
Model-independent description of the dl and d3He systems near low-energy 
resonances 

v. S. Popov 

Institute of Theoretical and Experimental Physics, 11 7259 Moscow, Russia 

B. M. Karnakov and V. D. Mur 

Moscow Engineering-Physics Institute, 115409 Moscow, Russia 
(Submitted 30 January 1996) 
Zh. ~ k s ~ .  Teor. Fiz. 110, 1537-1556 (November 1996) 

An expansion of the effective radius is employed in a model-independent description of the dt 
and d3He systems in the vicinity of the low-energy 5 ~ e * ( 3 / 2 + )  and 5~ i* (3 /2+)  
resonances. The Coulomb-nuclear scattering lengths (a,,$) and effective radii (r,,) for states with 
orbital angular momentum I =  0,  as well as the astrophysical function s(E), are extracted 
from existing experimental data for the cross sections of the nuclear fusion reactions d r+na  and 
d3He-tpa in the vicinity of the resonances (data on elastic d t  and n a  scattering are also 
employed in the case of the d t  system). Extensive use is made of the generalization of the 
Schwinger-Smorodinskil equation for the effective radius to the case of potentials with a 
Coulomb barrier. A bound is established on the value of the Coulomb-nuclear effective radius 
rj'") with an arbitrary value of the orbital angular momentum I, which does not depend 
on the specific form of the strong potential V,(r). Numerical calculations of the form factors P 
and Q appearing ir! the expansion of the effective radius are performed for different 
models of V,(r), and the problem of the stability of the results obtained toward possible variations 
of the form of the strong interaction is discussed. The analytic structure of the scattering 
amplitude near the elastic threshold is investigated in the presence of absorption, i.e., open reaction 
channels, in the system. Two series of Coulomb poles in the complex k plane, which 
converge near the elastic threshold (k=O), are found for the d t  scattering amplitude. O 1996 
American Institute of Physics. [S 1063-776 1 (96)OO 1 1 1-41 

1. INTRODUCTION distorted at short distances by the strong interaction (particu- 
larly in the theory of p p  ar.d K = a  a t ~ r n s ' ~ - ' ~ ) .  

The resonant nuclear reactions dr+n a + 17.59 MeV As a rule, we shall henceforth use the Coulomb units 
and d 3 H e 4 p a +  18.35 MeV, which have large energy re- ?i=m=aB= 1 ,  where m is the reduced mass and a~ is the 
leases, play an important role in nuclear physics (including Bohr radius of the system. 
thermonuclear fusion and ,u catalysis), astrophysics, etc. The 
cross sections of these reactions in the vicinity of the 
s-wave 5~e* (3 /2+)  and 5~i*(3/2+) resonances have been 

2. LOW-ENERGY COULOMB-NUCLEAR PARAMETERS 

measured with extremely high accuracy,'-4 making it pos- The expansion of the effective radius for particles of like 
sible to perform a detailed analysis of the d t  and d3He sys- charge has the form - 
tems using an expansion of the effective radius. In these 
systems the resonance wave (1=0, ~ ' = 3 / 2 + )  dominates 2.rrDc( q)cott3,,(k)+2h(~)= a(k2)-iP(k2) 

both in elastic scattering and in the fusion reaction and 
largely determines the reaction cross section a , ( E )  . As was 
shown in Refs. 5 and 6, the elastic scattering amplitude for 
slow charged particles (as opposed to neutral particles) can 
be reconstructed, in principle, from experimental data for the 
reaction cross section in the region of a low-energy reso- 
nance. This makes it possible to find the Coulomb-nuclear 
parameters a,, and r,, and to perform a reliable extrapola- 
tion of the cross section u,(E) to the region of small energy 
values E S  10 keV, which plays a significant role in physical 
applications. Direct measurement of the reaction cross sec- 
tion at small energies is extremely difficult because of the 
exponentially small permeability of the Coulomb barrier. 

We use a model-independent approach, based on an ex- 
pansion of the effective radius:-'2 previously developed in 
the theory of systems with a Coulomb attraction potential 

where 1 = 0, p(k2) 2 0 hold [from the unitarity condition, see 
Eqs. (4)-(6) below], 

a ( k 2 ) = ~ o + a l k 2 + ~ Z k 4 +  . . . , 

p(k2)=po+p,k2+ ..., 

S,,(k), u , . , ~ ,  and r,., are the Coulomb-nuclear phase of the 
scattering amplitude, scattering length, and effective radius, 
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P and Q are the form factors, k= m, E is the energy in the 
center-of-mass system, v= llkaB is the Sommerfeld param- 
eter, 

+(z)=I"(z)lI'(z), T(z) is the gamma function, and 
Dc(v) is the permeability of the Coulomb barrier. 

Since the threshold energies of the nearest open channels 
(A= 17.59 and 18.35 MeV for the fusion reactions under 
consideration) and closed channels (A = - 2.22 and - 1.46 
MeV for the t(d,pn)t and 3 ~ e ( d , 2 p )  reactions) signifi- 
cantly exceed the energies of the 5 ~ e *  and 5 ~ i *  resonances, 
the expansion of the effective radius is applicable in the reso- 
nance energy range (E,-50 and 200 keV, respectively, for 
d t  and d 3 ~ e  scattering). Due to the presence of the open 
channels, i.e., absorption in the system, the low-energy pa- 
rameters (3) are complex. 

