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The problem of the shape of the free-induction decay signal in a solid is solved analytically, on 
the basis of the hypothesis advanced here that a similarity exists between the temporal 
correlation functions arising in an infinite chain of coupled differential equations for the NMR free- 
induction decay signal and the temporal correlation functions which are associated with this 
signal, for crystals with a large number of equivalent nearest neighbors surrounding any spin in the 
lattice. It is demonstrated that the similarity law is a consequence of definite symmetry 
relations between the coefficients appearing in the chain of equations for the temporal correlation 
functions. Moreover, the proposed similarity law is confirmed for the first two temporal 
correlation functions by a direct numerical calculation for fragments of a simple cubic lattice 
with periodic boundary conditions and linear crystalline polyethylene. O 1996 
American Institute of Physics. [S1063-7761(96)01610-I] 

1. INTRODUCTION 

Oscillations in the free-induction NMR decay signals in 
a solid were first observed experimentally in 1957 by Lowe 
and ~ o r b e r ~ . '  Since the free-induction decay signal is the 
Fourier transform of the absorption spectrum, the results ob- 
tained were fundamentally at variance with the beliefs which 
were widely held at that time and which go back to the first 
works on the observation of N M R : ~  The absorption line- 
shape must be close either to a Lorentzian or a Gaussian 
curve. The Gaussian spectra were associated with a quasis- 
tatic distribution of the local fields, which was assumed to 
arise in ordinary solids. The Lorentzian spectra, however, 
were associated with, e.g., for example, liquids and solids 
with a strong exchange interaction, i.e., substances in which 
rapid fluctuations of the local magnetic field are present. 

The presence of oscillations in the free-induction decay 
signals of a CaF, single crystal-a classic test object for 
investigating NMR spin dynamics-gave rise to many theo- 
retical and experimental works (for example, Refs. 3-10), 
and their number is still increasing. There is great interest in 
this problem, on the one hand, as a specific example of the 
central problem of nonequilibrium statistical mechanics-the 
problem of the establishment of equilibrium in systems of 
many interacting bodies. On the other hand, the shape of the 
magnetic-resonance spectra contains information about the 
crystal and electronic structure of the sample and about the 
mobility of atoms and atomic groups, i.e., it contains a sub- 
stantial fraction of the information accessible to the method, 
and in solids part of this information is, as a rule, masked by 
the main broadening mechanism (the dipole-dipole interac- 
tion of the nuclear spins). Finally, we note that the NMR 
lineshape problem is related to spin-diffusion problems," the 
problem of calculating the magnetic part of neutron scatter- 
ing by paramagnets,'2 and the spectrum of Raman scattering 
from quadrupole s o ~ i d s ' ~  and it has deep analogies with 
many other problems in the statistical physics of condensed 
media. At the same time, the obvious advantages of nuclear 

spin systems, which make them, in the words of Bloember- 
gen, an "excellent laboratory of statistical physics," are the 
relative simplicity of the well-known spin-spin interaction 
laws, the weak coupling of the spins with the crystal lattice, 
and the possibility of making precise measurements by NMR 
methods. 

The objective of the present paper is to seek and to in- 
vestigate similarity laws and their consequences for the tem- 
poral correlation functions arising in an infinite hierarchy of 
coupled differential equations, the first of which is the equa- 
tion for the free-induction decay signal, and to construct on 
this basis an analytical solution of the problem of the shape 
of magnetic-resonance spectra for crystals with a large num- 
ber of spins in a cell. l4  

2. FREE-INDUCTION DECAY IN NONMETALLIC 
DIAMAGNETIC CRYSTALS 

As is well known,'' the free-induction decay signal ap- 
pearing after a d 2  pulse is applied to an equilibrium nuclear 
spin system in a strong constant magnetic field H o  is propor- 
tional to the temporal correlation function determined in a 
coordinate system rotating with the Larmor frequency by the 
relation 

where 

is the total x-component of the spin of the system, satisfying 
the Heisenberg equation of motion 
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In Eq. (2) and below, energy is measured in frequency units; 
H is the secular part of the dipole-dipole interaction,15 
which is mainly responsible for the broadening of the NMR 
spectra in nonmetallic diamagnetic crystals, 

the vector rij  connects the spins i and j, B i j  is the angle made 
by the vector ri j  and an external magnetic field, and y is the 
gyromagnetic ratio. 

