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A system of generalized equations is formulated for electron hydrodynamics in a plasma under 
conditions such that the electron mean free path is not small in comparison with the 
inhomogeneity space scale. The principal assumption underlying the derivation of these equations 
is that the deviation of the electron distribution function from local thermodynamic 
equilibrium is small. Electron collisions are investigated in the large ionic charge limit. The 
system of hydrodynamic equations is closed by the solution of the kinetic equation for electrons. 
Expressions for the Fourier components of the electron fluxes are given in terms of 
generalized forces, and for the first time nonlocal expressions are systematically derived for all 
the electron transport coefficients: electrical resistance, thermocurrent coefficient, thermal 
diffusivity, electron viscosity, friction force, and the ionic convection transport coefficients. 
Expressions are obtained for the longitudinal and transverse components of the electron 
susceptibility tensor over the entire range of perturbation scale lengths from the strongly collisional 
limit to the collisionless limit. These expressions are used to find the damping rate of an ion- 
acoustic wave and the surface impedance of a semi-infinite plasma in the intermediate 
range of scale lengths. O 1996 American Institute of Physics. [S 1063-7761(96)012 10-31 

1. INTRODUCTION 

Hydrodynamic equations provide an effective tool for 
the investigation of a wide range of phenomena in plasmas. 
Even though they are not as rigorous as the more fundamen- 
tal kinetic equations, the hydrodynamic equations are far 
simpler, involve fewer variables, and for this reason are often 
used far afield of their domain of formal validity. The suc- 
cess achieved in using the hydrodynamic equations is largely 
contingent upon the accuracy of their closure technique, i.e., 
upon the way in which the higher, nonhydrodynamic mo- 
ments of the distribution function are expressed in terms of 
the hydrodynamic moments: density, average velocity, tem- 
perature and energy flux. The best-known derivation of hy- 
drodynamic equations from kinetic theory is associated with 
the Chapman-Enskog method, which calls for the deviation 
of the distribution function from thermodynamic equilibrium 
to be expanded in the gradients of the hydrodynamic 
 moment^.',^ However, this method introduces sizable errors, 
even when the spatial scale of the perturbations is of the 
order of a hundred times the electron mean free path. In 
practice, thermonuclear investigations involve much smaller- 
scale plasma inhomogeneities, making it necessary to de- 
velop alternative schemes for closing the hydrodynamic 
equations. 

Attempts have been made to improve the accuracy of the 
hydrodynamic equations by smoothing the transport coeffi- 
cients on scales of the order of the electron mean free path.394 
However, this approach lacks any kind of rigorous theoreti- 
cal foundation. The choice of smoothing parameters is often 
empirical and depends on the particular problem, detracting 
measurably from the value of this method. Another approach 

is to compute corrections to the transport coefficient from 
higher orders in the gradient expansion of the distribution 
function in the Chapman-Enskog However, 
these corrections contain large numerical factors and do not 
really extend the domain of validity of the Chapman-Enskog 
method. Still another approach proposed in recent papers8 
proceeds from the collisionless plasma approximation and 
then takes into account phenomena associated with weak 
collisional However, this approach is incapable of 
providing a systematic transition to the strongly collisional 
limit. Several have proposed approximate ex- 
pressions suitable for describing the transport coefficients 
over a wide range of parameters. Even though such expres- 
sions have correct asymptotic forms in both the strong and 
the weakly collisional limits, they are merely interpolation 
formulas and do not fit any systematic theory of electron 
transport in the intermediate range of the collisionality pa- 
rameter, i.e., the ratio of the electron mean free path to the 
perturbation wavelength. Moreover, only phenomena related 
to electron thermal conductivity are discussed in all the pre- 
ceding papers; the issue of other electron transport coeffi- 
cients is not even raised. 

Here we propose and develop a new method of deriva- 
tion of nonlocal hydrodynamic equations, which are found to 
be exactly equivalent to the kinetic description of small- 
amplitude perturbations in a plasma, but include only the 
lower moments of the electron distribution function. The 
proposed method can be used to systematically obtain exact 
expressions for the electron transport coefficients in Fourier 
representation and to investigation the dispersion properties 
of a plasma for arbitrary values of the collisionality param- 
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eter. The most significant approximations of this theory are 
the assumptions that the perturbation amplitudes are small, 
the plasma is completely ionized, and the ionic charge is 
high: Z P  1. The method has already been described15 briefly 
and in application to potential plasma flows. In the present 
article it is elaborated and extended to the more general case 
of nonpotential perturbations. 

The theory set forth below is based on two fundamental 
notions. The first has been formulated in Refs. 3 and 4 and 
asserts that the spatial diffusion of electrons makes the varia- 
tion of their distribution function significant in comparison 
with the influence of electron collisions, even if the charac- 
teristic scale length of the inhomogeneity is much greater 
than the mean free path of a thermal electron. This assertion 
is attributable to the fact that energy is transported in the 
plasma mainly by fast electrons with velocities several times 
that of the thermal electron, and the energy relaxation of the 
electrons is associated mainly with electron-electron (ee) 
collisions, which occur Z times less frequently than 
electron-ion (ei) collisions. Luciani et  aL3s4 have introduced 
the concept of the electron energy delocalization length X,, 
which characterizes the scale length within which the spatial 
diffusion rate is equal to the frequency of ee collisions of 
thermal electrons. This length is fi times the electron mean 
free path for ei collisions Xei . The second fundamental no- 
tion is identified with Refs. 11 and 16 and asserts that the 
accurate quantitative description of the transition from strong 
collisionality to the collisionless limit rests on a correct de- 
scription of the higher angular moments of the electron dis- 
tribution function, which depend on the competition between 
the convective spatial transport of electrons and their Cou- 
lomb scattering by ions. For thermal electrons these two pro- 
cesses balance each other over the mean free path Xei  . Con- 
sequently, a systematic theory must include description of 
two scales, Xei and X,. 

