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A procedure is developed that allows for exact calculations of the band energy of a solid in the 
Hartree-Fock approxin~ation. The starting point is a self-consistent calculation that employs 
a Gaussian basis of functions. The method is used to establish the energy structure of the electrons 
in metallic lithium as a function of temperature. The calculated density of states, optical 
conductivity, the K-edge of the x-ray emission spectrum, and other properties of the electrons 
agree with the experimental data. Small variations in the band energies for lithium are 
discovered. The most important ones are the broadening of the core electron states and the 
transition of outer-shell electrons from s-symmetry states to p-symmetry states as the temperature 
grows. O 1996 American Institute of Physics. [S 1063-776 1 (96)023 10-41 

1. INTRODUCTION 

Modern band theory assumes that the energy structure of 
electrons experiences no significant changes when the atoms 
are thermally excited. The present paper discusses the most 
important variations in the band structure of the electrons in 
metallic lithium. Lithium was chosen as the object of inves- 
tigation for two reasons. First, this metal has been studied 
fairly well both experimentally and theoretically, so that it 
can be considered a suitable test material. Second, thanks to 
the anomalies in the elastic properties of lithium at high pres- 
sures and low temperatures discovered in experiments1 and 
the theoretical predictions of the transition of lithium to a 
n~agnetically ordered state at large values of the lattice 
constant2 there is an unflagging interest in this material. 

2. THE HARTREE-FOCK EQUATIONS 

The problem of finding the spectrum of atoms and mol- 
ecules within the Hartree-Fock method can be assumed 
solved and realized numerically by computer calculations 
that employ either difference schemes or basis 
approaches.3-6 An unfortunate feature of this problem, how- 
ever, is the presence of branches of divergent solutions. But 
even this difficulty can be resolved, at least in principle.7 The 
problem of establishing the single-particle spectrum E i k  of 
the wave functions lPik of the electrons in a crystal requires 
solving a system of more complicated Hartree-Fock equa- 
tions, which for monatomic lattices can be written as 

OCC 

Here m is the electron mass, e2  is the square of the electron 
charge, h is the Planck constant (in the atomic system of 
units we can assume in = 4, 772 = 2 ,  and fi = 1 ), Z is the 
atomic number of the element, A is the Laplace operator, 
rT(r) i s  the Dirac's delta function, and 

is the probability density of discovering an electron at a point 
defined by the vector r within a cell of volume 0. Note that 
both on the right-hand side of Eq. (2) and in the exchange 
tern] in Eq. (1) the summation is over occupied states with 
quantum numbers j and wave vectors k. We write the 
Green's function in the form of a sum over the vectors Rp of 
the direct lattice: 

To solve Eq. (1) we select Gjk(r) in the form 

where for xi(r) it is convenient to take a linear combination 
of Gaussian functions8 that satisfies the Bloch theorem. For 
s-symmetry states, 

By differentiating ( 5 )  with respect to the components of the 
parameter a we can easily obtain functions with y-, d-, and 
f -symmetry. 

Representing the wave function in the form (4) makes it 
possible to reduce the problem of solving Eqs. (I) to the 
algebraic problem of finding the eigenvalues E and the co- 
efficients {C): 

FC= ESC. (6) 

Here F is the Fock matrix. Its elements can be written as 
follows: 

where 
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where S is the overlap integral matrix, Kkk, are the matrix 
elements of the kinetic-energy operator, Nkkt is the Coulomb 
electron-nucleus interaction integral, Bkkt,nm is the Coulomb 
electron-electron interaction integral, and Dkn,k,m is the ex- 
change integral. For the functions (5) these matrix elements 
can be calculated by the method described in Ref. 8. 

3. THE AVERAGED GREEN'S FUNCTION 

If we assume that each atom in a crystal lattice under- 
goes small vibrational displacements up about the equilib- 
rium position determined by the vector Rp, then the new 
position of the atom can be specified by the radius vector 
Rp + up. Substituting Rp + up for Rp in the expression of the 
structural Green's function (3) and averaging over an en- 
semble of displacements {up) within the adiabatic approxi- 
mation, we get 

Here erfc(x) is the complementary error function, and (u2) 
is the standard deviation of the atoms. 

Note that the method used here to average the Green's 
function makes it possible to take into account only elastic 
and coherent electron-phonon scattering. For this reason it 
could prove inapplicable in describing the electron states 
near the Fermi level. 

4. RESULTS AND DISCUSSION 

In the first stage of our iterative search for a self- 
consistent solution of the Hartree-Fock equations we use 
matrix elements averaged over the wave vector k. Calcula- 
tions of such matrix elements do not take much time. In this 
case the procedure is similar to that of self-consistent atomic 
calculations but involving "crystal" matrix elements. The 
subsequent calculation of the spectrum as a function of the 
wave vector k requires practically no iterations. The varia- 
tions in the spectrum are even smaller if matrix elements 
with (u2)#0 are employed. For this reason here too we use 
the same set of variational expansion coefficients {C) found 
in the iteration process involving matrix elements averaged 
over the wave vector k. We used the REDUCE program9 in 
the analytical calculations of p -  and d-symmetry matrix ele- 
ments, in resolving the indeterminancies in these matrix ele- 
ments, and in subsequent FORTRAN programming. 