At the beginning of the 1960s, ~ b r a ~ a m ' ~  found empiri- 
cally that the free-induction decay signal in a CaF2 single 
crystal at not too long times is described, with reasonable 
accuracy (different for different orientations of the external 
magnetic field with respect to the crystallographic axes), by 
the expression 

The quantities a and b were chosen so as to obtain the cor- 
rect second and fourth moments of the absorption line. Later, 
it was shown experimentally'6 that for t 3  3T2 the Gaussian 
component of the free-induction decay signal (4) transforms 
into an exponential 

The first attempt to explain these simple and surprisingly 
"physical" results was the model proposed in Ref. 14. It was 
noted there that the entire crystal can be divided with respect 
to a distinguished (arbitrary) spin with the label 0 into two 
regions, in one of which the motion of the spins is correlated 
with the distinguished spin and in the other it is not. The 
region with the correlated motion was termed a cell. Here, of 
course, the discussion concerned exclusively the temporal 
correlations-the temperature of the nuclear spin system is 
essentially infinite. It was determined14917.'8 that the 
Gaussian-exponential contribution in the trial functions (4) 
and (5) is due to spins which are located outside the cell. The 
shape and parameters of this component of the free-induction 
decay signal were completely calculated in the same treat- 
ments. Later, it was shown in Refs. 17 and 18 that in crystals 
with a large number of spins in a cell the flip-flop process 
described by the term H f f  in the Hamiltonian (3) occurs for 
each pair of spins independently of the flip-flop process in 
all other pairs. This made it possible to construct a simple 
and convenient "pair-interaction model" which gives for the 
free-induction decay signal To(t) of a cell an integral equa- 
tion whose numerical solution satisfactorily describes the ex- 
periment. At the same time, the simplicity and "physicality" 
of the trial function r o ( t )  = sin(bt)lbt, pertaining in accor- 
dance with the results of Refs. 14, 17, and 18 to the free- 
induction decay signal of the spins in a cell, undoubtedly 
makes it necessary to construct a theory which could give an 
analytical (and not numerical) description of the component 
ro( t ) .  This is especially true, since, as has been demon- 
strated experimentally, the trial functions (4) and (5) describe 

very well the experimental free-induction decay signals not 
only for different orientations of the external magnetic field 
in CaF2 but also for a wide class of crystals (see, for ex- 
ample, Refs. 19 and 20) in which a spin in the lattice is 
surrounded by a large number of neighbors. Therefore the 
other objective of the present work is to construct a theory 
that demonstrates the well-known universality of functions 
of the form (4) and (5) for solids of this kind. 

3. SIMILARITY OF TEMPORAL CORRELATION FUNCTIONS 

In Ref. 21 it was shown that the problem of calculating 
the free-induction decay signal (1) is completely equivalent 
to solving an infinite (dimension system of differential 
equations 

&(t) = i(A,- l(t) + v:+ ,A,+ l( t)) ,  (6) 

with the initial conditions Ao(0) = 1 and A,(O) = 0 for 
rial. Here Ao(t) = r ( t )  is the total free-induction decay 
signal. The functions {Ai(t)) are "multicommutator" (mul- 
tiparticle) temporal correlation functions, since each differ- 
entiation of the free-induction decay signal (1) adds a com- 
mutation relation and thereby adds another lattice summation 
index. For example, the temporal correlation function A l( t)  

T~[S,~(~)S;(~)S-]  describes pair processes, the function 
A2(t) describes three-particle processes, and so on. The pa- 
rameters {v?), whose values determine the solution of the 
system, are related to the moments of the absorption line 

where {D,) are determinants which have the form 

Here the moments {Mi) are the coefficients of the series 
expansion of the free-induction decay signal in powers of the 
time: 

As a result of the high temperatures, only the even-orde~ 
moments in Eqs. (8) and (9) are different from zero. For 
convenience, we present expressions for the first few coeffi- 
cients: 

We note that, in accordance with the result of Ref. 22, the 
relations (6)-(lo), which are, in principle, determined for the 
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entire crystal, can be related only to the component of the 
free-induction decay signal that is due to the spins in a cell, 
since the behavior of the solution of the system is completely 
determined by the coefficients { v:). 

