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The possibility of realizing simple single-electron logic gates (where information is stored in 
spins of individual electrons) by means of arrays of tunnel-coupled quantum dots with strong 
intradot Coulomb interaction is considered. The exact diagonalization technique for the spin- 
112 Heisenberg model is used to analyze quantum dot structures realizing a number of the simplest 
logic gates (NOT, AND, NAND, OR, NOR, NXOR, and half-adder). It is shown that for all 
gates considered the entire truth table can be obtained by choosing appropriate values of the local 
magnetic fields at the dots which are regarded as the gate inputs. O 1996 American 
Institute of Physics. [ S  1063-776 1(96)02010-01 

1. INTRODUCTION 

Conventional computers perform operations on classical 
Boolean logic variables which accept one of the two values 0 
and 1. Even in today's microelectronics, each of these vari- 
ables is physically associated with a macroscopic object in- 
volving millions of electrons. However, the general trend to 
reduce the size of computer.components and increase their 
speed and data storage density requires gradual introduction 
of new nanometer scale technologies where information is 
stored and processed at the level of single electrons. The 
simplest way to establish a one-to-one correspondence be- 
tween a Boolean variable and a quantum mechanical system 
is to associate the bit values 0 and 1 with any two eigenstates 
of the system (for example, the two opposite spin polariza- 
tions of an electron trapped in a potential well). The idea of 
using a two-state system to represent the Boolean variable 
values (0 and 1) was first seriously analyzed by ~ e ~ n m a n . '  
However, it was soon realized2 that these quantum bits ("qu- 
bits") provide much wider opportunities for information pro- 
cesses. Since then, there has been active research in both 
general problems of quantum computation and the practical 
design of simple quantum gates.374 The point is that being a 
quantum system, the qubit can be found in any superposition 
of the two states forming the basis of the two-dimensional 
system space. Therefore, in a system of qubits it is possible 
to achieve the interference of states corresponding to differ- 
ent parallel computation paths. In this way it is possible to 
develop extremely efficient algorithms for quantum compu- 
tations which are exponentially faster than any available con- 
ventional algorithms.3.4 

FIG. I .  Array of quantum dots on a solid surface. 

However, in the present paper we shall restrict our atten- 
tion to the conceptually much simpler case of single-electron 
spin gates first proposed by Bandyopadhyay et al.I5 which 
employ classical Boolean logic. In that approach the com- 
puter is thought of as consisting of a set of coupled spin 
gates, each of which is a system of interacting spins associ- 
ated with a number of sites spatially configured to realize a 
particular logical function. In such a gate (and a computer as 
a whole) the stored information is determined by the spin 
configuration of the system ground state, i.e., a set of 
quantum-mechanical ground state average values of each 
spin (gi), such that (ii) < - s , ( ( i i )  > S,) ,  where S, > 0 is a 
certain threshold value and corresponds to logical zero (unit). 
Thus, here the states of a quantum system are mapped onto 
the Boolean variables in a less restrictive way than for re- 
versible quantum gates, where the Boolean variables are as- 
sociated with certain pure quantum states. Interaction be- 
tween the gates is realized through the quantum coupling 
between the neighboring spins. Computing is performed by 
the appropriate action of an external agent (e.g., local mag- 
netic fields) on the system input sites, which changes the 
system Hamiltonian so that the new ground state (its spin 
configuration) can represent the result of a desired computa- 
tional operation. Although these gates are not bona jide re- 
versible quantum gates, their analysis has much in common 
with the problems arising in truly quantum computing. 

The spin gates we are going to consider are assumed to 
consist of a number of tunnel-coupled quantum dots (poten- 
tial wells for electrons) fabricated on a solid surface. The 
following conditions are believed to be necessary to allow 
the realization of standard logical functions. 

1. Antiferromagnetic interaction between the electrons in 
adjacent dots (more rigorously, antiferromagnetic correla- 

TABLE I.  Invertor (NOT gate) truth table. 

A Y 
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TABLE 11. Truth table of the NOT-AND gate. 

Y = , T  
A B Y 

lnvertor t 1 A 

FIG. 2. Invertor (NOT gate) realized by a pair of tunnel-coupled quantum 
dots. 

off the output dots by applying appropriate voltage between 

tions between the adjacent electrons in the ground state). the Output and magnetic probes, exploiting the fact that 

 hi^ condition can be satisfied if there is a strong intradot the tunneling current depends on the mutual orientation of 

electron-electron Coulomb interaction. The tunnel coupling the dot and probe tip magnetizations. The tunnel current 
among the dots serves as quantum wires. ~ ~ f ~ ~ ~ ~ i ~ ~  is spin-dependent component is proportional to the scalar prod- 

stored in the direction of electron spins. uct of the dot and probe tip  magnetization^:'^^^^ 
2. Each dot has a single size-quantized level. I ta  (hdothiot). 