The resonance s wave plays the dominant role in both 
elastic scattering and the fusion reaction. Confining our- 
selves to its contribution, from the unitarity condition for the 
fusion reaction cross section we obtain 

where 

0-0 = argr( 1 + i 7) is the Coulomb phase of the s scattering 
amplitude, 

and s(E) is the astrophysical function: 

(we note that our definition of the astrophysical function dif- 
fers from that used in Refs. 1 and 2; see Appendix A). De- 
scribing the experimental data in Refs. 1 and 2 by this ex- 
pression, we obtain a series of sets of low-energy parameters 
for the d t  system (see Table I; the quality of the fit is illus- 
trated by Fig. 1). When the ai and Pi are calculated, the 
results of Ref. 16 on elastic dt scattering are also included in 
the treatment. This, however, does not significantly alter the 
low-energy parameters (compare the set of parameters cor- 
responding to ao=0.238 in Table I with the last row, which 
were obtained without consideration of the results in Ref. 16; 
the difference between the values of X2 is associated with the 
low accuracy of the elastic scattering data). It is noteworthy 
that we set the form factors P and Q equal to zero in (I), 
since their consideration is beyond the range of accuracy of 
the approximation used (for further details, see Appendix A). 
We also stress that it becomes possible to extract the low- 
energy parameters from experimental data on the fusion re- 
action cross section owing to the interference between the 
nuclear and Coulomb interactions. 

FIG. 1 .  The astrophysical function s(E)  for the fusion reaction dt-nu.  
The solid curve was calculated from Eq. (6) using the parameters in Table 
11; the experimental points were taken from Ref. 1 (filled circles) and from 
Ref. 2 (+). 

As is seen from Table I, the consistent variation of all 
four parameters ai and pi (i=O, 1) scarcely alters the value 
of X2 (x2< 1 for 0.22< a,< 0.32). Therefore, additional I )  

criteria are needed to select the low-energy parameters. For 
this purpose, we examine some properties of the effective 
radius r,, for charged systems. 

3. BOUNDS ON r,, IN THE RESONANCE CASE 

The effective radius r,, can be expressed in terms of the 
real wave function2) cpl(r) = rRl(r,k= 0)  with zero energy: 

where 

p2'+ ' 
S I ( ~ ) =  22/(21)! K21+ I(P) ,  

TABLE I. Low-energy parameters of  dt systems obtained by fitting the 
cross sections for dt-nu fusion and elastic scattering. 

- 
f fo p 0  lo2 p , .  lo3 S ( O )  R x2 
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with p =  JG and K,(p), and I,(p) are Bessel functions 
of imaginary argument. The function cpl(r) is normalized by 
the asymptotic condition 

,-l+ l 
I -  T + ~ N ,  

a /  
(9) 

so that the integral in (7) converges (here and in the follow- 
ing r, denotes the characteristic radius of action of the 
nuclear forces). At the instant when an 1 level appears we 
have 

where 

(the exponential decay of the wave function at infinity is due 
to the Coulomb barrier). In this case Eq. (7) is simplified 
significantly: 

where 

1 / 41+3 

(cO= 1 ,  c1=0.509, etc.); h ~ r e  and in the following quantities 
referring to the instant when the level appears are marked 
with a tilde. 

We make several remarks regarding Eq. (1 I). 
1) When the Coulomb interaction is "turned off" 

(a,+m), we have p-0 and t ( 0 ) -  ~ ( 0 ) =  1 ,  and (1 1) takes 
the formk7 

where, according to (9), the function x l ( r )  is normalized by 
the condition ,yo(')= r-I when r t w .  

2) As for s states, in the limit a ~ + m  the radial function 
,yo(r) delocalizes, and the expression (1 1) transforms into 
the familiar formula of schwingerI8 and ~morod insk i~ : '~  

3) In the case of Coulomb repulsion, the wave function 
of the zero-energy s state is localized at distances r 5 a B .  
The expression (1 1) then takes the form 

which is a generalization of Eq. (13) to the case of potentials 
with Coulomb repulsion at large distances. 

FIG. 2. Graphical representation of the inequality (17). The solid curve is a 
plot of the function Ho(x,)13; it corresponds to ao=O and the equality sign 
in (15). The points for the dt and d 3 ~ e  systems were calculated with con- 
sideration of the correction for incomplete binding (for the parameters pre- 
sented in Table 11). The dashed line corresponds to the limiting value 
r",,=aB/3. 

Some useful bounds on the value of 7;"' follow from 
(1 1) and (14). Let R, be the shortest distance at which the 
strong interaction begins to be negligibly small compared 
with the Coulomb interaction (in the R-matrix approach2' the 
role of A, is played by the charged channel radius). Since 
Xl(r)-r-l t l(r)  when r>R, and ajCss)= m, discarding the 
positive term 2 ~ ; ~ : d r  in (1 I), we arrive at the inequality 

where 

In particular, for an s wave 

(16) 

where p =  & (Fig. 2). We stress that the bound (15) is 
valid for any short-range potential and for arbitrary I .  