In the language of multiple-quantum NMR, developed 
over the last 15 years and now widely recognized and used;3 
the system of equations (6) reflects the transfer of one-spin 
one-quantum coherence Ao(t) to multispin one-quantum co- 
herence~ (the functions {Ai(t))) or, in other the 
flow of a gas of correlations through the one-dimensional 
Liouville space whose points are the indices of the corre- 
sponding coherences (temporal correlation functions). In- 
deed, the initial order transferred to the spin system in the 
form of a magnetization directed along the x axis flows along 
the higher-order temporal correlation functions and is redis- 
tributed among them. 

In Ref. 24 an attempt was made to investigate this flow 
process with the aid of a numerical experiment performed on 
a finite cluster of a simple cubic lattice. Since from the stand- 
point of Ref. 24 the system (6) is too complicated (indeed, to 
find the coefficient v: it is necessary to know the moment 
M2,), in Ref. 24 it is replaced by a simpler, Markovian-type 
system. The main objective of Ref. 24 was to investigate the 
final state of the spin system (distribution of the populations 
(statistical weight) of different coherences at long times). 
From the standpoint of the present work, however, the most 
important fact is the mutual and virtually complete similarity 
of the temporal behavior, neglecting effects associated with 
the finiteness of the cluster, of different temporal correlation 
functions of the system24 which are presented in the figures 
displayed there. 

The fundamental possibility of expressing the higher- 
order temporal correlation functions in terms of the lower- 
order functions goes back to the well-known ideas advanced 
in Bogolyubov's work. On the other hand, the success of the 
pair-interaction in describing free-induction decay 
signals of crystals with a large number Z of spins per cell can 
be attributed to the fact that the higher-order temporal corre- 
lation functions of the system (6) decompose into one-spin 
and pair coherences, which is why there is hope of recon- 
structing the higher-order coherences in terms of the set of 
the lower order coherences mentioned above. Therefore there 
is hope that the time dependence of the relaxation of the 
higher-order temporal correlation functions will be of a form 
that is close to the time dependences of the lower-order func- 
tions. This gives a basis for advancing the hypothesis that the 
flow of the gas of correlations which are described by the 
system of equations (6) in nuclear spin systems with large 
numbers Z exhibits similarity. A more solid motivation for 
this hypothesis will be presented below. 

Let A2(t) from the system (6) satisfy the condition 

where a is a number to be determined below and the func- 
tion r(t)  satisfies the condition r ( t )  +O as t+w. We 
thereby assume that the temporal correlation function A2(t) 
is completely similar to the free-induction decay signal at 
long times and possibly somewhat different at short times. 
The latter circumstance is associated, in an obvious way, 

with the different initial conditions for the functions Ao(t) 
and A2(t) of the system (6), and Figs. 3 and 4 from Ref. 24 
can serve as an illustration of this difference. The spike in the 
amplitude A2(t) from 0 up to a finite value is delayed some- 
what relative to the time t=O and, taking account of this 
delay, we find that the Markovian functions Ao(t) and 
Az(t) from Ref. 24 similar. Therefore for short r ( t )  we ob- 
tain from Eq. (1 1) the relation 

reflecting the mutual similarity of the temporal correlation 
functions with the delay r(t). 