Now let us discuss the results of self-consistent calcula- 
tions of the spectrum and the properties of electrons in me- 
tallic lithium with a body-centered cubic lattice. The lattice 
constant was assumed constant and equal to the experimen- 
tally established value of 6.597 a.u. The basis set of func- 
tions was the same as in Ref. 10. Figure 1 depicts the energy 
bands along some symmetric directions. The results obtained 
by Ching and ~ a l l a w a ~ ' '  with a different exchange potential 
differ little from those of the present work. The shape of the 

FIG. 1 .  The energy band structure of the electrons of outer-shell states in 
metallic lithium along some symmetry directions of the Brillouin zone. 

spectrum curve also changes little under thermal excitation. 
However, some differences do exist, and we discuss them 
below. 

We discovered that the outer-shell electrons are redis- 
tributed according to symmetry types: N(s) = 0.32 and 
N(p) =0.68 at (u2)=0,  and N(s) =0.15 and N(p) =0.85 at 
T =  0 and (u2) = 0. 16(a.u.12. This transition of electrons 
from s-symmetry states to p-symmetry states can be inter- 
preted as the strengthening of directional bonds. This ten- 
dency is observed with the increases in temperature, but the 
strengthening is insignificant. Figure 2 depicts the density of 
outer-shell states, with the partial densities of states desig- 
nated by the letters s ,  p ,  and d.  Thermal excitation has prac- 
tically no effect on the shape of these curves. In particular, at 
the Fermi energy we have D(s) =0.69, D(p)=5.67, and 
D(d)  = 0.00 at (a2) = 0;  D(s )  = 0.58, D(p)  = 5.69, D(d)  
= 0.02 at T= 0 and (u2) = 0.16(a.u.)~; and D(s)  = 0.54, 
D ( p )  =5.40, and D(d)  = 0.02 at T= 450 K and (u2) 
= 1.00(a.u.)~. These values show that the variations in the 
densities of states are small and are different for each sym- 
metry type. The width of the band occupied by electrons 
increases from 0.267 Ry to 0.274 Ry with temperature. On 
the whole, though, our results of calculations of the energy 
band structure of the electrons prove to be satisfactory when 

FIG. 2. The total density D of the outer-shell states and its s-, p-, and 
d-components for lithium electrons measured in number of states per atom 
per rydberg unit. 
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FIG. 3. The energy band structure of the electron of the core states in 
lithium along some symmetry directions of the Brillouin zone. 

compared with previous calculations cited in the literature 
and with the experimental data.'' 

The temperature dependence of the core states is quite 
different, however. The band structure and the density of the 
core states at (u2)=0 are depicted in Figs. 3 and 4, respec- 
tively. All these states have the 1 s-symmetry, which does 
not change under thermal excitation. But the width of the 
band increases from 0.0010 Ry to 0.0013 Ry (at T =  0 )  and 
then to 0.0063 Ry (at T=450 K). This phenomenon (broad- 
ening of the band of the core states caused by an increase in 
temperature) corresponds to the current ideas and leads to an 
experimentally observed broadening of spectral lines and 
weakening of the intensity of the peaks in x-ray spectra. 

The calculated position of the Fermi level, 4.036 Ry, in 
relation to the peak in the density of core states fully agrees 
with the experimentally discovered value 4.03 Ry of the po- 
sition of the edge of x-ray spectra." The temperature depen- 
dence of the K-edge of the x-ray emission spectrum in 
lithium is depicted in Fig. 5, where the solid curve represents 
the results of calculations. These results coincide (within ex- 
perimental errors) with the experimental data,'' depicted by 
dots. Note that in Fig. 5 the position of the K-edge of the 
x-ray spectrum is measured from the value of AE with 
(u2)=0. 

The calculations of optical conductivity were done with 
the model of direct interband transitions. The results are de- 

FIG. 4. The total density D of the core states for lithium electrons measured 
in number of states per atom per Rydberg unit. 

FIG. 5. The temperature dependence of the K-edge of x-ray emission spec- 
trum in lithium. The solid curve represents the results of calculations and the 
dots correspond to the experimental values. 

picted in Fig. 6 (curve I ) .  The resulting value of 0.27 Ry for 
the lower edge of the direct transitions is somewhat lower on 
the energy scale than the values calculated by other 
researchers." The results in the literature suggest that the 
beginning of interband transitions is located even lower on 
the energy scale than the present result. The discrepancy be- 
tween the calculated results and the experimental data is be- 
lieved to be caused by indirect transitions. The results of 
calculations of optical conductivity done with the model of 
indirect interband transitions is also depicted in Fig. 6 (curve 
2). The resulting value of the gap in indirect interband tran- 
sitions is in good agreement with the experimental data: 
- 0.18 Ry at 125 K. Thus, inelastic electron-phonon scatter- 
ing has proved to play an important role in the formation of 
the optical conductivity spectrum of lithium under thermal 
excitation. 

On the whole, atomic vibrations in the lattice (averaged 
over the displacement ensemble) lead to small changes in the 
energy band structure of the electron in lithium. The follow- 
ing changes are the most significant: the shift and broadening 
of the core bands, and the transition of outer-shell electrons 
from s-symmetry states to p-symmetry states with increasing 
temperature. 
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