Let us demonstrate the effectiveness of the bound on 
rjcs). Table I contains several sets of low-energy param- 
eters. They are all acceptable according to the criterion of a 
minimum for ,y2, the set with (ro=0.238 corresponding to 
the absolute minimum of x2 ,  which is equal to 0.62. How- 
ever, it corresponds to the physically unacceptable value 
6 . - 8  fm, which significantly exceeds the sum of the charge 
radii of d and r and should, therefore, be eliminated. Assum- 
ing that R,=5 fm for the d t  system, we can eliminate all the 
sets with (ro<0.26, for which Re r , ,y=2a,aB>5.1 fm. 

In the case of exact resonance (i.e., for I l ~z , . ,~=  0) the 
points corresponding to d t  and d%Ie should lie on the solid 
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TABLE 11. Parameters of resonance Coulomb systems. 

(1" a 24.04 12.02 
T N  3.63 3.97 
R c  4.8 4.7 
- U C S  76+31i 66+ 7 . 5  
rc s 4.9- 0.3i 3.5-0.2i 
P 0 -(8.2+ 1.4i). lo-' 
~ ( 0 )  1.29 0.626 
x2 0.82 0.45 
Ec 59.89 239.5 
C 9.107 9.1 13 

Note. The values of a ,  , r N  , R, , and r,, are given in fermis, and the values 
of E ,  are given in kiloelectron-volts. The sun1 of the charge radii of the 
particles was taken as r , .  The coefficient C [MeV.b] appears in Eq. (Al). 

curve in Fig. 2, which corresponds to the equality sign in 
(15). Using (7), we generalize the inequality (15) to the case 
of finite values of a,, (see Appendix B): 

rcs 1 
-c gHo(x,) + aafl(x,) + a22(xc) ,  
a, 

(17) 

where 

x =  rla, , and p =  J8x. For example, setting ao=0.27 and 
R,-5 fm for the d t  system, we obtain3) p =  1.29, 
H o =  0.577, f = 5.83(- 2),  and f 2 =  8.0(- 3),  and (17) gives 
r,, 6 (0.192+ 0.016+ O.OO1)aB= 5.01 fm. Thus, the correc- 
tion for the "incomplete binding" of the d t  system4) in- 
creases the value of r,, by approximately 10%. This, in turn, 
corresponds to a decrease in & (see Table I) by the same 
lo%, which was taken into account in Table 11. See also Fig. 
2, in which the displacement of the points for the dr and 
d 3 ~ e  systems from the solid curve is due to consideration of 
the incomplete binding. We note that the value R,=4.8 fm 
for the d t  system in Table I1 is consistent with the choice of 
the charged channel radius R,= 5 fm used in the most recent 
calculations of this system within the R-matrix approach.'s2 

It also follows from (15) and (16) that when the charges 
of the particles increase and R , - rN9aB,  the effective ra- 
dius c, is small (compared to rN)  and is exponentially close 
to its limiting value, which is equal to aB/3. This can be 
illustrated in the examples of the Breit model (see Appendix 
B) and the 6 potential, which allow an exact solution. In 
these two cases, for p,= J-4 1 we obtain 

where d l  = 3 rr18 and d2  = 714 for the Breit model and 
d l  = 3 d 4  and d 2 =  314 for the 6 potential. Therefore, in the 
present case, which is realized, for example, in the aa 
system;' Coulomb renormalization of the effective radius 
plays a very important role. 

To conclude this section, we make two remarks. 
1) In addition to the stringent upper bounds (15) and 

(17), we can also obtain a useful, though fairly rough, lower 
bound on r,, [see Eq. (B5) in Appendix B]. 

2) The introduction of terms proportional to r,, , r;f, etc. 
into the expansion (1) enables us to take into account phe- 
nomenologically the effective radius of the system (its "non- 
pointlike character") under the condition kt-,,+ 1. This dis- 
tinguishes the low-energy reactions with very light nuclei 
considered here, for example, from the collisions of heavy 
nuclei, whose description requires the introduction of model 
conceptions regarding the structure of the nuclei and the re- 
action mechanisms. 

4. ncr SCATTERING AND LOW-ENERGY PARAMETERS OF 
THE dt SYSTEM 

The lower bound on r,, can be obtained from an analysis 
of the elastic n a  scattering near the threshold of the d t  chan- 
nel. 