Using the system (6) and comparing directly the series 
expansions of the functions A,(t), A, (t), and A2(t) in pow- 
ers o f t ,  it is easy to verify that the first term of the expansion 
in the power series of the function A2(t) equals -t2/2, 
which, on account of the relation (1 I), uniquely determines 
the choice of the function r(t): 

At the same time, the relation (13) also ensures that the sec- 
ond moment of the spectrum (the first sum rule) is correct. 
Next, let a=p/v:.  Then the similarity law (12) transforms 
the system (6) into the closed equation 

In accordance with Ref. 25 the solution of Eq. (14) has the 
form 

where A = (p- 1 (12, J ,  is a Bessel function of order A ,  and 
C is a normalization constant, which gives the initial condi- 
tions (14). The frequency Fourier spectrum of the function 
(15) is described by the expression 

for Iwl<b and g o ( o )  = O  for Iwl>b. Here T ( x )  is the 
gamma function, and the spectral component (16) is normal- 
ized to unity 

The moments of the function (16) are determined from the 
formula 

The order X of the Bessel function (and therefore the value 
of p )  can easily be related to the excess E (the ratio of the 
fourth moment of the spectrum to the square of the second 
moment) of the component of the free-induction decay signal 
produced by the spins in a cell: 
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FIG. 1. Free-induction decay signal for a CaF, single crystal with the ex- 
ternal field in the [ I  1 I ]  direction. Solid curves--experiment of Ref. 16. 
Dots-proposed theory (the function Eq. (15) with h= I ,  premultiplied by 
the "Gaussian-exponential contribution" from distant 

For field orientations in the [loo] and [I101 directions in 
CaF2, the values of E for a cell, equal to 1.75 and 1.88, 
respectively, can be rounded off to 1.8, which gives A=0.5 
and /3= 2. Therefore, for these orientations, in exact agree- 
ment with the trial functions (4) and (5) ,  we obtain from Eq. 
(15) 

where the value of the parameter b ,  calculated in accordance 
with what was said above as &vo= a, where M i  is the 
contribution of the spins in a cell to the second moment of 
the spectrum, agrees very well with all existing experimental 
results.14,17,20.26 For the spins of a cell in polyethylene and 

field orientation along the axis of the molecule, the computed 
valueIg E =  1.83 can also be rounded off to 1.8. For a field 
orientation in the [I  1 I] direction in CaF2, the value E =2.2 
can be rounded off to E -2, giving A = 1 and, corresponding, 
/3= 3. The function J ,  (2 vot)l ( vor) arising here describes 
very well the oscillatory component of the free-induction 
decay signal observed experimentally for this orientation 
(see Fig. 1). Since Bessel functions are entire functions of 
their order A for every fixed value of their argument, it can 
be assumed that round-off does not affect the computational 
results much. At the same time, the rounding off makes it 
possible to work with the simplest Bessel functions, those of 
integer and half-integer order. 

We note that for the free-induction decay signal Ao(t) 
given by the expression (18) the function A2(t) from the 
system (6) is 

FIG. 2. Parameters {v;} versus j .  The curve 1 corresponds to crystals with 
a large number of spins per cell. The parameters were calculated numeri- 
cally for the cell. It was assumed that the moments of the free-induction 
decay of a cell satisfy the relation N;,,= b2"/(2n+ 1 ) .  The curve 2 corre- 
sponds to the parameters calculated according to the moments of the total 
spectrum of a CaF, single crystal (the theoretical values of the moments are 
available only up to the eighth moment inclusively). The curve 3 corre- 
sponds to the spectrum of a quasi-one-dimensional system of '? nuclei in 
fluoroapatite. The lines connecting the dots were drawn as a visual aid. 

The expression obtained for A2(t) by substituting the func- 
tion (18) into the similarity law (1 1) is identical to the for- 
mula (19). 

