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Using the effective hole Hamiltonian of Emery's three-band model for Cu02 planes in high-T, 
superconductors, we have calculated the spectrum of magnetic-polaron hole excitations. 
The resulting spectrum has been investigated as a function of frustration in the copper magnetic 
subsystem, the amplitude of direct hopping between oxygen atoms, temperature, and some 
other parameters of the model. Our calculations yield features of the spectrum observed in 
experiments, namely (1) an extended saddle-like region and (2) isotropic bottom of the band. 
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1. INTRODUCTION 

An important issue in developing a microscopic theory 
of high-T, superconductivity is the dielectric function ~ ( k )  
of hole excitations in the Cu02 plane. Recent photoemission 
measurements with angular resolution indicate that there is a 
nearly flat band near the Fermi level in optimally doped 
Bi2212, Bi2201, Y123, and Y124 ~u~ra t e s . ' -~  The flat band 
is located near the points X = {( + T,O), (O,? T)) and has the 
shape of an elongated saddle aligned with the X-T line, 
where r=  (0,O). The flat band in the spectrum leads to a 
Van Hove singularity in the density of states near the Fermi 
level. The proximity of the Van Hove singularity to the 
Fermi level has been used by various theories to account for 
the high temperature of the superconducting t ran~it ion.~.~-~ 
The existence of the optimal doping level is, naturally, re- 
lated to the coincidence of the Fermi level with the singular- 
ity in the density of states. Note that this common property 
of all the cuprate superconductors, namely, the existence of a 
large flat region in the electronic spectrum, is hard to inter- 
pret in terms of simple band models. 

Important photoemission measurements have been per- 
formed in Sr2Cu02C12 ,9 whose Cu02 planes are in an anti- 
ferromagnetic dielectric state. These results yield the hole 
spectrum in a quantum antiferromagnet and present a good 
test for numerous theoretical approaches to this problem. The 
measurements indicated9 that the band bottom is located near 
the point N=(n/2,n/2) and its width is about 0.3 eV. 
Morevoer, the minimum at the bottom is nearly isotropic, 
i.e., the effective masses in the directions N- T and N-X 
are approximately equal. 

The features of the quasiparticle spectrum discussed 
above are often ascribed to strong correlations in the hole 
motion superposed on a two-dimensional antiferromagnetic 
ba~k~round. '~ .~ '  Usually the problem is treated in terms of 
generalized t- J and Hubbard models, or the three-band 
m0de1,'~~'~ which is more realistic in the case of the Cu02 
plane because it takes into consideration both Cu- and 
0-orbitals. With due account of the antiferromagnetic back- 

ground and strong correlations between states at lattice sites, 
the hole quasiparticle spectrum is dominated, even in the 
simplest approximation, by the component 
~(k) - (COS k,+ cos ky)2,14-17 or, more exactly, the spectrum 
has a strongly anisotropic minimum at the point N with lines 
of equal energy elongated along the boundary of the 
X-N-X magnetic Brillouin zone. The quasiparticles are 
hole-spin polarons. The latest theoretical studies indicate that 
it is important to retain a number of real interactions in these 
models in order to interpret some "fine" features of experi- 
mental spectra detected in experiments. These interactions 
include, for example, the t'-hoppings, which take into ac- 
count the possibility of hopping to next-nearest-neighbor 
sites of a square lattice, in the generalized t- J and Hubbard 
models. In the case of the three-band model, it is important 
to include in the Hamiltonian direct oxygen-to-oxygen hop- 
ping of holes. Note that in the three-band model the 
t '  -interaction effectively takes into account direct oxygen-to- 
oxygen hopping in the Cu02 plane. It turned out that with 
these terms in both models, the strong anisotropy of the spec- 
trum near the bottom is eliminated.'8-22 

This paper considers the effect of some real interactions 
on the spectrum ~ ( k )  of the hole-spin polaron in the Cu02 
plane using the three-band Hamiltonian. First of all, the 
Hamiltonian takes into consideration hopping of an oxygen 
hole via a copper site with an amplitude r,  including spin- 
flip processes. The Hamiltonian also takes into account direct 
0-0 hopping of holes with an amplitude h. In addition, we 
analyze the effect of the hopping trajectory dependence of 
the amplitude T on the band spectrum. This dependence does 
not occur when T is calculated to lowest order in the p-d 