The method used to solve the kinetic equation in this 
article was presented earlier17 and is valid for any ratio be- 
tween the scale length of the perturbation and the above- 
mentioned collisional relaxation lengths. This approach dif- 
fers from the usual Chapman-Enskog method in that it 
permits the contributions of all angular harmonics of the 
electron distribution function to be taken into account, and it 
can be used to quantitatively describe the transition from 
ordinary collisional hydrodynamics to the collisionless limit. 
A special procedure for solving the initial problem for the 
perturbed electron distribution function is used to find rela- 
tions between the electron fluxes and the generalized hydro- 
dynamic forces, including the gradients of the plasma density 
and temperature, along with the plasma flow velocity and the 
electromagnetic fields. In the Fourier representation these re- 
lations have a form similar to the classical e ~ ~ r e s s i o n s ' ~ ~  and 
give the nonlocal electrical conductivity, the nonlocal ther- 
mal diffusivity, and the thermocurrent coefficient. New 
transport coefficients associated with convection flows arise 
in the process. 

This approach has made it possible for the first time to 
uniquely determine the nonlocal kinetic coefficients, as is 
demonstrated below in the example of the thermal conduc- 
tivity. It is shown that the contradictions in the thermal con- 

ductivity expressions proposed in several previous papers are 
attributable first and foremost to the incorrect definition of 
the thermal conductivity due to neglecting the contribution 
of the plasma convective motions to the electron fluxes. To 
illustrate the application of the nonlocal hydrodynamic equa- 
tions, in this article we obtain expressions for the longitudi- 
nal and transverse components of the electron susceptibility 
tensor, which are valid for any ratio between the wavelength 
of the electromagnetic perturbation and the electron mean 
free path. They are used in the problems of ion-acoustic 
wave damping and the scanning of an electromagnetic field 
in a semi-infinite plasma in the domain of parameters of 
interest for present-day experiments on the interaction of 
high-intensity picosecond laser pulses with a plasma. 

2. KINETIC DESCRIPTION OF NONLOCAL ELECTRON 
TRANSPORT 

2.1. Kinetic equation for the electron distribution functlon 

As the ground state we consider a homogeneous plasma 
with a Maxwellian electron distribution function Fo(v)  with 
density no and temperature To. We assume that the plasma is 
fully ionized and contains ions with a high ionization multi- 
plicity Z S  1. Being concerned primarily with phenomena 
linked to the transport of electrons, we assume for simplicity 
that the ions are cold, and we ignore ion-ion collisions. We 
also disregard mutual energy transfer in electron-ion colli- 
sions. 

We consider the response of the plasma to a small- 
amplitude, low-frequency, periodic perturbation with wave 
vector k. The assumption that the perturbation is quasista- 
tionary implies that the characteristic time constant of its 
variation is much longer than the characteristic time of ei 
collisions, w e  vei , or that its phase velocity is small in coni- 
parison with the thermal electron velocity, wlk< vTe . The 
basic kinetic equation 

where e and m ,  are the mass and charge of the electron, and 
E is the electric field, takes both ei and ee collisions into 
account. If energy transfer in the ion reference frame is ig- 
nored, the ei collision operator has the form 

where vei(v) = 4 . r r ~ n ~ e ~ ~ l n z ~ v  is the velocity-dependent 
frequency of ei collisions, and A is the Coulomb logarithm. 
The explicit form of the ee  collision operator (the Landau 
collision integral) is given in Appendix A. 

We linearize Eq. (2.1) with respect to a small perturba- 
tion Sfe(r,t,v)= f e -  Fo(u)  of the electron distribution func- 
tion. Then, forming the spatial Fourier transform, we expand 
Sf, in the spherical harmonics Y,,(0,45), which are the 
eigenfunctions of the ei collision integral: 

m I 
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where 0 and 4 are the polar and azimuthal angles character- 
izing the direction of the electron velocity relative to the 
vector k. The indicated operations reduce the electron kinetic 
equation to an infinite system of equations in the angular 
harmonics flm of the electron distribution function. By virtue 
of the assumption that the perturbation is quasistationary, the 
time derivatives in the equations for harmonics with 13 1 can 
be ignored, along with ee collisions, whose frequency is 
1/Z times that of ee collisions. In general, however, the time 
derivative and the ee collision integral must be retained in 
the equation for the symmetric part f,(v) of the electron 
distribution function, ei collisions, which are Z times more 
frequent, affect only the anisotropic part of the distribution 
function and are not represented in the equation for f,. In 
their final form the equations for the harmonics of the elec- 
tron distribution function must also take into account the fact 
that the ei collision integral (2.2) is written in a reference 
frame where ions are at rest. The average ion velocity there- 
fore enters into the equations for flm , which then acquire the 
form 

1 dFo dfm + iku -f lo- i(k.u)u 
d t  6 

1 2 e 4 7 ~  dFo 
ikv -fm+ ikv - f20- *k.E) JTz  

fi Jls kme 

= - 3 vejf20 (1 = 2,m = O ) ,  

ikv G f l r l + i k u  G f 3 . l + i k u u  G s i n 8 .  