3. On the average, there is one electron per dot. Although rather speculative, the above scheme is in no 
way unrealistic, since all the necessary ingredients have al- 
ready been separately realized experimentally. 

2. POSSIBLE REALIZATION BASED ON QUANTUM DOTS 

The computer architecture can be described in the fol- 
lowing way. An array of quantum dots configured to perform 
a particular logical function is fabricated on a solid surface 
(Fig. 1). Positioned at the edge of the array are probes similar 
to those used in spin-polarized STM. Some of these probes 
serve as inputs and the rest as outputs. The magnetization 
direction in the probes can be controlled by applying a mag- 
netic field to their far ends (e.g., by induction coils). In that 
case the probes actually serve as magnetoguides. It is as- 
sumed that when information is written to the inputs, there is 
no current between the probes and corresponding dots, i.e., 
the applied voltage is zero. The electron spins at the input 
dots are aligned by the local magnetic fields at the probe tip. 
The total number of electrons in the array of quantum dots 
can be controlled by adjusting the substrate voltage. After 
the system relaxes to its new ground state, corresponding to 
the applied local fields, the result of the computations is read 

1. An array of several thousands of -10 A metal clusters 
has been produced on a solid surface by blowing off the 
atoms from an STM tip.21 Fabrication of quantum dots with 
a single size-quantized level will require a search for an ap- 
propriate material. 

2. The tunnel current has been experimentally shown to 
be sensitive to the spin of single magnetic atoms at a solid 

(-6 A lateral resolution was achieved). More- 
over, it is even possible to observe the precession of a single 
electron spin at the surface24 and the electron spin 
r e ~ o n a n c e . ~ ~ - ~ ~  

3. Recently, an operational prototype of an integrated 
100 pm size tunneling microscope fabricated on a single 
chip by means of microelectronics technology was 
demonstrated30 (Hitachi Advanced Research Laboratory), 
which is an important advance in the way of solving the 
problem of creating a system of several STM probes sepa- 
rated by a controllable distance at the nanometer scale 
(which is impossible in conventional STM design). 

NOT-AND (NAND) gate 
@ @ @  

FIG. 3. Quantum dot realization (a) 
and physical truth table (b) of the 
NOT-AND gate. Domains are la- 
beled by the corresponding lines in 
the truth table. 
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TABLE 111. Truth table of the AND gate. 

A B Y 

applied to the input dots. The Hamiltonian describing the 
interaction with these fields is then 

(input) 

Our goal is to find the physical truth tables, i.e., the range of 
control signals (local magnetic fields at the input dots) cor- 
responding to the realization by the system ground state of 
the truth table of the logical function which should be imple- 
mented by a particular gate. Clearly, combining the above achievements in a single 

device will require much further efforts; however, these ad- 
vances unambiguously indicate that the single-electron spin 
gates are gradually shifting to the plane of practical reality. 

lnvertor (NOT gate) 

The simplest logic gate is the invertor whose truth table 
is given by Table I and physical implementation is shown in 
Fig. 2. 

The operation of this gate can be completely treated ana- 
lytically. Ideally, one wishes to have the state 11) at the out- 
put if the state If) is created at the input. The exchange 
interaction transmits the inverted state from the input to the 
output. However, the pure IT) and 11) states cannot be real- 
ized at the input and output dots in any ground state since the 
interaction inevitably admixes other states. Therefore, the 
spin configuration shown in Fig. 2 (as well as for other gates) 
should be understood as a milder requirement on the 
quantum-mechanical averages (GA)and (&,)rather than as 
pure states 1 t )Al J), and vice versa. 

In the basis of states laAaB) the eigenvalue problem for 
the Hamiltonian (1) is written as 

3. MODEL FOR THE SPIN GATES 

If the intradot Coulomb repulsion is sufficiently strong, 
the Hubbard model at half-filling reduces to the Heisenberg 
model, to which we restrict our further analysis in the present 
paper since this simplification allows a drastic reduction of 
the size of matrices one has to deal with in the exact diago- 
nalization approach. We shall consider the Hamiltonian 

where c?,,,,~~ are the Pauli matrices describing the electron at 
site i (it is more convenient to use &z,,,yiinstead of the spin- 
112 operators We shall assume that the exchange H =  
interaction favors the antiferromagnetic ordering (J > 0). 