2 hybridization parameter t , ~  as T= tpdepd. where 
epd= ep- E~ is the energy difference between the hole levels 
C ~ ( d ~ n - ~ ; r )  and O(p, ,py). But if terms of higher orders in 
tpd/epd are taken into consideration, the amplitude of the 
hole hopping r,,, between the oxygen sites R-ax and 
R+a, will be different from the amplitude 72x between the 
sites R- ax and R+ a, (from now on R is the position of the 
Cu site, +a, and +ay are vectors of oxygen sites closest to 
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R). A similar dependence of the amplitude on the hopping 
trajectory results from including p-d hybridization between 
remote Cu-0  orbital^.'^ 

We have also studied the effect of temperature and frus- 
tration in the spin subsystem on the spectrum ~ ( k ) .  It is 
known that the magnetic correlation length decreases with 
the doping level. The antiferromagnetic correlation length 
[AFM also falls with the frustration parameter a = J2 l J , 
where J, and J2 are the constants of antiferromagnetic ex- 
change between nearest and next nearest neighbors in the 
square copper sublattice. The similarity between the doping 
and frustration was demonstrated by Inui et al.24 and con- 
firmed by direct calculations of the spin-spin structural fac- 
tor S(q) on a 4X 4 cluster for the doped t - J model and 
frustrated Heisenberg modelF5 Naturally, the two models are 
not completely equivalent. For example, the doped t - J 
model and frustrated JI - J2 model produce different results 
concerning the dynamic spin-spin structural factor and Ra- 
man scattering spectrum.26 Nonetheless, one may assume 
that frustration mimics the effect of the finite hole density on 
static spin correlation functions, from which the spin polaron 
spectrum is derived. Thus, by calculating the spectrum 
~ ( k )  as a function of frustration, we effectively determine 
the effect of doping on E (k). 

The distinguishing feature of our approach is that we 
treat spin excitations in the spherically symmetrical 
approximation?7-29 This approach allows us to investigate a 
two-dimensional quantum antiferromagnet without invoking 
the spontaneous symmetry breaking at zero temperature and 
to describe its paramagnetic state with strong antiferromag- 
netic correlations, whose ranges are determined by the anti- 
ferromagnetic correlation length eAFM. This approach seems 
most adequate for doped HTSC, whose Cu02 planes have no 
long-range antiferromagnetic order. 

We consider a spin polaron of small radius with spin 
S=  112 as an elementary hole excitation in our model. The 
hole excitation operator perturbs the spin subsystem at two 
copper sites nearest to the hole. The full basis for such a 
polaron contains ten local operators from which a Bloch 
combination is constructed. The spectrum is calculated using 
the projection technique based on delayed two-time Green's 
functions. 

We will demonstrate that by taking into consideration 
oxygen-oxygen hopping and frustration, we can account for 
the basic features of the hole excitation spectrum mentioned 
above and confirmed by experimental data. 

In Sec. 2 we will introduce a model Hamiltonian and 
construct a full basis of local operators to describe the spin 
polarization at the copper sites closest to an oxygen hole. 
Then we will derive equations of motion for the Green's 
functions whose poles determine the spectrum. All the coef- 
ficients of the equation system for the Green's functions are 
listed in Appendix. In Sec. 3 we will present and discuss 
calculations of the spectrum. Preliminary results of our study 
were published previously.30 

2. MODEL HAMILTONIAN AND EQUATIONS OF MOTION 
FOR THE GREEN'S FUNCTIONS 

The effective Hamiltonian for motion of holes in the 
Cu02 planes in the three-band has the form'6s31-35 

where 

The Cu02 plane is modelled by a square lattice with a 
constant g and with an elementary cell containing one Cu 
and two 0 atoms, R are positions of copper atoms, R+ a are 
positions of four oxygen atoms nearest to the copper: 
a = + a x ,  +a,; ax=g(1/2,0), ay=g(0,112). The following 
notations are used in Eq. (1): b are vectors of the nearest 
neighbors in the oxygen sublattice, b= t a,+ a, ; g= 2a and 
d= 2b are the vectors of the nearest and next nearest neigh- 
bors in the copper sublattice. The fermion operator cita,, 
and the Hubbard operator 2;' generate a hole with spin 
S=  112 and spin projection a12 ( a =  2 1) at oxygen and cop- 
per sites, respectively, and the operator ~i~~~ is the Hubbard 
projection operator which transforms a Cu hole with the spin 
projection a2/2 to a state with al/2. 

