also have this prop- 

erty, if the quantum fluctuations are not taken into account. 
For example, we have the following analogs of Eqs. (5.5b) 
and (5.6b) for e i l N 2 ;  and w$'N2, 

We note that while Eqs. (5.5) and (5.6) are homogeneous 
with respect to e;, and w $ ,  the equations like (5.7) for 
e i I N 2 ,  and w$N2,  are not. 

The following procedure can be used to solve Eqs. 
(5.5)-(5.8). The homogeneous system of equations (5.5) and 

oh (5.6) must first be solved for e i i  and w,,. Then an inhomo- 
geneous linear system of equations that includes Eqs. (5.7) 
and (5.8) is solved for e i I N 2 ,  and w$', ,. This system of 

I 2  

equations depends on the previously found fields e i i  and 
mi:. Next, this process is extended to the higher fields 
e i l  , , , N,i, etc. If the quantum fluctuations are not taken into 

account, the equations obtained are inhomogeneous linear 
equations with respect to e:l ,, , N , i ,  etc., which depend on 

the fields found in the preceding steps. 
The number of constraints together with Eqs. (5.5) and 

(5.6) equals 40, and the number of e i i  and wi: sought for a 
fixed N  equals 30. Although the system of equations (5.5) 
and (5.6) has an excessive number of equations, it has non- 
zero solutions. In fact, the equations of motion (5.6) have 
solutions for any values of the fields e t  and w;lh. This is 
obvious for the original equations (2.8), (2.9), and (2.1 I). 
Therefore, the equations (5.5) and (5.6) with respect to e;; 
and o$ obtained from them have solutions. 

The initial conditions (3.1 1) for the fields e i i  at t =  to 

should be used to solve Eqs. (5.5) and (5.6). The field o$ 

can be uniquely expressed in terms of e i i  and iii using Eqs. 
(5.5b) and (5.6b). After this Eqs. (5.5a) and (5.6a) lead to 
linear differential equations that are second-order in e i i .  

It is seen from the normalization condition (3.13) and 
Eqs. (5.5) and (5.6) that the fields e i i  and o$ are propor- 
tional to the gravitation constant K .  Now we can clarify the 
meaning of the multiplication by K' on the right-hand side of 
the normalization condition (3.13). The possibility of satis- 
fying the Poisson brackets (2.13) in the lowest approxima- 
tion with respect to the creation and annihilation operators 
(in the unregularized theory) follows from the expansion 
(5.1) and the proportionality of e i i  and w$ to K .  

Thus, the fields e i i  and w$ are found according to the 
following rule. The fields e i i  and oi! which satisfy the con- 
ditions (3.1 1) at t = t o  and (3.13), as well as Eqs. (5.5) and 
(5.6), are sought. The tetrad and connection fields composed 
from them according to (5.1) (where the summation is car- 
ried out over all N) must satisfy the Poisson brackets (2.13) 
in the lowest approximation. Then the regularized set of 
fields { e i i  ,o;:}' with I N ~ < N ,  is chosen from the entire set 

ub of e i i  and w N i .  
We note that, according to Eqs. (5.7), we have 

Let us briefly consider the question of taking into ac- 
count the quantum fluctuations or loops. 

We use e$) , s = 0,1, . . . , to denote the contributions to 
e;, that correspond to the s-loop contribution. Thus, the 
fields e i i  considered above correspond to e$O) in the new 
notation. 

We find the following equations in the single-loop ap- 
proximation in the same manner that we obtained Eqs. (5.5)- 
(5.8): 

I t  can easily be understood from dimensionality arguments 
[see (5.9)] that the order of the sum in the last equation is 
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( A K ) ~ ,  where A is the cutoff momentum of the theory, i.e., 
the maximum momentum of the regularized system of func- 
tions { e ~ ~ O ) ( x ) ) ' .  The expansion for systematically taking 
into account the quantum fluctuations is performed in the 
dimensionless parameter ( A K ) ~ .  The concept of the "small 
number" of physical degrees of freedom now becomes clear: 
it is a number for which 

The condition (5.11) means that the cutoff momentum is 
much smaller than the Planck momentum. In this case the 
quantum fluctuations can be taken into account using a finite 
perturbation scheme, as was shown above. 

6. CONCLUSIONS 

Thus, we have devised a mathematically correct proce- 
dure for the canonical quantization of gravitation theory. The 
quantum theory devised has the following principal proper- 
ties. 

A. If the x-space is compact, the number of physical 
degrees of freedom is finite. 

B. The Heisenberg equations for tetrad, connection, and 
other fields have the classical form (to within pert~~utations 
of the operators). 

C. The theory derived is generally covariant. 
Unfortunately, we are forced to make a significant res- 

ervation. The mathematical correctness of the theory will be 
established completely only when the problem of ordering 
the annihilation and creation operators in the equations of 
motion is solved. The mathematical correctness of the theory 
claimed in this paper refers to the ultraviolet divergence and 
general covariance problems solved herein. At first glance, 
the problem of ordering the creation and annihi!ation opera- 
tors in Sec. 5 is solved automatically, since the coefficients 
in front of the creation and annihilation operators in the 
equations of motion and the constraints are set equal to zero. 
This produces equations for finding the fields cDv, -. How- 
ever, it also raises the question of the compatibility and cor- 
rectness of these equations. This question calls for a special 
investigation. 

We note that under the nonperturbative axiomatic ap- 
proach the problem of ordering the creation and annihilation 
operators in the constraints does not exist, since the con- 
straints do not depend on these operators in our theory. 
Therefore, the problem of ordering the creation and annihi- 
lation operators is significant only in the equations of motion 
(see the end of Sec. 4). 

We note that the condition (5.1 1) for the existence of the 
perturbation scheme is not a necessary condition for math- 
ematical correctness of the theory. In our opinion, a physi- 
cally intelligible quantum theory of gravitation need not be 
subject to the condition (5.1 1). Nevertheless, it is possible 
that the condition (5.1 1) will be significant in some specific 
problems. 

Although the theory was devised in the case of pure 
gravitation in this paper, the inclusion of matter in the theory 
cannot create fundamental difficulties in dynamic quantiza- 
tion at first glance. In our opinion, the study of supergravi- 
tation is of greatest interest in this respect. It also seems 
promising, because the supersymmetry of the theory is estab- 
lished most easily in the equations of motion, which play the 
main role in the dynamic method. 

*e-mail: vergeles@itp.ac.ru 
"The notation for a Dirac bracket is distinguished from the notation for a 
Poisson bracket by an additional raised asterisk. 
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