Here u is the Fourier harmonic of the hydrodynamic flow 
velocity of the plasma (average ion velocity), E is the Fou- 
rier harmonic of the electric field vector (the renormalization 
of the electric field in the transition to the comoving frame is 

FIG. 1 .  Comparison of the approximate expressions (2.9) for the modified 
electron-ion collision frequencies (solid curves) with the exact expression 
(dots). I) h  ,,; 2 )  h , ,  . 

a second-order effect and is disregarded in the linear theory), 
and 8,(8,) and +,(qb,) denote the polar and azimuth angles 
of the vector E (u) relative to the perturbation wave vector k. 
The explicit form of the linearized ee collision operator 
C,, in Eq. (4) is given in Appendix A. We note that similar 
equations have been derived previously15~17-19 for potential 
perturbations (m = 0). 

2.2. Summation of the angular harmonics of the distribution 
function 

The standard approach to the solution of the infinite sys- 
tem of equations (2.4)-(2.7) is to assume that the higher 
angular harmonics are small and that quite reasonable accu- 
racy can be attained if only two of them, foe and f lo ,  are 
retained. This is fully justified in the strongly collisional 
limit, but to describe the plasma electrons in the collisionless 
and weakly collisional domains, we need to include a large 
number of angular harmonics of the distribution function 
6fe. This follows qualitatively from the mere fact that the 
correct description of the Landau damping of low-frequency 
waves (w4kvTe) requires summation of the entire infinite 
series of angular harmonics. The procedure used to sum the 
angular harmonics is similar to the one described in Refs. 16, 
18-20. The principal idea underlying such summation is to 
solve the equations for higher harmonics by introducing a 
modified collision frequency v,, , which obeys the recursion 
relation 

To close the hydrodynamic equations, it is necessary to com- 
pu te only two modified frequencies 
vro(k,u) = ve;h lo(kul vei) and vll(k,v) = veih I ,(kulv,,), be- 
cause all the other required function are expressed in terms 
of these two. In Appendix B it is shown that the functions 
hlo and h have simple asymptotic limits and can be accu- 
rately approximated by the expressions 

h lo(x) = d m ,  h l(x) = J1 + (4~ /3 . r r )~ ,  (2.9) 

as illustrated in Fig. 1. We note that an approximation for 
hlo has been proposed in Ref. 20 and later used in Ref. 19 to 
calculate the damping of ion-acoustic waves. A similar pro- 
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cedure for summing the contributions of higher angular har- 
monics has been discussed recently in another paper.21 

This summation procedure can be used to find expres- 
sions for the second angular harmonics f2, from Eqs. (2.6). 
Their substitution into Eqs. (2.5) yields expressions for an 
anisotropic increment to the electron distribution function 

1 
f l = x r n = - ~ f ~ r n y ~ r n  : 

The Chapman-Enskog method easily surmounts this 
problem, because the left-hand side of Eq. (2.4) is regarded 
as a small perturbation. Accordingly, it follows from the 
equation Cee[fo] =O that f o  contains its first two hydrody- 
namic moments as arbitrary constants by virtue of conserva- 
tion of the number of particles and their energy in ee colli- 
sions: 

where the following notation has been introduced for the 
longitudinal and transverse components of the vector A: 

k ( A . k )  kX ( A X  K )   all=^' A, = k 2  ' 

There now follows from Eq. (2.4) an equation for the sym- 
metric part of the perturbation of the electron distribution 
function fo= fooYoo= fool& 

The anisotropic increment to the distribution function con- 
tains both potential and nonpotential components of the per- 
turbation. The nonpotential components create solenoidal 
components in the electron distribution function f , ,  which 
differ from the potential part in not requiring knowledge of 
the isotropic component fo, and an explicit expression for 
them is obtained at once from Eq. (2.10), since the contribu- 
tion of the ei collisions is taken into account by the modified 
collision frequency vl l  . To find the symmetric part of the 
function we must also include the contribution of the ee col- 
lisions, which is described by the integral term on the right- 
hand side of Eq. (2.1 1). 

2.3. initial-value problem for the electron distribution 
function 

The perturbation of the isotropic part of the electron dis- 
tribution function in Eq. (2.1 1 )  is created by driving forces 
proportional to the potential components of E and u, and it 
does not depend explicitly on the other two hydrodynamic 
variables: the perturbations of the density 6n and the tem- 
perature ST. At first glance, therefore, this equation cannot 
be used to analyze the hydrodynamic moments Sn and ST of 
the electron distribution function as variables independent of 
E and u as is required in the general formulation of electron 
transport theory. 

where V T , =  dm is the thermal electron velocity. Ac- 
cordingly, all the higher moments can be expressed in terms 
of Sn and ST according to Eqs. (2.5), as is necessary in order 
to close the hydrodynamic equations. However, the generali- 
zation of the hydrodynamic equations to the case of weak 
collisions rests on the assumption that the term proportional 
to ikv f lo on the left-hand side of Eq. (2.4), which is the term 
describing spatial transfer, can be comparable in value with, 
or even exceed, the ee collision integral. Consequently, the 
assumption that Sn and ST are independent of the higher 
moments of the distribution function is no longer valid, and a 
different procedure must be found for closing the hydrody- 
namic equations. 

Generally speaking, this problem evinces the need for a 
kinetic description of the motions of the plasma in the 
weakly collisional domain. However, the abbreviated, hydro- 
dynamically similar description of the plasma dynamics can 
still be preserved, even for weakly colliding electrons, if we 
assume that the distribution function of the latter can be re- 
garded as a small perturbation of the Maxwellian equilibrium 
distribution function. Although this assumption severely re- 
stricts the class of possible motions, it looks reasonable for 
many practical applications. 