The first term on the right-hand side of Eq. (1) describes 
a hole hopping from one oxygen site to another via an inter- 
mediate copper site with the amplitude T= t;d~&pd. The term 
i is responsible for direct 0-0 hoppings with the amplitude 
h.  

The terms J1 and J2 correspond to antiferromagnetic 
interaction between the nearest and next nearest neighbors in 
the copper sublattice, the frustration parameter is 
a= J2 lJ1 .  The terms f and jl of the effective Hamiltonian 
in Eq. (1) are derived from the original three-band model 
using the perturbation theory with respect to tpd/&pd, where 
tpd is the parameter of hybridization between the orbitals 
O(p) and Cu(dxzmy2); cpd= sd- E ~ ,  cp and cd are the en- 
ergies of hole orbitals at the oxygen and copper, respectively. 
In our model we assume U d = a  because the intrasite Cou- 
lomb repulsion of two particles generates the largest energy. 
From estimates of the model parameters on can derive 
 ST-0.5 eV and J-0.57. 

As was noted in the Introduction, we relate the term with 
J 2 ,  which is responsible for frustration in the magnetic Cu 
subsystem, to the effect of doping. 

Let us consider the technique of constructing the basis 
from local operators A R ~ , ~  ( i  is the operator number) generat- 
ing one hole in the singlet dielectric state IG) of the CuO, 
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plane. It is obvious that all these operator should generate 
excitations with spin S= 112 and spin projection u12, Thiq 
means that the state A;.;~G) is an eigenstate of both the 
operator St,, of the total spin of copper sites and a hole in the 
plane, and its projection Sfot : 

Here S R + ~  is the oxygen-hole spin operator. 
The first two operators, A:,,(,, , obviously generate 

holes at two oxygen sites of an elementary cell without per- 
turbing the copper spin subsystem: 

The operator basis can be enhanced in a natural way by 
taking commutators of the operators AR,1(2) with the hopping 
Hamiltonian ?. One can check that the result is four new 
operators, A;,,(,) and A:,,(,, , generating hole excitations in 
the state IG) of the Cu02 plane: 

Hereafter we assume that a= - a. 
The operators defined by Eq. (4) generate holes at oxy- 

gen sites concurrently with a spin excitation at a neighboring 
copper site. Note that if the operators in Eq. (4) act on a state 
of a two-site Cu-0 system containing one hole at the copper 
site R with S= 112 and SZ= Z12, the resulting two-hole state 
is singlet. It is obvious that in this sense the linear combina- 
tion of the operators in Eq. (4), i.e., 

is similar to the Zhang-Rice spin polaron.39 
The next step in the enhancement of the basis is calcu- 

lating commutators of the terms ? and j in the Hamiltonian 
defined by Eq. ( I )  with excitation operators given by Eq. (4). 
We select from the resulting operators only those which are, 
firstly, linearly independent of those defined by Eqs. (3) and 
(4), secondly, generate excitations at two sites of the copper 
sublattice nearest to the oxygen site with the hole. As a re- 
sult, we have four new operators A:,; where i=7- 10: 

Similar operators of a spin polaron which occupies three 
sites were discussed by ~ m e r ~ ' ~  and Ding et ~21.~' 

The operators AR,; , ( i  = 5 - 10). by definition describe 
excitations with Stot=1/2 and S:,,=d2 since the operator 
St,, and its projection S:ot commute with each of the terms in 
the Hamiltonian. One can prove that the operators AR,;, 

( i  = 1 - lo), form a full basis of local operators for a short- 
range spin polaron (only copper spins closest to the oxygen 
hole are excited) with St,,= 112. 