The system is controlled by external local magnetic 
fields (for simplicity assumed to be parallel to the z-axis) 

B "Iy 
AND gate 

FIG. 4. Quantum dot realization (a) 
and physical truth table (b) of the 
AND gate. 
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TABLE IV. Truth table o f  the OR gate. TABLE V .  Truth table o f  the NOR gate. 

A B Y A B Y 

The eigenenergies are: e3=  - hA+ J ,  c3 =hA+ J (eigen- 
functions l T T )  and I l l ) ,  E = - J 2 Jp. At zero input 
signal hA = 0,  the ground state energy is E ,  = - 35 (remem- 
ber that J>O) with the corresponding eigenvector 19,) 
= ( 1  T 1) - I 1 T ) ) I  fi. The eigenvector associated with the 
 level^ = - J is1q2) = ( I T  1) +I 1~) ) i  \IZ.~orzeroma~netic 
field at the input dot the system ground state is a mixed state 
(a state which cannot be factored) in which neither input nor 
output bits have a definite value. When a control signal is fed 
to the input, the ground state turns into 

I~gr)=~IT- l )+uI lT) .  
where 

Thus, nonzero average spins arise only to the extent that the 
external magnetic field at the input dot is different from zero. 
The equality (GA) = -(GY) is always satisfied, just as re- 
quired by the truth table. The physical truth table for the 
invertor (the range of magnetic fields at the input dot where 
the spin configurations required by Table I are realized) con- 
sists of two parts. In the first one (hA > 0)the first row of 
Table I is reproduced, and in the second one (h, < 0) the 
second row is realized. Formally both these regimes can be 
achieved at arbitrarily low magnetic fields (although with 
equally small average spins). 

(4) The above example demonstrates how the interaction be- 
tween the adjacent dots can serve as a "quantum lead" and 
transmit the signal from the input to the output dot. 

The quantum-mechanical averages of the input and output NOT-AND (NAND) gate 
dot spins become 

This gate has two control inputs (A  and B) and one 

( ~ ~ ) = ( q ~ ~ l & ~ / q ~ ~ ) = ~ ~ - ~ ~ =  
h A  

(5) 
output (Y). Its truth table is given by Table I1 and the physi- 

Jp' cal realization based on quantum dots is shown in Fig. 3a. 
This gate can also be analyzed analytically; in the basis 

- 
h A  

(6) ITTTL ITtl), ITlt), I lTT ) ,  I T l l ) ,  I l T l ) ,  I l l T ) ,  1111) its Hamil- 
d p '  tonian can be written as 

OR gate 

FIG. 5 .  Quantum dot realization (a) and 
physical truth table (b )  o f  the OR gate. 
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Y = A + B = ; ~ E  
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NOT-OR (NOR) gate 00 @ 00 
0 

00000 

FIG. 6. Quantum dot realization (a) and physical truth table (b) of the NOR gate. 

where 

and those obtained from the above by reversing the spins at 
all sites (Kramers degeneracy). Note that in zero magnetic 
field all the states (including the ground state) are doubly 
degenerate. 

It is not obvious whether there exist ranges of the control 
' parameters hA and h,  implementing the entire truth table of 

the gate. Formally, the problem can be formulated as fol- 
lows: is it possible to modify the ground state spin averages 
at the relevant dots in the required way by adjusting the 
external magnetic fields only? 

(7) Results of numerical analysis of the physical truth table 
are presented in Fig. 3b. (Here and below, unless stated oth- 
erwise, we have chosen the spin threshold S,=0.1, i.e., the 
electron spin at a particular dot is assumed to point upwards 
(downwards) if the condition (a,) > O.l((u,) < - 0. 1)is sat- 
isfied). Each row in the truth table (Table 11) corresponds to 
a domain in Fig. 3b. The first row is easily realizable: if the - 

& _ + = - & - h A + h B ,  ~ - - = - ~ - h , ~ - h ~ ,  magnetic fields at dots A and B align electron spins upwards, 
the antiferromagnetic exchange maintains the output spin in 
the downwards position, and a similar situation occurs for 
the last row. These spin configurations are "natural" for the 
antiferromagnetic interdot coupling, and the input magnetic 
fields only lift the degeneracy between these two states. It is 