Following Ref. 15, we adopt the following procedure for 
introducing the hydrodynamic moments 6n and ST as inde- 
pendent variables in the solution of Eq. (2.1 1 ) .  We assume 
that the initial perturbation of the electron distribution func- 
tion at some distant time t = 0 is a Maxwellian distribution 
similar to (2.12) with certain initial density and temperature 
perturbations Sn(0) and ST(0) .  The solution of Eq. (2.1 1 )  
then determines the electron distribution function at any time 
t, which depends on four quantities: E, u, Sn(O), and 
ST(0) .  The hydrodynamic moments of the perturbation of 
the distribution function at a certain arbitrary time t, 

can be represented by linear combinations of Sn(0)  and 
ST(0) .  Consequently, the initial perturbations can be elimi- 
nated by expressing them in terms of the instantaneous per- 
turbations and solving the system of two linear algebraic 
equations. The electronic distribution function can therefore 
be expressed in terms of its instantaneous hydrodynamic mo- 
ments S n ( t )  and S T ( t )  as independent variables. 
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Pursuing the solution of the kinetic equation along this 
line, we form the temporal Laplace transform in (2.1 1). The 
equation for the symmetric part of the electron distribution 
function assumes the form 

In keeping with our assumption, the initial perturbation 
fo(v,O) has the hydrodynamic form (2.12), i.e., 
fo(v,O) =f(oCE)(v ,o). Equation (2.14) is a linear inhomoge- 
neous equation, whose general solution can be written as a 
linear combination of three basic solutions: 

where the basis functions @(v)  are independent of the form 
and the amplitude of the perturbation and satisfy three 
(A =N,T,R) equations with different sources SA : 

2 2 2 Here S N = l ,  ST=v 13vTe-1, and ~ ~ = v ~ / ( 3 v , , h ~ ~ )  are 
unitary sources corresponding to the perturbations of the 
number density (N), the temperature (T), and the ion velocity 
(R). The equation of the form (2.16) has been analyzed in 
detail.19 It was solved numerically by expanding the solution 
in Sonin-Laguerre polynomials L ~ ~ ( v ~ / ~ v $ , )  and analyti- 
cally in the strong and weakly collisional limits. In fact, all 
the results needed in order to close the hydrodynamic equa- 
tions can be expressed in terms of the matrix of moments of 
the functions $ A :  

This matrix J;  is symmetric, as shown in Appendix C. 
Taking the first two moments of Eq. (2.15), we find the 

instantaneous density and temperature perturbations. Ac- 
cording to (2.13), they depend on E, u and also on the initial 
perturbations: 

Solving this pair of linear algebraic equations for 6n(0) and 
ST(0) and substituting the result into Eq. (2.15), we obtain 
an expression for the isotropic part of the electron distribu- 
tion function: 

where DZ = J ~ J ;  - J ~ J ;  Equation (2.19) is written in 
terms of the hydrodynamic moments and basic solutions of 
Eq. (2.16) and can be used to search for the anisotropic in- 
crement to the distribution function f ,  and to close the sys- 
tem of hydrodynamic equations. 

2.4. Isotropic part of the distribution function 

2.4.1. General solution 

To determine the isotropic part of the electron distribu- 
tion function, we need to solve Eqs. (2.16). We seek solu- 
tions by expanding the basis functions f i A  in Sonin- 
Laguerre polynomials: 

Here Aei = 3 1 vei(v Te) is the electron mean free 
path.1 Substituting the expansion (2.20) into the basic equa- 
tions (2.16) and introducing the dimensionless variable 
x = u212v$, we obtain a system of linear equations for the 
coefficients c: . This system is solved with the help of' the 
Mathernatica software package.22 For kAei5  1 a sufficiently 
accurate solution of the system can be obtained using 
N 5  10 polynomials. In the case kAei> 1 from 30 to 60 poly- 
nomials are needed to obtain a solution within - 1 % error 
limits. Note that an increase in the collisionality parameter 
shifts the perturbation of the electron distribution function 
toward lower velocities, and this, in turn, causes the kinetic 
coefficients to diminish. 

2.4.2. Hydrodynamic limit for the distribution function 

In the strongly collisional domain z k 2 k a i e  1,  keeping 
the first two terms in the expansion of we obtain the 
classical hydrodynamic expressions for the isotropic and an- 
isotropic increments to the electron distribution function and, 
accordingly, for the transport coefficients. Let us write in 
the form 

and then evaluate the coefficients c t  and cf , invoking the 
properties of the collision integral 
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which correspond to the laws of conservation of particle 
number and energy 

To describe the deviation from the hydrodynamic limit, 
we need to include the next two terms in the expansion of 
fiA. However, the inclusion of only three polynomials does 
not yield an adequate approximation, even in the long- 
wavelength limit; we need at least seven terms in the expan- 
sion in Sonin-Laguerre polynomials.'9 We can then obtain 
more accurate expressions for the first two coefficients of the 
expansion and use them to find all the kinetic coefficients: 

The factor 264 in the expression for c[ coincides with the 
analytical solution of the kinetic equation for the electron 
distribution function in the given limit, obtained in Refs. 6 
and 17 without expanding in spherical harmonics. We note 
that in all the expressions (2.23) the parameter of the expan- 
sion z ~ ~ A : ~  is preceded by large numerical factors, hence the 
departure from the hydrodynamic limit already begins at 
very small wave numbers kXei4Z-L124 1. 