In order to determine the spin polaron spectrum ~ ( k ) ,  
we use retarded two-time Green's functions Gij(t,k) defined 
in terms of the Fourier transforms AkTi of the previously 
described ten operators AR,; : 

The equations of motion for Fourier transforms of the 
Green's functions have the form 

In the standard Mori-Zwanzig projection technique4' we ap- 
proximate the new operators Bk,; by their projections on the 
space {Ak,i) of basis operators: 

After we substitute the approximate expressions for the 
operators Bk,i in Eq. (8) into the equations of motion (7), the 
equation system (7) for Green's functions ( A ~ , ~ I A ~ ' , ~ ) ~  be- 
comes closed and can be presented in the matrix form 

where E is the unit matrix. 
The quasiparticle spectrum ~ ( k )  is determined by the 

poles of the Green's function G and can be derived from the 
condition d e t l ~ ~ ( k )  - D I  = 0. Note that this procedure is 
equivalent to the variational procedure of constructing a 
wave function of a short-range polaron.18 The calculation of 
elements of the arrays D and K is not difficult but is lengthy 
because it involves calculation of commutators of complex 
operators A,,; and Bk,;. The elements are expressed in terms 
of two-site and three-site correlators of Hubbard operators 
for copper states. The copper states are described by the 
frustrated Heisenberg model with the Hamiltonian j .  

From the spherical symmetry of the copper spin sub- 
system, the three-site correlators can be reduced to two-site 
correlators. Typical relations between these correlators are 
given in the Appendix. The elements of the arrays D and 
K in the explicit form are also given there. 

Thus, the spectrum calculation demands spin pair- 
correlation functions Cr=(SRSR+r) expressed as functions 
of the separation between the sites, temperature, and frustra- 
tion. These functions were derived in our previous 
using the spherically symmetrical theory of spin waves and 
have been used in this study. 

821 JETP 83 (4), October 1996 Barabanov et a/. 821 



FIG. I. Spectrum ~ ( k )  at T=O, 
n = J ,  IJ,=O.4, h=O: (a) contours of 
constant energy in the first quadrant of 
the Brillouin zone; (b) density of states 
v(E); (c) energy spectrum along synl- 
metrical directions. 

3. RESULTS AND DISCUSSION 

In this section we give only calculations o f  the function 
~ ( k )  in the lowest band, i.e., the lowest eigenvalues o f  the 
operator DK- '  at fixed k .  This band determines the con- 
ducting properties at low doping levels. 

Note an important feature o f  our technique, which 
should be taken into account when comparing our results to 
calculations by other authors. 

In order to make the signs o f  hopping integrals in ? and 
I; in Eq. (1) to be independent o f  the hopping direction, we 
had to perform a unitary transformation changing the phases 
o f  the Cu(dx2-,2) and O ( p )  wave  function^.^^-^^ This was 
done by multiplying local wave functions by the factor 
exp(iQ.R), where R is the radius-vector o f  the correspond- 
ing elementary cell and Q= (.rrlg,.rrlg) is the antiferromag- 
netic vector (below the copper sublattice constant is taken 
g= 1 ) .  In order to restore the initial translational symmetry 
o f  local wave functions, we replace ~ ( k )  by c ( k+Q)  and 
present our results in these variables. 

In all the plots except Fig .  6 ,  the calculated spectra cor- 
respond to the typical value of  the exchange integral 
5,  =0.27 at two values o f  the frustration parameter, a=O 
and 0.4, and two values of  the oxygen-oxygen hopping in- 
tegral, h = 0 and 0.47. W e  recall that the energy parameters 
7 ant1 J ,  and the parameters o f  the initial model t,,, and 
e , , ~  are related to each ~ t h e r : ' ~ , ~ ' - ~ ~  

The calculated spectra are shown by contours of  constant 
energy drawn with equal energy increments in the first quad- 
rant of  t!le first Brillouin zone. The energies o f  some of  the 
contours are given in the graphs. The densities o f  states 
v ( 8 )  and curves o f  ~ ( k )  along symmetrical directions 
1 ' - X - M - I '  and X - N - X  [ M = ( m , . r r ) ,  N=(.rr/2,.rr/2)] 
are also plotted in the graphs. The unit energy is  7. 

As was noted in the Introduction, the calculated spectra 
~ ( k )  are interpreted assuming that an increase in the frustra- 
tion parameter a simulated higher doping level. 

Figure 1 shows the spectrum ~ ( k )  at 11 = 0, T =  0,  and the 
finite frustration parameter cu=0.4. l'he spectrum has a mini- 
mum near the point N .  In a wide region about the boundary 
of  the antiferroniagnetic Brillouin zone X - N - X  there is a 
flat band in which the energy is a weak function o f  k (Fig. 
lc). This portion of  the spectrum near the bottom generates a 
peak in the density o f  states ( F i g .  lb) whose shape is similar 
to that o f  a one-dimensional singularity: V ( E )  

E - ' I 2 .  