In zero magnetic field the eigenenergies and corresponding less obvious that the second and third rows in Table I1 can 
eigenvectors are: also be realized. Although the corresponding spin configura- 

tions are not favored by the antiferromagnetic coupling, they 

1 1 still can be realized by applying sufficiently high input mag- 

I * , ~ , ) = - ~ T I ) -  $ I T ~ T ) + - I ~ T T )  € = - 4 J ,  6 6 
TABLE VI. T ~ t h  table of the NXOR gate. 
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B-7!Y-" 
NOT-XOR (NXOR) gate 

input a 
input 

input 

-netic fields compensating for large exchange energy due to 
parallel spins at adjacent dots. 

AND'gate 

The next in con~plexity is the AND gate which can be 
obtained from the preceding gate adding the invertor to its 
output (f). The logical truth table and quantum dot realiza- 
tion are presented in Table 111 and Fig. 4a, respectively. The 
total number of states here, 24 = 16, is rather large and the 
problem can only be solved numerically. 

The physical truth table obtained by the exact diagonal- 
ization technique and shown in Fig. 4b reveals that by ad- 
justing the input magnetic fields it is possible to realize the 
entire truth table. As with the NAND gate, some configura- 
tions can only be realized at finite magnetic fields (on the 
order of the exchange coupling, if measured in energy units) 
while the "natural" configurations are realized at arbitrarily 
low magnetic fields (for spin threshold S,=O). 

OR gate 

The OR logic gate has two inputs ( A  and B) and one 
output ( Y ) ;  its truth table is given by Table IV, and its physi- 
cal realization consisting of five quantum dots (total number 
of states 25 = 32) is shown in Fig. 5a. 

Note that the states of inputs A and B in this gate are 
"transferred" to the output Y through the pieces of a "quan- 
tum wire" built of the intermediate quantum dots. Just as in 
previous cases, the entire truth table can be realized for suf- 
ficiently high input magnetic fields. 

NOT-OR (NOR) gate 

This gate is obtained from the preceding one (OR gate) 
by inverting the output signal achieved by adding one more 

FIG. 7. Quantum dot realization (a) and physi- 
cal truth table (b) of the NXOR gate 
(S,=0.05) .  

dot. The logical and physical truth tables are presented in 
Table V and Fig. 6a, respectively. It is seen from Fig. 6a that 
all the required spin configurations- can be realized for arbi- 
trary small input magnetic fields. 

NOT-XOR (NXOR) gate and half-adder 

A possible realization of the NOT-excluding-OR gate 
(NXOR gate, see 'I'able VI and Fig. 7a) involving 11 dots 
(total number of states is 2048) was proposed in Ref. 15. 

Note that the realization of the NXOR gate requires 
three rather than two physical inputs: one has to introduce an 
additional input representing the inverted A signal (A, see 
Fig. 7a). In modelling this gate, it was assumed that equal in 
magnitude and opposite in direction magnetic fields h A  anti 
- h, were applied to the inputs A  and A, respectively, and 
the field h ,  was applied to input B .  To obtain the XOR gate, 
one should simply add one more dot next to the output so 
that the resulting combination of the NXOR gate and an 
invertor produce the required XOR gate. However, this 
modification would result in too large matrices which could 
not be diagonalized in reasonable time on our computers. 

The only difference between the half-adder and the XOR 
gate is that the former has one more output (C) representing 
the carry bit. The output Y corresponds to the sum (C) of two 
bits at the inputs A  and B. Since we cannot consider the true 
half-adder obtained from the 12-dot XOR gate, we analyze 
the gate which we for obvious reasons rather arbitrarily call 

TABLE VII. NOT-half-adder truth table. 

A B X C 

0 0 I 0 
0 1 0 0 
I 0 0 0 
I 1 1 I 
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input I 0 

input 2 @ 

of inverse input 1 0 
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FIG. 8. Quantum dot realization (I I 
dots) (a) and physical truth table (b) of 
the NOT-half-adder (S,=0.05). 

"NOT-half-adder." The truth table of the NOT-half-adder is 
given by Table VII, and its physical realization, identical to 
that of the XOR gate, is shown in Fig. 8a. Here again the 
total number of states is 2048. 