The ' ~ e * ( 3 / 2 + )  resonance plays a significant role both 
in the s wave for low-energy d t  scattering and in the d wave 
of the n a  system near the threshold of the n a h d t  reaction 
(i.e., for the neutron energies En-E,,= 22.065 MeV). Utiliz- 
ing the analyticity and unitarity conditions, as well as the T 
invariance of the nuclear interaction, we can express the el- 
ements of the S-matrix of such a two-channel system in 
terms of the low-energy parameters of the d t  system: 

(compare, for example, Refs. 22 and 23). Here cro(k) is the 
Coulomb phase, and 6,,(k) is the Coulomb-nuclear phase of 
the d t  scattering amplitude, r= IS,,,,,I is the inelasticity 
parameter ( 0 s  r S 1, r= 1 being below the threshold of the 
d t  channel), ISd,,,,l = d m ,  exp[2i&(k)]=~exp(2ip), 
62(k) is the d-wave phase shift of the elastic n a  scattering, 
and 

Finally, cp is the phase of the potential n a  scattering. This is 
the only additional parameter (beside ai and pi) that deter- 
mines the elastic n a  scattering in the resonance D3/2 wave. 
In the energy range under consideration the phase cp can be 
assumed constant, its numerical value being small.') 

It follows from (20") that 

b - 
I (arctan 7 + arctan - . P'-cp=- 2 a + 1 
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21.9 22.1 22.3 En, MeV 

FIG. 3. Energy dependence o f  the phase p- (P for the 1)3/2 wave o f  elastic 
n a  scattering. Curves 1, 2, and 3 correspond to the sets with a0=0.238, 
0.28, and 0.32. The experimental points were taken from Ref. 24. 

We note that the functions a(k)  and b-(k) appearing therein 
have zeros at resonance: 

a(k,)=O, 22.148 M~V<E!;) 

b- (kb) = 0, 22.195 M ~ V >  E?) , 

the values of the energies E:) and E:) being close to one 
an~ the r .~ )  Therefore, the energy dependence of the phase 
shift p- cp turns out to be very sensitive to the magnitude of 
a. (see Fig. 3, as well as Ref. 21). This allows us to obtain 
the bounded interval 0.26 G a.  =S 0.28, which gives 

Re a, ,=-7624 tm, Im a,,=-31.0+0.2 fm, 

Re r,,=4.920.3 fm, Im r,,= -0.3420.04 fm, (23) 

s (0)  = 1.2950.01. 

The values presented are determined directly from existing 
experimental data and have small errors, especially s(0).  

Thus, taken together, the bound (15) and the phase-shift 
analysis data for n a  scattering at 22.16<En<22.21 MeV 
significantly reduce the uncertainty in extracting the low- 
energy parameters af the d r  system. 

Using the set of values for the low-energy parameters 
ai and pi presented above, we can calculate the astrophysi- 
cal function s(E)  and the fusion reaction cross section at the 
minimal energies7) E 5 5  keV. The results of the calculation 
are shown in Fig. 4, where the solid curve corresponds to the 
set of data from Table I with ao= 0.27, while the two dashed 
curves correspond to ao= 0.26 and 0.28. 

As is seen from Fig. 4, the experimental points in this 
energy range have irregular positions and are located outside 
the error corridor following from the bounds on s (E)  estab- 
lished above. Our calculated values of s ( E )  have a small 
error (5 1 %), because they were obtained on the basis of the 
experimental data for a , ( E )  at resonance, which have 1% 
accuracy. Since the data from Ref. 24 on elastic n a  scatter- 
ing near the 5 ~ e *  resonance were also used in the calcula- 
tions, the further increase in their accuracy at E , W E , ~ = - ~ ~  
MeV makes it possible to obtain a more reliable upper bound 
on a. and seems very desirable. 

A similar analysis was performed for the d3He system 
(see Appendix B). The corresponding low-energy parameters 
are presented in Table ?I. In this case the term with the form 
factor P should also be taken into account in the expansion 
(1) (see Appendix A). The increase in the number of fitting 
parameters along with the insufficient accuracy of the experi- 
mental data at E- E, (the error = 4% for the cross section of 
the d 3 ~ e + p a  reaction) preclude determining the values of 
a,, and T,, with as high an accuracy as for the d t  system. 
Therefore, the corresponding parameters in Table I1 should 
not be considered final. 

Let us now compare the results obtained with the results 
of other investigators. The effective-radius approximation 
was previously used to describe the d t - r n a  and 
d3He--tpa reactions by Barit and sergeev? who treated the 

1.254 
0 2 4 6 8 E, keV 
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FIG. 4. Astrophysical function for the d t i n a  reaction at 
low energies. The solid curve corresponds to the set o f  pa- 
rameters with ao= 0.27, and the dashed lines correspond to 
a0=0.26 (upper curve) and a0=0.28 (lower line). The ex- 
perimental data were taken from Ref. 1 .  

Popov et a/. 853 



experimental data known at that time by varying three inde- 
pendent parameters, viz., Re a,, , Im a,, , and Re r,, , and 
assuming Im r.,=O. A "continuous ambiguity" was dis- 
covered in extracting the low-energy parameters (see Table I 
in Ref. 5), which is consistent with the data presented in 
Table I of this paper (selection criteria in addition to the 
criterion of a minimum for X2 were not considered in Ref. 
5). Despite the considerable uncertainty in the values of the 
scattering lengths and the effective radius (- 15% for 
Re a,, and 30% for Re r,, , Barit and sergeevS demon- 
strated the advantages of an approach based on expansion of 
the effective radius over the R-matrix approach in the one- 
level approximation, in which the charged channel radius can 
vary from 3 to 7 fm. In the more recent studies'*2 this model 
parameter was set equal to 5 fm. However, the ambiguity 
associated with the choice of the number of R-matrix poles 
still remains. For example, the following values of the astro- 
physical function at zero have been given in the literature for 
the d t -+na  reaction: s (0 )  = 1.27220.007, 1.257, and 1.285 
for one-level,' two-level, and multilevel2 fits, respectively. 