At the minimum, the spectruni is highly anisotropic, as 
can be seen in Fig.  lc,  i.e., the effective masses around the 
point N in the directions N- 111 and N - X  are very different. 
At a low filling, the Fermi surface is an ellipse and the Hall 
constant RII should have the "hole" sign, R,,>O. 

W e  do not show the shape o f  ~ ( k )  for T=O, h=0,  and 
a=O. In this case the spectrum has a flat portion around the 
line X - N - X ,  but the weak modulation o f  the spectnini 
near the band bottom is slightly different, so the minimum is 
on the line X -  T near the point X .  

The spectrum is radically different at zero frustration 
factor (a=O) ,  but with oxygen-oxygen hopping. One can 
see in Figs. 2a and 2c that at h=0.4 the minimum o f  the 
band bottom is still near the point N .  But unlike the case 
shown in Fig. 1 (h=O), this minimum i s  isotropic. As was 
noted in the Introduction, this shape o f  the minimum is ob- 
served at zero doping9 (in our case this corresponds to zero 
frustration). One may assume that the isotropic minimum 
near the band bottom is due to oxygen-oxygen hopping. The 
authors o f  Refs. 19 and 20 came to similar conclusions. 

Another feature o f  the spectrum in Fig.  2a and 2c for h 
# 0 seen by comparing it with Fig.  la and lc is a notable 
modulation around the minimum and a flat portion near the 
point X .  As a result, there is a second peak in the density o f  
states (Fig .  2b). It is interesting that the band portion respon- 
sible for the second peak has the shape o f  an elongated 
saddle. Rut this saddle is aligned with the direction X - M ,  
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FIG. 2. Same as Fig. 1 ,  for T=O, 
a = J , l J ,  and h=0.4. 

as can be seen in Fig. 2a, whereas the experimentally de- 
tected feature is extended along the direction X- I'.1-5 

Now let us consider the case of zero temperature, but 
with both frustration factor and oxygen-oxygen hopping am- 
plitude nonzero (a=0.4, h=0.4), shown in Fig. 3. In this 
case the spectrum ~ ( k )  is radically different from that in Fig. 
2, since its elongated saddle point is aligned with the line 
X- r, which is in agreement with experiments performed at 
an optimal doping level (i.e., in our language, at a finite 
frustration). One can check that at a higher frustration (dop- 
ing) parameter, this feature and the resulting peak in the 
density of states are less pronounced. This result is consistent 
with the general concept that the transition temperature drops 
in overdoped HTSC if we assume that high-Tc superconduc- 
tivity is caused by the proximity of the Fermi level to the 
Van Hove singularity of the higher peak on the v(e) curve in 
Fig. 3b. 

If the Fermi level coincides with an equal-energy curve 
near the elongated saddle, for example, the line with 

E = -4.43 in Fig. 3a, the Fermi surface should have a second 
portion around the point M. Note that the Hall constant is 
directly related to a weighted integral of the curvatures of 
these lines.45 One can easily check that the two contours 
have curvatures of different signs, so the Hall constant may 
change its sign from plus to minus as the doping level in- 
creases. 

Note that the comparison of spectra shown in Figs. 2a 
and 2c (h = 0.4, a = 0 )  and 3a and 3c (h = 0.4, a = 0.4) dem- 
onstrates that the spectrum of the CuO, plane cannot be de- 
scribed at all in the rigid-band approximation. 

Our calculations at finite temperatures indicate that, like 
the frustration, the temperature effectively changes the spec- 
trum. For example, the spectrum calculated for h=0.4, 
a=O,  and T = J ,  fits to the curves in Fig. 3 for h=0.4, 
a=0.4,  and T=O well. This is not surprising because the 
spectrum is controlled by correlation functions. In our previ- 
ous publication27 we proved that at moderate frustration pa- 
rameters a<0.5 an increase in both T and a leads to lower 

FIG. 3. Same as Fig. 
a = J , l J , ,  and h=0.4.  

r 
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FIG. 4. Same as Fig. 1 ,  but with the an- 
isotropy of the hopping amplitude 
ATIT= -0.15. 

antiferromagnetic correlations (although it is hard to cor- 
rectly translate one effect into another). 