2.4.3. The distribution function in the kinetic limit 

In the opposite short-wavelength limit ~ k ~ h : ~ ~  1 we can 
disregard electron-electron collisions and, on the basis of 
Eq. (2.16), write the asymptotic expression 

In the limit p+O the solution (2.24) diverges in the low- 
velocity range as v P 5  for the functions I,# and & and as 
u - ~  for the function $:. Allowance for time dependence 
eliminates the divergence, but the contribution of electron- 
electron collisions in the low-velocity range can also be sig- 
nificant. 

For v<vTe  the collision integral in Eq. (2.16) can be 
written in the form 

Substituting i,b: o: v-' into this expression, we find that the 
collision integral becomes commensurate with the diffusion 
term on the left-hand side of (2.16) in the velocity range 
where 

Comparing the contributions of nonstationarity and 
electron-electron collisions in this velocity range, we con- 
firm that nonstationary effects can be significant for suffi- 
ciently fast processes having a characteristic time constant 

For the parameters of a laser plasma this represents ex- 
tremely short times of the order of a few picoseconds at 
k A e i -  1. 

In the case of slower processes, electron-electron colli- 
sions are dominant in the low-velocity range, even for 
k X e i @  1. To construct an approximate solution of Eq. (2.16) 
with the collision integral in the form (2.25), it is convenient 
to use the dimensionless variable w = vlv  , and the function 
y A =  @:I $$ where 

Equation (2.16) then acquires the form 

where yR = Y T =  Y and yN = - Y. The solution of this equa- 
tion can be expressed in terms of modified Bessel functions 
of order 117 (Ref. 9). However, it is more practical to find a 
numerical solution, which can be approximated by the 
simple functional relation" 

where the coefficient c*= 0.432 was found numerically. The 
approximation (2.28) agrees with the exact solution of Eq. 
(2.16) within 20%. This rather large error is attributable to 
the fact that the parameter of the expansion 
u ,  / V ~ , - ( Z ~ ~ A : ~ ) - ' / ~ ,  though assumed to be small, is in 
fact appreciable in value as a result of the small negative 
power exponent.I9 

The relations (2.23) and (2.28) obtained above in Secs. 
2.4.2 and 2.4.3 to describe the electron distribution function 
will be used below to derive analytical expressions for the 
transport coefficients in the long-wavelength and short- 
wavelength limits. 
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3. NONLOCAL PLASMA HYDRODYNAMICS 

3.1. Nonlocal transport equations 

The first two moments of Eq. (2.4) yield evolution equa- 
tions of continuity and energy balance for electrons: 

where u,=u-jlen, is the electron drift velocity, and 

are the electric current and electronic heat flux in the plasma. 
The derivation of expressions for the fluxes j and q in 

terms of the hydrodynamic variables, i.e., the closure of the 
hydrodynamic equations, poses the basic problem of trans- 
port theory. The problem is solved in our approach, because 
Eqs. (2.19) and (2.10) give expressions for fo  and f in terms 
of the hydrodynamic variables. Substituting f l  (2.10) into 
relations (3.2), we express the electric current j and the heat 
flux q in terms of generalized thermodynamic forces-the 
Fourier component of the effective electric field: 

and the temperature gradient ik8T. These electron fluxes 
also contain terms proportional to the gradient of the average 
ion velocity u. 

Since f contains terms corresponding to vectors E and 
u directed both along and across the vector k, the fluxes 
contain both transverse and longitudinal components. The 
longitudinal components, directed along k, coincide with 
those obtained previously15 for potential perturbations: 

where a is the electrical conductivity, a is the thermocurrent 
coefficient, x is the thermal diffusivity, and Pi,, are the ionic 
convection transport coefficients. We note that these coeffi- 
cients are functions of k and p and are therefore nonlocal and 
nonstationary: 

The transport equations (3.3) reflect the Onsager symmetry 
properties: The coefficient a is identical in the expressions 
for j and q. It can be shown (see Appendix C) that this 
symmetry corresponds to the relations J;= J ;  , J;=  J ;  , and 
J:=J:  in the general case of an arbitrary collisionality pa- 

rameter. We therefore conclude that the Onsager symmetry 
is a general property of linear kinetic systems and holds not 
only for collisional hydrodynamics,132 but also in the nonlo- 
cal, nonstationary case. 

We now write expressions for the electron fluxes trans- 
verse to the vector k: 

Here we have introduced the transverse transport coefficients 
for the current and heat flux vectors: 

In contrast with the expressions for potential flows, the ex- 
pressions for the transverse transport coefficients do not de- 
pend on electron-electron collisions and do not require solv- 
ing the equation for the isotropic part of the distribution 
function, and electron collisions are taken into account auto- 
matically through the introduction of the modified collision 
frequency vll  . 

Also used in hydrodynamics are the electron stress ten- 
sor I I l j  and the friction force Rie between ions and electrons: 

The electron stress tensor is related to the second angular 
harmonic of the electron distribution function. Equation (2.5) 
is convenient for determining it if l I I j  is expressed in terms 
of the friction force: 

The longitudinal and transverse components of the friction 
force can be written as functions of the generalized forces 
and ion velocity, i.e., 
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FIG. 2. Longitudinal electrical conductivity a vs perturbation wavelength FIG. 3. Thermal diffusivity x vs perturbation wavelength for a plasma with 
for a plasma with Z= 8 (small dots) and Z =  64 (large dots). The solid curve Z= 8 (small dots) and Z=64 (large dots). The solid curves correspond to the 
corresponds to the approximation (3.17), and the dashed lines correspond to approximation (3.18). and the dashed lines correspond to the classical 
the classical strongly collisional asymptotic behavior and the collisionless strongly collisional asymptotic behavior and the collisionless limit. 
limit. 