The similarity hypothesis (1 1) and (12) can also be re- 
garded as being a consequence of some exact results. In Ref. 
22 it was shown that in crystals with large Z and an interac- 
tion described by the Hamiltonian (3), i.e., in crystals in 
which the form of the contribution of the spins in a cell to the 
spectrum is close to that of the spectra given by the Fourier 
transform of the component Fo(t) from Eqs. (4) and (5), the 
constants {v;) of the system (6) for the temporal correlation 
functions of a cell quickly "freeze" (see Fig. 2), i.e., they 
virtually cease to depend on j and assume a constant value. 
At the same time, both the curve 2 in Fig. 2, calculated from 
the theoretical values of the total moments (M2- Ms) cal- 
culated for caF2?" and the curve 3, calculated according to 
the theoretical values of the moments of the spectrum of the 
one-dimensional system of f luor~a~at i te?~  show an absence 
of "freezing," thereby attesting to the fact that the investi- 
gation performed is admissible only for the spins of a cell 
and in crystals with large numbers 2. 

In Ref. 22 several theorems concerning the system (6) 
were also proved and a number of exact results was obtained. 
Specifically, when the constants are frozen the system (6) 
can be solved in quadratures: 
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The second term in Eq. (20) corresponds to a discrete spec- 
trum and appears only in special situations, which will not of 
interest below; Q2, are polynomials in p2 of degree 2m, 
where m is the number of the equation starting with which 
all constants are assumed to be frozen: vl= urn for all 
l a m .  For convenience we give explicit expressions for the 
free-induction decay signals in the lowest-order approxima- 
tions following from Eq. (16). For m = 0 

For m= 1 

2 2 where yo= v0lv1. For m = 2  

where 

The solutions (20)-(22) make it possible to check the valid- 
ity of the similarity laws (11) and (12) by means of direct 
calculations. For this, the solution with the number m corre- 
sponding to the equation for which the constants are first 
frozen must be substituted into the system (6),  the differen- 
tiation with respect to time must be performed, and then, as 
a simplification, the remaining integral over p must be inte- 
grated by parts. Then 

1) for m = 0,  i.e., v;= v: for j 2 0 ,  

2) for m = 1, i.e., v;= v: for j 2  1, 

where l= 1 - yo= -0.25. The similarity laws (23) and (24) 
lead, respectively, to equations for the free-induction decay 
signals 

The equation (25) corresponds to the lowest approximation 
of the theory. It corresponds to the value P = 3  and thereby 
the [ I l l ]  orientation in CaF2, for which the number of spins 
in the cell is characteristically largest among the three prin- 
cipal orientations. In Eq. (26), however, corresponding to the 
first approximation of the theory, the value of P lies much 
closer to the number 2, corresponding to the Abragam trial 

FIG. 3. A2(r) calculated for a cell of a CaF2 single crystal with periodic 
boundary conditions with the external magnetic field in [100] direction. 
Dashed line-direct numerical calculation; solid curve - approximation by 
the similarity law (I I). In the calculations, the function Ao(t) was normal- 
ized to unity. 

function, which best describes the free-induction decay sig- 
nals for orientations with a smaller number of spins in a cell 
(for example, [loo]) and thereby allows, to a greater degree, 
for the finiteness of the number Z of spins in a cell. 

Finally, the similarity law (1 1) and (12) was subjected to 
an experimental-numerical check: The temporal correlation 
function A 2 ( t )  was calculated numerically for a cluster of a 
simple cubic lattice with periodic boundary conditions, 
which models a cell in CaF2 with the external field oriented 
in the [loo] direction, and for a cell of extended single- 
crystal polyethylene in the trans-zigzag conformation with 
the external field oriented along the axis of the molecule. In 
the calculations the matrix of the Hamiltonian (3), corre- 
sponding to a cell with periodic boundary conditions, was 
diagonalized numerically and its eigenfunctions and eigen- 
values were determined. Next, the trace corresponding to the 
required temporal correlation function was calculated in this 
representation. The method for performing such calculations 
is described in greater detail in Ref. 26. In both cases the 
computed curve agreed well with the similarity law ( 1  1) and 
(12) (see Figs. 3 and 4). 