Now let us turn to the effect of the hopping amplitude on 
the spectrum. The modified component f of the Hamiltonian 
defined by Eq. (1) takes the form 

The Hamiltonian in Eq. (1 1) takes into account that the 
hole hopping described by the vectors 5 ax and 5 a, has the 
amplitude r, and that described by the vectors + 2ax and 
? 2ay has an amplitude r+ AT. The physical cause of the 
difference between these amplitudes was discussed in the 
Introduction. Figures 4 and 5 show spectra calculated for 
T=O, h=O, a=0.4,  and A r / r =  -0.15 and 0.15, respec- 
tively. One can see in Fig. 4 that the spectrum calculated for 
A r < 0  is radically different from all other spectra. The most 

remarkable feature is that the local minimum at the point N 
disappears. But this situation, apparently, is not realized be- 
cause calculations by the singlet-triplet model yield an esti- 
mate AT-O.lr>O. The comparison of spectra in Fig. 5 
T=O, a=0.4,  h=O, and Ar/r=0.15) and Fig. 3 (T=O, 
a = 0.4, h = 0.4 and A r /  r= 0)  with that shown in Fig. 1 (T 
=0, a = 0.4, h = 0, and A 71 r= 0) demonstrates that the in- 
clusion of A r > 0  is equivalent to a higher amplitude of 
oxygen-oxygen hopping. 

There are few calculations by the three-band model 
which yield fairly complete information about the spectrum. 
Dopf et al.46,47 calculated the three-band spectrum by the 
quantum Monte Carlo technique, and Putz et  d4* by finding 
a self-consistent solution of the Dyson equation to the one- 
particle Green's function with due account of the interaction 
between a hole and fluctuations of charge and spin densities. 
These calculations were based on the three-band model with 
typical values of parameters: spd= 4tpd, U d =  6tpd,  the tem- 

r 
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FIG. 6. (a) Contours of constant energy 
of the spectrum ~ ( k )  for JI=0.25 ,  
T = 1 . 6 1 , ,  a=J21Jl=0.4,  and h=0.4; 
(b) density of states v(E); (c) spectrum 
~ ( k )  plotted along symmetrical direc- 
tions: solid trace shows results of the 
present work (at the same parameters as 
in Fig. 6a); dots show Monte Carlo cal- 
culations by the three-band 
for Epd= 4tpdr Ud= 6tpd . T=O.ltpd. 
and S=0.25. The energy unit is T, and 
rpd= 47 The energy axis for the Monte 
Carlo calculations is shifted arbitrarily. 

l- x r x  M TX X 

perature T =  O.ltpd, and the doping level S= 0.25. Our re- 
sults are compared to those of Ref. 48 in Fig. 6, which shows 
the spectrum ~ ( k )  at similar parameters of our effective 
Hamiltonian, namely J , = 0 . 2 5 ~ ,  T =  1.6 J 1 ,  a=0.4, and 
h = 0.47. The selection of the latter parameters was based on 
Eq. (10) with t , , / ~ ~ , =  0.25. Note that Eq. (10) is valid only 
for U d = ~ ,  i.e., this comparison is intended to show the 
general trend. Figure 6 demonstrates that the band bottom is 
at the point M because the high temperature breaks antifer- 
romagnetic correlations. Nonetheless, the saddle point near 
X persists. Figure 6c also shows a Monte Carlo calculation of 
the spectrum, which is quite similar to that in Ref. 48, and 
our calculations along symmetrical directions. One can see 
that at high temperature the results are fairly close, although 
the parameter Ud is different, and the doping S=0.25 is 
simulated by the frustration a=0.4. 

Let us also mention  calculation^^^-^^ based on the "clus- 
ter perturbation" theory, which reduces the three-band 
model to a generalized t - J  model taking into account t' 
hoppings to second and t" to third nearest neighbors. As was 
noted in Introduction, the inclusion of the t' hopping, which 
efficiently simulate direct oxygen-oxygen hoppings in the 
initial model, makes the band near its bottom at the point 
N isotropic,'9 which is in agreement with our results. This 
effect also occurs when t" hoppings are taken into a c ~ o u n t . ~ '  
In the recent work5' the parameters of the Hamiltonian de- 
scribing the t, t ' ,  and t" hoppings were derived from realis- 
tic parameters of the three-band model. Unfortunately, the 
frustration was not included in these calculations, the model 
was based on two magnetic sublattices, and the approxima- 
tion used yielded a spectrum periodic in agreement with the 
shape of the magnetic Brillouin zone. This means that no 
extended Van Hove singularity on the X-T line could be 
obtained without a similar singularity on the X- M line. It is 
difficult, therefore, to compare our results to those reported 
in Ref. 5 1. 