The physical truth table of the NOT-half-adder is ob- 
tained from that of the XOR gate by imposing an additional 
constraint on the average spin value at the C dot (carry bit); 
therefore, it is actually a proper subset of the XOR physical 
truth table. The problem is whether or not all the domains of 
the XOR physical truth table survive after the appropriate 
restriction on the electron spin at dot C is imposed. Figure 8b 
reveals that the answer is affirmative. Although two of the 
domains are seen to substantially shrink after this procedure, 
they are all retained in reasonable magnetic fields. Note that 
the threshold spin S, for both Figs. 7b and 8b was chosen to 
be 0.05; the reason is that for S, =O. 1 the domain correspond- 
ing to the 0100 spin configuration (second row in Table 11) 
completely vanishes. In addition, a tiny island at low mag- 
netic fields (HA<O, HB>O in the third quadrant) where the 
010 and 0100 spin configurations are realized also vanishes; 
other domains are not so severely affected by this change. 
Therefore, the logic truth table cannot be fully realized with 
s,>o. 1. 

Note that the above NXOR realization is not the only 
possible one. For example, it is even possible to construct the 
XOR gate (Table VIII, Fig. 9) and the true half-adder with 

only 9 dots (Table IX, Fig. 10) at the expense of introducing 
additional input for the inverted B signal. 

The physical truth tables shown in Figs. 7b and 8b ex- 
hibit one striking feature. The point is that the domains cor- 
responding to the 001 (Fig. 7b) and 0010 (Fig. 8b) spin con- 
figurations are located in the domain where HA>O, HB<O, 
rather than in the intuitively expected domain HA>O, HB>O. 
This circumstance can present an obstacle on the integration 
of separate gates into a single network, since the input spin 
configuration ( S A )  > 0 ,  ( S B )  > 0 (which should itself be 
taken as the output of the preceding stages of a particular 
operation in the quantum dot array and transferred to the 
inputs of the NXOR gate through the chains of quantum 
dots) is expected to be represented by input signals with 
HA>O, HB>O. Perhaps the most suitable for the network 
integration would be the situation where the domains in the 
physical truth table corresponding to different rows in the 
logic truth table are characterized by magnetic fields Ho  of 
approximately the same magnitude common to all gates [i.e., 
are located in the neighborhood of points (Ho ,No), (H,, 
- Ho), ( - H , ,  H,), and ( - H,, - H,)]. At present, we 
have some preliminary results for the simplest gates indicat- 
ing that this goal can be achieved if one considers the aniso- 
tropic Heisenberg model (J, = J, < J,)and introduces addi- 
tional constant local magnetic fields at appropriate dots in the 
gate. 

TABLE VIII. Truth table of the XOR gate. TABLE IX. Half-adder truth table. 

A B Y A B C C 
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*-ID-- B Y = "+A" 

XOR gate 

input 1 of input 1 

inverse 
of input 2 

FIG. 9. Quantum dot realization (9 dots) (a) and physical truth table (b) of the XOR gate. 

4. CONCLUSION tum dots. The present study reveals that the interdot ex- 

We have studied the possibility of achieving ground 
state computing with quantum coupled architecture in the 
structures of tunnel-coupled quantum dots on a solid surface. 
Because of computer resource limitations, we were only able 
to consider gates containing no more than 11 quantum dots. 
The gates investigated include NOT, NAND, AND, OR, 
NOR, NXOR gates and half-adders. The results obtained re- 
veal that for all these gates the input local magnetic fields 
can be chosen so as to realize the entire truth tables. Strictly 
speaking, in the quantum coupled architecture the entire 
computer should be described by a single wave function cor- 
responding to the ground state of the system as a whole. 
Therefore, it is important to find out whether the spin corre- 
lations can be maintained throughout large arrays of quan- 

9 inverse 
of inout 1 

change interaction is sufficiently strong to ensure the 
required "magnetic orders" (ground state spin configura- 
tions) even in the largest considered gates, although for the 
half-adder realized on 11 dots one of the domains in the 
physical truth table is rather small, which seems to be related 
to the fact that for this gate each line in the logical truth table 
imposes restrictions on the spin orientations at four quantum 
dots rather than three as it was the case for all other non- 
trivial gates. Hence, it would be very interesting to consider 
a quantum dot realization of the adder gate which should 
have three inputs (the bits A and B to be added, and the carry 
input Cin) and two outputs (the result of addition of A and B 
module 2 and the carry output C,,,). Unfortunately, analysis 
of such a scheme is beyond our current computer resources. 

FIG. 10. Quantum dot realization (9 dots) (a) and physical truth table (b) of the half-adder without inversion of output. 
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