Let us now discuss some qualitative features of the be- 
havior of the solution of Eq. (14) as a function of the param- 
eter p. The parameter P can be related via the excess to the 
ratio of the interaction constants in the spin Hamiltonian. For 
this, we employ the corresponding expressions for M 2  and 
M4 from Ref. 29. Then 

where 5 is the ratio of the "transverse" and "longitudinal" 
interaction constants in the Hamiltonian (3). For example, in 
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FIG. 4. A , ( [ )  calculated for the cell of single-crystal, extended polyethyl- 
ene. The external magnetic field is directed along the axis of the molecule. 
The notation is the same as in Fig. 3. 

the case of the secular part of the dipole-dipole interaction 
(= - 112 holds. We note that, on account of the approxima- 
tions made in Ref. 29 in the derivation of Eq. (27) (the num- 
ber of nearest neighbors satisfies Z d m  and d - + m ,  where 
d is the dimension of the space), this formula gives too high 
a value for the excess. The passage to the limit29 itself could 
require additional discussion. For example, for the secular 
part of the dipole-dipole interaction E-2.3 (Ref. 29), irre- 
spective of orientation and crystal structure. Of course, the 
smaller the value of Z, the larger the error. In addition, the 
cell is not distinguished in Eq. (27); this also introduces an 
error, though it is smaller than the main approximation. In 
principle, it is not difficult to take account of the required 
corrections, but this would make the discussion excessively 
complicated without introducing anything qualitatively new. 
It is easily found that we have P>O for EC ( - 2, 0 )  and 
p<O for (C(-00, - 2)U(O, m). As ,$-to- (from the left) 
we have PAW. At the same time, in crystals with large Z the 
free-induction decay signal (and hence the spectrum also) 
produced by the Hz, interaction is nearly ~auss ian .~ '  But this 
is what happens as P (and hence also X )  increases with the 
expressions (15) and (16). Even for A=8 the spectrum (16) 
is approximated well by a Gaussian function, at least for not 
too high frequencies.3' In general, for large A it can be as- 
sumed for the spectrum (16) 

Let us now consider the case (C(0, w). Here p<O 
holds and both parts of the Hamiltonian (3) have the same 
sign. We thereby move in the direction of systems with a 
strong indirect exchange interaction, for which the shape of 
the NMR spectra merits at least a brief discussion here. 

In crystals with strong electronic paramagnetism, such as 
T1203, KMnF3, RbMnF3, and so on, which at low tempera- 
tures transform into a magnetically ordered state, there exists 
a strong indirect (via the electronic shells) exchange interac- 
tion between the nuclear spins. It is described by an addi- 
tional term15 in the Hamiltonian (3) (or by a corresponding 
renormalization of the constants in the Hamiltonian (3)) 

We note that, in addition, the interaction of the form (28) 
between electronic spins almost always plays a large role in 
the ESR spin dynamics, determining at sufficiently high den- 
sities of the paramagnetic centers the shape of the absorption 
line. 

The exchange interaction constants Aij are much larger 
than the dipole-dipole interaction constants b i j ,  as a result 
of which the signs of the coefficients b i j  and a i j  (i.e., signs 
of the terms Hz, and Hff), which are different in the Hamil- 
tonian (3), become the same in the complete (total) Hamil- 
tonian. Now Eq. (14) can be rewritten in the form 

(the minus sign of the parameter /3 is written out explicitly in 
Eq. (29), so that here and below /3 is itself positive). Substi- 
tuting Ao(t) = w(t)y(t) (Ref. 32) with 

gives 

The presence or absence of oscillations in the solutions of 
Eqs. (14), (29), and (31) is determined exclusively by the 
sign of the function q(t).32 For q(t)>O the solutions oscil- 
late. In the opposite case (q(t)<O), the oscillations vanish. 
Therefore the solutions of Eqs. (29) and (3 1) for appropriate 
values of /3 can be expressed in terms of modified Bessel 
functions?' and for long times they are described by the 
expression 