In conclusion, let us spell out the basic result of our 
analysis of the model. There are several important mecha- 
nisms, not mutually exclusive, generating singularities in the 

Cu0,-plane hole spectrum similar to those detected in ex- 
periments. The band bottom may become isotropic because 
of either oxygen-oxygen hopping with amplitude h or the 
dependence of the hopping amplitude T on the trajectory. 
The saddle-like singularity aligned with the X-T line is 
generated when, firstly, the frustration (doping) and oxygen- 
oxygen hopping are taken into account concurrently, sec- 
ondly, when account is taken of the finite temperature and 
frustration, and thirdly, when frustration occurs and the hop- 
ping amplitude depends on the trajectory. The basic result of 
our study is the conclusion that with due account of realistic 
features of the model, one can interpret experimentally ob- 
served spectra of hole excitations. 

In our opinion, additional interactions, such as Coulomb 
repulsion of holes at neighboring copper and oxygen sites, 
and modifications of the effective Hamiltonian in Eq. (I),  
which applies, strictly speaking, only for tpd-+~pd,  should 
not radically change our results. But this issue, as well as 
calculations taking account of interaction between holes (po- 
larons in our case), deserves further investigation, especially 
in the hole concentration range corresponding to optimal 
doping. 
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APPENDIX 

Here we give some formulas for spin correlation func- 
tions that are used in the calculations of the matrix elements 
D i j  and K i j  in Eq. (8) and the explicit expressions for these 
elements. 

Commutators of the operators Bk, i  and Ak,i yield statis- 
tical averages over states of the spin subsystem of products 
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of two and three Hubbard operators located at different cop- 
per sites. If the spherical symmetry of the spin subsystem is 
used, the three-site averages can be reduced to two-site av- 
erages, and they in turn are reduced to scalar products of spin 
operators. Correlation functions of spin operators with due 
account of temperature and frustration were calculated 
previously27 in the spherically symmetrical theory of spin 
waves. Below some typical relations for local correlation 
functions and some operator relations are listed: 

In Eqs. (Al) all the sites in one formula are different, and we 
use the notations CRI2= (SRISR2) and R12= IRI - R21. 

It is more convenient to calculate the elements of the 
arrays D and K in Eq. (8) in the new basis of the operators 
T i T i ,  which can be expressed as linear combinations of the 
operators of the initial basis: 

The new operators are transformed to one another under re- 
flection with respect to the oxygen site, i.e., if the site indices 
in the Hubbard operators located at copper sites in ii,i are 
transformed according to R+ R +  gx(gy), R +  gx(g,) -+ R, 
the following relations hold: 

ii,7(8)(RwR+gx(*))= -i;,9(lo) . (A3) 

Here the transformation is denoted as R w R +  gx(gy). 
Given the relations (A3), it is sufficient to calculate the 

following elements: 

D l l ( k ) = ~ + ~ l  cos k,, 

kx ky 
D21(k)=2(r-2h)c~s - 2 cos -, 2 

kx kx ky 
D4, (k)=r  cos - (2L2u-u*)-2h cos - cos -, 

2 2 2 

+2C2,-4aL5 , J 
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Da7(k)= r L 3 ( u u - ~ u u * + u * u * + u u * ) - ~ ~ L ~  uu*  I 

Here we use the notations u =exp(ikx 12) and 
u = exp(iky 12); an asterisk denotes complex conjugation. 

In the correlation functions C,=(SiSi+,) and their indi- 
ces, we use the following notations: g = 1 gxl = 1 gy 1, 
d=/+gx+gyl ,  f=I+2gx-+gyl=I+2gy+gxl, L l =  114+C,, 
L2= 114- C, , L3= 118- cg+ cd/2, L4= 118- cg+ c2,/2, 
L5=2Cdv c,- cf. 

The rest of the elements are expressed in terms of those 
listed above: 

The elements of the symmetrical array K are expressed as 
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