The dr system was also considered within the resonance 
coupled channel model in Ref. 25. Conversion of the param- 
eters obtained therein to the scattering length and the effec- 
tive radius give values of ai and pi that are close to the set 
with ao= 0.30 from Table I and s(0) = 1.299. 

The values of s (0 )  and especially of a,, and r,, have a 
considerable spread. The additional selection criteria that we 
considered make it possible to reduce this uncertainty. 

5. ANALYTIC STRUCTURE OF THE SCATTERING 
AMPLITUDE NEAR THE ELASTIC THRESHOLD 

The positions of the S-matrix poles on the complex k 
plane (which correspond to both bound and virtual or qua- 
sistationary levels) are determined from the equation 
cot 6,.,(k)=i, which takes the following form in the effective- 
radius approximation:8) 

where A = - ikuB. This equation does not depend on the 
model of the strong (short-range) potential V,(r). 

It is known27 that in the absence of absorption, i.e., when 
we have Im a,, = Im r,.,=O, the S-matrix poles for poten- 
tials with a barrier are arranged symmetrically with respect 
to the imaginary axis in the k plane, and Im k<O. When 
there are open channels, the nuclear interaction breaks this 
symmetry and displaces the Coulomb poles away from the 
negative imaginary semiaxis (kt,= - i lnaB for a "purely 
Coulomb" repulsive potential, where n = 1,2, . . . ). In case 
of resonance, in which la,.,l%rN, there are two poles, R and 
R '  with Im k<O close to zero. A numerical solution of Eq. 
(24) with the parameters presented in (23) makes it possible 
to obtain two additional series of Coulomb poles, 
k ,, = -  ilv,, , which crowd together near the elastic threshold 

k=O, along with them. In the limit n +  1 ,  for the poles in the 
right-hand half-plane (Re k>O) we have 

TABLE 111. Positions of the poles of the J t  scattering amplitude near the 
elastic threshold. 

0 1.334- 0.4681 - 1.659- 0.06561 0.223- 0.6551 0.024+ 0.601 i 
1 0.293- 0.6391 - 0.337- 0.68 I i  0.293- 0.5931 0.179+ 0.584i 
2 0.105- 0.407i - 0.116-0.4261 0.303- 0.5941 0.185+ 0.594i 
3 0.0528- 0.2931 - 0.0569- 0.303i 0.306- 0.596i 0.185 + 0.5971' 
cc 0 0 0.308- 0.5981 0.185+ 0.600; 

aThe value n=O corresponds to the poles R (right-hand half-plane, 
Re k>O) and R '  (left-hand half-plane, Re k<O), and the values 11 23 I 
correspond to two Coulomb series of poles. 

where - 1/2<Re v,< 112, 

u = ~ T u , , / u ~ ,  and b=3r , , / aB .  It can be shown that the 
asymptotic expansion (25) has good accuracy even for 
n- 1. The series of Coulomb poles in the left-hand k half- 
plane is described by a similar expression.6 

The positions of the poles in the k plane that correspond 
to the low-energy parameters of the d t  system from Table I1 
are given in Table 111, which also presents the corresponding 
values of the variable vn- n. It is seen from the table that, as 
n increases, these values rapidly reach their limiting value 
v,, which is specified by the ratio 
a,, l a B  = - ( a o -  iPo)- I .  The presence of absorption in the 
dr system, which breaks the symmetry between the left- and 
right-hand poles noted above, is especially pronounced for 
the imaginary parts of the resonance poles R and R' .  

As n increases, the Coulomb poles k, converge near the 
elastic threshold, which is essentially a special point of the 
scattering matrix, their residues decreasing rapidly:28 

Therefore, besides the resonance poles R and R' ,  only the 
first few Coulomb poles make an appreciable contribution to 
the scattering amplitude. We note that the residues y,,-t0 
when aB-fw. Thus, the poles considered are directly related 
to the Coulomb interaction and vanish when it is turned off. 