For example, the solution of Eq. (29) for P= 2 (correspond- 
ingly, A=3/2) has a quite simple form, since all cylinder 
functions of half-integral order can be expressed in terms of 
elementary functions: 

which is qualitatively in complete agreement with the experi- 
mental data on both NMR and ESR (see, for example, Ref. 
33). Quantitative agreement can be achieved, however, with 
an appropriate choice of the parameters. It should be noted 
that for a Lorentzian spectrum, which appears when the tem- 
poral correlation functions (32) and (33) are Fourier- 
transformed, it is not at all easy to choose these parameters 
from first principles (for example, with the aid of sum rules): 
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The moments of the Lorentz function diverge, and special- 
ized and quite extensive work must be performed in order to 
compare correctly the theoretical results (32) and (33) with 
the experimental data. Nonetheless, in the simplest variant 
the value of p can be chosen using the half-width of the 
experimental spectrum. 

4. DISCUSSION 

The similarity law (11) and (12) leads (in the limit 
Z-+m) to a universal form of the free-induction decay signal 
from a cell in crystals with different types of crystal lattices: 
The shape of the free-induction decay signal depends only on 
the ratio of the interaction constants in the Hamiltonian (3) 
and not on the details of the internal structure. For finite 
values of Z, however, the shape of the free-induction decay 
signal varies slightly in the direction of the Abragam trial 
function, continuing to depend slightly on the structure. The 
only element which is common to different crystals is the 
large (though finite) number Z of spins in a cell. Therefore, 
in a certain sense, it can be asserted that the interaction H f f  
transforms the universal Gaussian spectrum, produced on 
these lattices by the H z ,  intera~tion,~' into a spectrum which 
is also universal, possessing a characteristic limiting fre- 
quency and described by the function (16) for values of the 
parameter X lying in the interval [0.5, 11 (taking account of 
roundoff). Generally speaking, it is impossible to indicate 
exactly in advance the number Z of spins per cell that can be 
regarded as being large. However, the function (4) describes 
very well the free-induction decay signal in polyethylene, 
where we have Z =  3,  with the field oriented along the axis of 
a m o l e c ~ l e , ' ~ ~ ~ ~  while for the quasi-one-dimensional fluoroa- 
patite crystal, where we have Z = 2 ,  this trial function is 
completely useless, as are the similarity law (12) and the 
solution in quadratures (20) in the lowest approximations. 
This has been checked. 

Of course, the qualitative considerations presented above 
by no means comprise a rigorous theorem. Moreover, it can 
be assumed in advance that an ample number of objects with 
an intermediate structure does exist, for example, two spins 
which are strongly coupled with a distinguished spin and a 
third spin whose interaction with the distinguished spin is 
much weaker than with the first two spins but, at the same 
time, much stronger than its interaction with "distant spins." 
This situation is characteristic for polyethylene'9720 and 
Ca(OH)2 (Ref. 34) crystals for some orientations of the ex- 
ternal magnetic field. 

In the light of what has been said above, it is nonetheless 
possible that similarity, together with the rapid "freezing" 
of the constants in the system (6), are reflections of a hidden 
symmetry of the system, somewhat reminiscent of the phys- 
ics of critical phenomena. For the systems considered above, 
however, different regions of the Liouville space behave 
identically in time. 

Finally, we note that Eqs. (14), (29), and (31) are par- 
ticular variants of the equation 

which in the theory of differential equations is a very popular 
object of investigation as a function of the behavior of the 
coefficients a ( t )  and b(t)32 because of the great diversity of 
solutions obtained by choosing different functions as a( r )  
and b(t). This feature of Eq. (14) was employed in Refs. 31 
and 35 to construct empirical trial functions in different ob- 
jects: aluminum powders, aluminum alloys with copper, PbF 

crystals, characterized by a high mobility, and so on. We 
emphasize that equations of the form (14) were used in Refs. 
3 1 and 35 for the sole purpose of constructing empirical trial 
functions which approximate the entire diversity of observed 
spectra in a unified manner so as to facilitate analysis of an 
experiment. The choice of this equation in Refs. 31 and 35 
was determined by the diversity of the possibilities provided. 
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