In the short-wavelength limit (kAei+ 1 ) all the transport 
Te 

~ : ~ = - ( l - P , ~ ) n o e E ~ - P ~ r m ~ n o ~ ~ - ,  (3.13) coefficients are inversely proportional to the wave number: 
A ei a = ~ e 2 n o u T e / ~ k ~ o , a = - e n o u T e ~ ~ k ~ o ,  ~ = 4 n ~ ~ ~ ~ /  

v11- vei f i k .  The appropriate corrections to these asymptotic ex- 
/3,,=2vTe 41 duv - Fo- (3.14) pressions can be found by means of Eq. (2.28). They exhibit 

no ~ I I  a fractional-power dependence on k, similar to that found in 
Here Eqs. (3.1 1 )  and (3.13) contain the two new [not found Refs. 9 and 17 for the electronic thermal diffusivity: 
in the electron fluxes (3.3)] coefficients P,  and P,,. This is 
also a consequence of the Onsager symmetry of the kinetic 5e2novTe 1 $915 5 en0vTe 

(T= - - - 
coefficients. &kT0 1+25 ' f i k ~ ,  1 +25' 

3.2. Potential components of the fluxes 

We now undertake a more detailed investigation of the 
longitudinal transport coefficients. Here we confine the 
analysis to slow processes, k2u;,l veiB lpl , when the value 
of p can be disregarded in Eqs. (2.16) and (3.4). In this 
approximation we substitute the solutions of Eqs. (2.16) ob- 
tained for f l  into Eqs. (3.4) and (3.12) and find the longitu- 
dinal transport coefficients. The results of these calculations 
are shown in Figs. 2-7. 

The coefficients of the longitudinal electrical conductiv- 
ity a, the thermocurrent a, and thermal diffusivity ,y in the 
strongly collisional limit &%Aei* 1 correspond to their clas- 
sical values: 

32e2nokei 16enoAei 200nOuTeAei 
(To = 3 ao= 9 xo= 3T . 

3rrmeu~e  nm ev Te 

They all have similar long-wavelength asymptotic represen- 
tations 

which have been found using the expression for the isotropic 
part of the distribution function in the hydrodynamic limit 
(2.23). We note that the thermal diffusivity deviates quite 
rapidly from the classical limit, because the main heat- 
transfer contribution is from high-energy electrons, which 
are not as prone to collisions. Figures 2-4 disclose signifi- 
cant deviations of all the transport coefficients in the inter- 
mediate range kAei- 1 from their classical values. 

The function t= has been found previous- 
ly17 from the asymptotic solution of the equation for 1+9~ in 
the range zk2Aai+ 1 .  

We note that the electrical conductivity (see Fig. 2) is 
almost independent of the ionic charge and exhibits better 
agreement than the other transport coefficients with the as- 
ymptotic limits. Over the entire range of the collisionality 
parameter the electrical conductivity is well approximated by 
the equation 

FIG. 4. Longitudinal thermocurrent coefficient a vs perturbation wave- 
length for a plasma with Z= 8 (small dots) and Z =  64 (large dots). Inset: 
short-wavelength range, where a(k) changes sign. The solid curves corn- 
spond to the approximation (3.19). and the dashed lines correspond to the 
classical strongly collisional asymptotic behavior and the collisionless limit. 
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FIG. 5. Ionic convection transport coefficient Pj  vs perturbation wavelength FIG. 6. Ionic convection transport coefficient P, vs perturbation wavelength 
for a plasma with Z=8 (small dots) and Z=64 (large dots). The dashed for a plasma with Z=8 (small dots) and Z=64 (large dots). The dashed 
traces correspond to the asymptotic representations (3.20) and (3.21). traces correspond to the asymptotic representations (3.20) and (3.21). 

The line corresponding to this approximate expression is also 
shown in Fig. 2. It is evident from Fig. 2 that the conductiv- 
ity begins to depart appreciably from the classical value for 
kAei-0.41 fi. 

The thermal conductivity is the most sensitive function 
to the ionic charge Z and the inhomogeneity scale k A e i .  A 
departure from the classical limit sets in already at 
kXei-0.061 &, and the fractional asymptotic proportionality 

( k ~ , ~ ) - ~ ' ~  is also clearly visible in Fig. 3 .  We adopt the 
following approximation for the thermal conductivity coeffi- 
cient: 

which is a good approximation over the entire range of the 
collisionality parameter and is shown in Fig. 3 .  

The most unusual behavior is exhibited by the wave- 
length dependence of the thermocurrent coefficient. It 
changes sign in the intermediate range kAei-  1-10 (see Fig. 
4).  In the range k A e i 5  1 the coefficient a is almost indepen- 
dent of the ionic charge and can be characterized by the 
simple approximation 

p ,=33k2Ai i ,  P,= 1 3 3 k 2 ~ i i ,  p,= 3.7k2Aii (3.20) 
(3.17) 

and, in contrast with (3.15), do not depend explicitly on the 

In the range kAei> 1 the thermocurrent coefficient a changes 
sign at a value of k that depends on Z. For example, a be- 
comes equal to zero at kAei=2.6 and 5 for Z=8 and 6 4 ,  
respectively. 