6. CONCLUSIONS 

A model-independent approach to the investigation of 
the resonance low-energy scattering of charged particles has 
been developed using an expansion of the effective radius. It 
permits extrapolation of the fusion reaction cross section 
a,(E) and the astrophysical function s (E)  from the reso- 
nance region to the energies E + 0 .  The low-energy param- 
eters u, . ,~,  r,, , and s (0 )  have been calculated for the d t  and 
d 3 ~ e  systems. As is seen from Table 11, the effective radius 
r,., , unlike a,., , is almost real. This is easily understoocl 
within the optical-potential model, which makes it possible 
to obtain the estimate Im r,,vlRe r,.,- - WIU (see Appenclix 
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C). The small value of the ratio Im r,,lRe r,, is related to 
the weak coupling of the channels in d t  scattering. The ap- 
proach developed permits investigation of the analytic struc- 
ture of the scattering amplitude (when absorption occurs in 
the system) near the scattering threshold, k=O. It can also be 
applied to other very light nuclei. 
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APPENDIX A 

We offer several comments regarding the calculation of 
the astrophysical function s(E).  

a. We point out its relationship to the definition of the 
astrophysical function S(E) in Refs. 1 and 2: 

where 

(g is the statistical weight), E ~ = z ~ z ~ ~ ~ / ~ ~ ,  
aB=h2/Z1z2e2m, 77= l / d e c ' ,  and ZlZ2>0.  

The numerical values of Ec  , a B  , and the coefficient C 
for the d t  and d 3 ~ e  systems are given in Table 11. We note 
that S(E) has the dimensions of MeV- b and that s (E)  is 
dimensionless. 

b. At low energies we can use the expansion 

s ( ~ ) = s ~ + s ~ ~ + ~ ( ( k a ~ ) ~ ) ,  (443) 

where 

[for the dt  system we have s=  1.2916 and s I = 1.978(-2), if 
E is measured in kiloelectron-volts]. The linear approxima- 
tion of the expansion (A3) at E 2 keV (or T,I 3 3.9) has an 
accuracy better than 0.1%; however, when E =5 keV, its 
error reaches - 1% and rapidly increases with increasing 
E. 

c. In the theory of p catalysis there is significant interest 
in the rate X J v =  rJv lh of the fusion reaction and the shift 
AEJv of the mesomolecular level due to the strong 
i n t e r a ~ t i o n : ~ ~  

In (A5) we set P(k2)-b+(k), which was justified because 
of the small permeability of the Coulomb barrier. For ex- 
ample, D,=5 X holds at E =  8 keV (see the values of 
E, and Eol below). Here we have J = O  and v = O  or 1 are 
the total angular momentum and the vibrational quantum 
number of the d t p  mesomolecule, RoV is the value of the 
wave function of the nuclear subsystem at zero (i.e., when 
the d and t nuclei "fuse"), and 

where coV is the binding energy of the d t p  mesomolecule, 
p = mp(md + m,)l(m, + ntd + m,), and m = nt,ni,l 
(m,+m,). The values of Rov and E O ~  were calculated to 
high accuracy in the studies of Ponomarev et  a1..30,31 Using 
their numerical values, we have Em= 7.97 keV, Eol = 8.26 
keV, and Roo= 1.019(-4), and Ro1=9.27(-5). Hence for 
the set of parameters ao= 0.27 (see Table I) we obtain 

rm=(9.1820.09) eV, 

These values are consistent with the values known in the 
but they have a higher accuracy. 

d. In performing the numerical tit for the dt system, 
whose results are presented in Tables I and 11, we adopted 
the form factors P = Q = 0 in (I). We discuss the features of 
this approximation. 

It was shown in Ref. 8 in the case of the Yukawa, 
Hulthen, exponential, and Gaussian potentials that the form 
factors P and Q are numerically small. We carried out a 
more detailed investigation of this question. Using the equa- 
tions presented in Ref. 8 [see Eqs. (9.14) and (9.15) in that 
paper], we performed a calculation of the low-energy param- 
eters, including P and Q, for various model potentials 

(the calculations were performed for the resonance case, i.e., 
at the instant when an s level appears). It is seen from Table 
IV that we have -0.05<P<0.1. As for the next term 
( k6) in the expansion (I), we can neglect it, since I) Q is 
generally several times smaller than 1 P I  (with the exception 
of the cases in which P is anomalously small) and 2) the 
corresponding term in the expansion of the effective radius 
has an additional small parameter of order (krc,)2-0.1 (in 
the case of the d t  system for the energies E < 70 keV, which 
are included in the treatment). The variation of P from 
-0.05 to 0.05 leads to uncertainties in the low-energy pa- 
rameters that exceed the range of accuracy of the present 
approach, i.e., 

which justifies the choice of P = Q = O  for the dt system. 
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TABLE IV. Some parameters for short-range attraction potentials. 

- - - 
No. V(X) Ro  6 lR P Q 

I exp(-x).r- 1.6798 1 2.120 6.616(-2) 2.860(- 2) 
2 exp(-9)x-I 1.75102 1.070 - 6.62(- 4) - 2.76(- 3) 
3 exp(-x4)x- 1.64009 8.784(- 1) - I .848(- 2) - 1.44(-3) 
4 e( I - x ) x - ~  1.44580 8.722(- I )  - 2.684( - 2) 1.45(- 4) 
5 (e.'- I ) - '  1 3 3.812(- 2) 7.81(-3) 
6 llsinh x 6.41408(- 1)  3.332 2.204( - 2) 2.96( - 3) 
7 ( x i -  I )  X )  3.09417 6.260( - I) - I .506(- 2) - 2.42(- 3) 
8 ~xP(-x)  1.44580 3.541 1.246(- 2) 1.56(-3) 
9 e x ~ ( - g )  2.68400 1.435 - 1.812(-2) - 9.48(- 4) 
10 exp(-x4) 2.89237 1.069 - 2.759(- 2) 5.77( - 4) 
1 1  O( l -x) 2.46740 1 - 3.267( - 2) l.7l(-3) 
12 xl(e"- I)  5.87864(- 1) 4.647 4.95( - 4) - 7.30(- 4) 
13 xlsinh x 3.28504(- 1) 4.856 -3.79(-3) - 7.75(- 4) 
14 (I -x)O(I -x) 7.83735 7.870(- I) - 2.785(- 2) 5.24(- 4) 
15 (e"+ I ) - '  1.72057 3.783 - 5.35(- 3) 4.98( - 4) 
16 e-'(I +x) 4.67348(- 1)  4.549 4.95(- 4) - 5.39(- 4) 
17 e-"(I +x)- '  3.66478 2.695 2.740- 2) 7.17(-3) 
18 (I-x2)e(1 -x) 5.12170 8.240- I) - 2.942(- 2) 9.W( - 4) 
19 Ilcosh x 7.7 1586(- 1) 3.652 8.31(-3) 1.08(- 3) 
20 (cosh x)-2 2 2 0 0 
2 1 S(l -x) 1 1.333 - 3.750(- 2) 3.01(-3) 
22 Breit model 0 2 -4.167(-2) 4.17(-3) 

On the other hand, for d3He we have ( k r c , ) 2 ~ 0 . 5  for the dashed curve was constructed using Eq. (15) and corre- 
E5400 keV; therefore, the form factor [or a2,  see (2)1 sponds to k ,  that consideration of the incomplete binding 
should be included in the treatment in this case. of the system for a 2 S 5 X  lop3 significantly reduces the 

value of the radius R, . The range a,= 1 X 1oP3-3 X 
APPENDIX B corresponds to the physically reasonable values R,=5-4.5 

fm. We note that for the mirror systems under consideration 
We give the necessary explanations for the derivation of fm holds, since the Coulomb interac- 

Eqs. (15) and (17). For s states Eq. (7) takes the form tion is two times weaker in the d t  system than in the d 3 ~ e  
system. The point in Fig. 5 marks the value a 2 = 2 X  
(see Table 11). In addition, the limiting value2' &= 1/60 is 
shown. 

[ : We now obtain the lower bound for r,, . According to 
= -Ho(x) + a d ~ , ( x ) +  & f 2 ( x ) ] a ~ -  / i p i ( r ) d r ,  the meaning of R,, the strong interaction vanishes at 

r >  R,, and the Coulomb interaction can be neglected in the 
(B1) range O<r<R, [we make the situation somewhat rougher in 

where r 2 R,, x =  r l aB  , ao= -aBlac , ,  cpo(r) is the wave the narrow region where (v,(r)(=vc(r)] .  Therefore, 
function with a zero energy in the potential V,(r)+ l laBr,  
and uo(r) is the so-called comparison function (Ref. 7): ;cS= /oRc[ti- x i l d r ,  

r 

uo(r)=to(r ) -  - V O ( ~ ) ,  O<r<m, (B2) 033) 

i.e., the solution of the Schrodinger equation in the absence 
of the strong potential V,(r), which has the same asymptotic 
form as po(r) .  

If we discard the last term in (B 1) and take the minimum 
L I 

distance at which the strong interaction can be neglected in 
comparison with the Coulomb interaction as r (i.e., if we set where fo(r)  is the wave function with E =  0 in the strong 
r=R,), we arrive at the inequality (17). At exact resonance potential at the instant when an s level appears, which satis- 
(when a , ,=  co or ao= 0 )  it transforms into the bound (15) on fies the usual boundary condition fo(c0) = 1 and differs from - 
r,, , so that the last two terms on the right-hand side of (17) xo(r )  only by a scaling factor. Since 
make a correction for the incomplete binding of the system - 
or the resonance mismatch. 

This correction is especially important when R, is cal- 
culated in the case of the d ' ~ e  system. It is seen from Fig. 5 ,  
in which the solid curve was constructed using Eq. (17) and we obtain 
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Neglecting here the difference between <, and <, but tak- 
ing into account the correction that is linear with respect to 
a, in (17), we arrive at the lower bound 

which gives r,,>0.16aB in the case of the d t  system. As a 
result, from (17) and (B5) we obtain 3.8 fm< r,,< 5 fm for 
R,=5 fm. Similarly, for the d 3 ~ e  system we find 
2.8 fm<r,,<3.5 fm. 

It is noteworthy that the sign of the equality in (15) in 
(B4) is achieved for the Breit model, which was used to 
describe the NN interaction at low energies and in the theory 
of resonant nuclear reactions.32 This model is specified by 
the boundary condition 

~ N ( P ; ( ~ N ) / ( P O ( ~ N ) =  -8 ,  (B6) 

where rpo(r)=O holds for O<r<rN [here R,=r, and the 
integral discarded in (B 1) equals zero]. Also, <= 2R,, and 
(B4) transforms into (1 5). 