The transport coefficients in Eq. (3.4) also depend on the 
ion velocity u. This dependence stems from the inclusion of 
higher (1> 1 ) angular harmonics of the electron distribution 
function. It cannot be found by the approach proposed in 
Refs. 4 and 9, where only the first angular harmonic is taken 
into account. The behavior of the coefficients /3 is illustrated 
in Figs. 5-7.  They vanish in the classical collisional limit. 
Their long-wavelength asymptotic (kAeiG I )  representations 
have the form 

ionic charge. In the short-wavelength limit k A e i S  1 the co- 
efficients p, and p, tend to unity, and the coefficient Pq 
vanishes: 

This is consistent with the fact that the motions of electrons 
and ions are independent in the collisionless limit, and the 
ions do not contribute to the electrical current or to the ther- 
mal flux of electrons. Consequently, in the limit kAei+ 1 the 
friction force is proportional to the frequency of ei collis~ons 
and does not depend on the wavelength. We note that the 
coefficients pj and p, depend very weakly on the ionic 
charge. They vary by less than (10-20)% when Z changes 
from 8 to 64 .  The strongest dependence on Z is exhibited by 
the coefficient P q ,  which varies by (50-60)% in the range 
k A e i s  1. The coefficients /? are needed to correctly describe 
the electron heat flux and Landau damping of ion-acoustic 
waves. 

FIG. 7. Ionic convection transport coefficient P, vs perturbation wavelength 
for a plasma with Z=8 (small dots) and 2=64 (large dots). The dashed 
lines correspond to the asymptotic representations (3.20) and (3.21). 
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FIG. 10. Ionic convection transport coefficients P l j ,  P,, , and P,, vs 
FIG. 8. Transverse electrical conductivity a, vs wavelength. The dashed wavelength. The dashed traces correspond to the asymptotic representations 
traces correspond to the classical strongly collisional asymptotic behavior (3.24) and (3.25). 
and the collisionless limit. 

3.3. Nonpotential components of the fluxes k2h2,< 1. (3.22) 

In discussing the nonpotential flux components, we re- 
emphasize that the transverse transport coefficients do not 
depend on electron-electron collisions or on the isotropic 
correction to the distribution function. Consequently, Eqs. 
(3.7) and (3.8) give explicit expressions for them, which are 
plotted in Figs. 8- 10.. 

When nonlocal behavior is taken into account in the gen- 
eral case, the transverse transport coefficients do not coincide 
with the longitudinal coefficients, i.e., the electron fluxes be- 
come anisotropic. The anisotropy vanishes in the classical 
hydrodynamic limit, when the transverse transport coeffi- 
cients have the same asymptotic representations as the lon- 

For the transverse conductivity in the collisionless limit we 
obtain the classical conductivity of a collisionless plasma. 
The thermocurrent coefficient behaves similarly: 

The ionic convection transport coefficients corresponding to 
transverse flows behave like the corresponding coefficients 
for potential perturbations (see Fig. 10). They vanish in the 
hydrodynamic limit [cf. (3.20)]: 

gitudinal. pl j=22k2h:;, pLq= 88k2h;,, P,,= 2.45k2h;;; 
The transverse conductivity and the transverse ther- 

mocurrent coefficient have long-wavelength asymptotic 
(3.24) 

forms similar to those of the longitudinal, but their small in the opposite limit k2h:;+ I the coefficients f l L j  and plr 
parameter is k2h;;< 1, distinguishing them from the poten- tend to unity, while the coefficient f l , ,  vanishes: 
tial coefficients, for which the parameter of the expansion is 2.95 5.9 p .=I-- p =- 

2.76 
2k2h;; [cf. (3.15)]: pLr= 1 - - 

IJ kh,;' l q  kAei' a 
(3.25) 

Note that the transverse short-wavelength asymptotic forms 
(3.23) and (3.25) do not contain logarithmic corrections, be- 
cause electron-electron collisions do not contribute to the 
transverse transport coefficients. The above equations 
(3.15)-(3.25) qualitatively describe electron transport in the 
plasma for small perturbations. 

3.4. Heat transfer in a non-current-carrying plasma 

One of the more important applications of the hydrody- 
namic equations is the case of a plasma without a longitudi- 
nal electric current (jII = 0 ) .  which describes quasineutral 
plasma motions. The generalized Ohm's law in Eq. (3.3) can 
be used to eliminate the ambipolar electric field 

FIG. 9. Transverse thermocurrent coefficient a, vs wavelength. Inset: a Pi 
short-wavelength range, where al (k)  changes sign. The dashed traces cor- 

Er= - -iksT,- -enoull 
u u 

respond to the classical strongly collisional asymptotic behavior and the 
coIIisionIess limit. from the expression for the electron heat flux by writing 
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FIG. 11. Thermal conductivity K and ionic transport coefficient P for a 
plasma with zero longitudinal electric current and with Z =  8 (small dots) 
and Z = 6 4  (large dots). The solid curves correspond to the interpolation 
formulas (3.27). 

The thermal conductivity K and the coefficient P are shown 
in Fig. 11. They both depend significantly on the ionic 
charge. We note that for a not too strong inhomogeneity, 
kAei5 1, the approximation formulas 

where KO= 128novTeh,i/3m is the classical thermal conduc- 
tivity, provide a good (within -20% limits) description of 
nonlocal heat transfer. 