We present expansions of t o ( r )  and other functions at 
small and large distances. In the limit r-+O we have 

to ( r )=  1 +2r(ln r + ~ , ) + ~ ( r ~ l n  r) ,  

where C1 =ln 2- 1 +2C=0.848 . . . . 
At large distances ( r 4 ~ ) ,  it is convenient to express 

these functions in terms of p= 6 

where co= m. Since the functions f and f 2  increase rap- 
idly at r +  I ,  the inequality (17) becomes meaningless, if 
R,>aB [however, in the case of the dt and d 3 ~ e  systems, 
the bound (17) is fully effective]. 

APPENDIX C 

We illustrate the dependence of the low-energy scatter- 
ing parameters (a , ,  r ,T,  etc.) on the depth of the strong po- 
tential in the case of a rectangular well: 

FIG. 5. Dependence of the radius R ,  on the coefficient a, in the expansion 
(2). The dashed curve corresponds to the values of k ,  and the solid curve 
was constructed using Eq. (17) with consideration of the incomplete binding 
of the d 3 ~ e  system. 

By matching the wave functions on the edge of the well (at 
r =  R) and using the recurrence relations for Bessel func- 
tions, we find the phase of the lth scattering amplitude 

zN,-l(z)Jv(u)-uJ,- ,(u)Nv(z) 
cot 6,= 

z J , - l ( z ) J v ( ~ ) - ~ J , - l ( v ) J v ( z )  ' 
(C 1) 

where v=1+12, z=kR,  u = d m ,  and g = ~ 2  is the di- 
mensionless binding constant. In the case of an s wave we 
thus have 

~ , ( k ~ ) = k  cot 6,(k)= - 

where T= 1 -(tan K ) I K  (formulas for a, and r, are also 
found in Ref. 6). At exact resonance 

We note the numerical smallness of the form factor: P varies 
from -0.033 for the fundamental level to -0.083 for 
n+ I .  

In the d t  and d3 He systems there is absorption caused 
by open reaction channels. This case can be illustrated by the 
model of a complex rectangular well 

V,y(r)= -(U+iW)B(R-r). 

The optical model implies W 3 0. For W = O  the s scattering 
length has poles at the points K =  K,, , i.e., at the instant when 
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the ns level appears). Expanding (C3) and (C4) near a pole, 
we obtain 

- 
Here u=(U-U,)/U, w =  W/U, U , =  K ; / ~ R ~ ,  and 
6= ti2/mR2 is the characteristic depth of the short-range po- 
tential (well). We also present the expansion for the dimen- 
sionless parameter 6: 

which characterizes the absorption in the system. In our case 
we have t= /30/2&=0.02 and 0.004 (Po= 0.1 1 and 0.025 for 
the d t  and d 3 ~ e  systems, respectively). Such a small value 
of 5 points out the weak coupling of the reaction and elastic 
scattering channels. 

It is seen from (C5)-(C8) that in the vicinity of reso- 
nance the real part of the scattering length varies abruptly 
and changes sign, while all the remaining parameters are 
practically constant (if the magnitude of the absorption w is 
fixed). The values of r,, for d t  and d 3 ~ e  are basically real 
(unlike a,, , see Table 11). A qualitative explanation for this 
fact is given by the estimate following from (C6) 

with consideration of the fact that W<U holds at low ener- 
gies. 

' )~es ides  the criterion of a minimum for X2. 

"1n this section we consider the case of arbitrary I ,  since the transition to 
1 = 0 does not introduce any appreciable simplifications. We also neglect 
the absorption in the system. 

 ere and in the following the order of magnitude of the number is indi- 
cated in parentheses, i.e., a ( -  b )=uX lo-'. 

4)The conditions Re a,,<O and (Re u,,(*r, mean that even slight deepen- 
ing of the strong potential V,(r) is sufficient for the appearance of a bound 
state in it. 

 or example, cp=3', if a,=0.28 (for the values of the other parameters, 
see Table I). 

')lf k,,= k ,  holds, then we have ~ = 0 ,  and the unitary limit is achieved for 
the d t - t n a  reaction: IS,,,,,,,,\= I .  The set with ao=0.291 in Table I 
corresponds to this case. 

" ~ i r e c t  measurements of the reaction cross sections at such low energies are 
hardly possible. At the same time, exact values of u , ( E )  are of interest for 
thermonuclear research, especially for calculating fusion reactions in me- 
somolecules. We thank Yu. V. Petrov for turning our attention to the 
problem of extrapolating the astrophysical function into this energy range. 

" ~ c r e  we assome Z,Z,>O. The case of Coulonlb attraction, in which the 

system has a spectrum of atomic levels that is distorted by the strong 
interaction at short distances (rSr,-Su,) ,  has been considered (on the 
basis of a similar equation) both for s l e v e ~ s ' ~ - ' ~  and for states with a 
nonzero orbital angular moment I (Ref. 26). 
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