The electron heat flux has two terms. One is associated 
with the temperature gradient, and the other is proportional 
to the ion velocity. The ion velocity contribution has not 
been considered explicitly in previous studies of nonlocal 
heat transfer, causing the thermal conductivity to be incor- 
rectly defined, a major drawback in some cases. For ex- 
ample, the nonlocal electron thermal conductivity has been 
definedl8?l9 as the ratio of the thermal flux of electrons to the 
temperature gradient for ion-acoustic perturbations. The in- 
correctness of this definition has been mentioned 
p r e v i o u ~ l ~ . ' ~  It follows from Eq. (3.26) that the definition of 
the thermal conductivity in Ref. 18 corresponds to 
K* = K + PnOTOui lik6T. The second term is insignificant in 
the strongly collisional limit, whereas both terms are compa- 
rable in order of magnitude in the intermediate and collision- 
less ranges. In Fig. 12 we show how the deviation 
A K =  K*- K depends on the inhomogeneity scale k. The 
relative error attains 50% in the collisionless limit. It also 
follows from Eqs. (3.6) and (3.26) that the heat flux and 
temperature gradient vectors are noncollinear. This fact has 
been notzd in numerical kinetic calculations under nonlocal 
heat-transfer  condition^.^^ According to (3.3, q, arises si- 
multaneously with the transverse component of the electron 
current, hence the onset of transverse heat transfer is accom- 
panied by the generation of a magnetic field. 

FIG. 12. Deviation A K I K  vs wavelength for a plasma with 2 = 8 .  

4. PLASMA DISPERSION PROPERTIES 

The conservation laws (3.1) and the transport equations 
(3.3) and (3.4) together with the hydrodynamic equations for 
ions 

where the friction force is defined by Eq. (3.1 I), can be used 
effectively in place of the more complicated kinetic equa- 
tions. The transport coefficients are written in a form analo- 
gous to the classical collisional relations in the k-repre- 
sentation. They are also valid in the collisionless case. On 
the other hand, the conventional definitions of certain c c ~ f -  
ficients can differ in these two limits. For example, the hy- 
drodynamic definition of the electrical resistance as the ratio 
of the current to the generalized electric field, when the tem- 
perature is not inhomogeneous and ions are not mobile, dif- 
fers from the electrodynamic definition of the electrical re- 
sistance as the total plasma response to an applied electric 
field, even though the same notation is often used for both. 
We now look for the relationship between the hydrodyna~nic 
and electrodynamic definitions of the conductivity. 

Inasmuch as our equations contain both a potential part 
and a nonpotential part, the total dielectric permittivity of the 
plasma 

is determined by the longitudinal ( E ' )  and transverse ( E ' )  

components. Using the linearized hydrodynamic equations 
for electrons and ions (2.1 l), (3.4), and (4.1), we can express 
the perturbations of the ion velocity and the temperature gra- 
dient in terms of the electric field perLuibations, writing the 
electric current in the for- j =  oj,+ 6 j i ,  and thus find the 
partial conductivitir- ;:hich are functionally related to the 
partial permittivities . -: ( a = e , i )  in the standard way. As a 
result, we obtain the folloding expressions for the permittivi- 
ties of the plasma: in the case of cold ions and in the quasi- 
static limit kvTiG 

where the longitudinal partial permittivities SE; are given by 
the relations 
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Here AD, is the Debye radius of the electrons, and wpi is the 
ionic plasma frequency. Clearly, the nonlocal hydrodynamic 
transport coefficients contribute to the dissipative part of the 
dielectric susceptibility; in the collisionless limit this part 
corresponds to Landau damping. Ion-ion collisions are not 
included in relation (4.5). All the same, their contribution 
can be inserted additively using the results of Refs. 17 and 
19. 

The transverse permittivity is given by the expressions 

Ylkc, Ylkc, 

where q is the electron conductivity of the plasma (3.7), 
and the second term in S E ~  is associated with the inclusion of 
ion motion. It vanishes in the opposite limits of small and 
large values of the collisionality parameter, but in the inter- 
mediate range it is a small correction of order Zm,lmi. The 
quantity Sef decreases as k2 in the strongly collisional limit, 
and in the collisionless range it leads to the usual ion dielec- 
tric permittivity Sef = - wii/ m2. 

0.10- 

0.08 

0.06 

0.04 

0.02 

4.1. Damping of ion-acoustic waves 

As a possible application of the longitudinal dielectric 
permittivity (4.4), (4.5) we consider the decay rate of ion- 
acoustic waves for an arbitrary ratio of the ion-acoustic 
wavelength to the electron mean free path. The dispersion 
relation for an ion-acoustic mode in the quasineutral limit 

lo-' lo-* 10-1 100 10' lo2 k~,, 10-1 100 10' lo2 

- a 
0.25 

0.20 - 
0.15. 

- 
0.10 

- 
0.05 . 

L 

kXDeG 1 is given by the approximate equation 
1 / 6 ~ ~ + 1 / 6 e f = 0 ,  and its solution has the form 

= kc, - i y, , where 

. 
b 

- FIG. 13. Ion-acoustic damping fac- 
tor y, (solid curve) vs wavelength 
for a plasma with Z = 8  (a) and 
Z =  64 (b), compared with a numeri- - cal solution (dots) of the Fokker- 
Planck equation.'8 - 

7 4 

7s - -- 
kc, 

and c, is the ion-acoustic velocity. We note that all the non- 
local transport coefficients contribute to the damping factor 
y, . It corresponds exactly to the numerical solution of the 
Fokker-Planck equationla and the analytical solution in Ref. 
17, but is written in a somewhat different form in terms of 
the transport coefficients. This form is more useful in that it 
gives a direct display of how the various transport coeffi- 
cients influence the decay rate of ion-acoustic waves. The 
dependence of y, on k is shown in Fig. 13. The decay rate 
coincides with the hydrodynamic expression 
y, /kc, = 3 .rrcS/256v T,kh,i in the long-wavelength limit 
c, lvTe-=SkXei< 1 and with the collisionless Landau damping 
rate of y, l kc, = m c ,  lure in the short-wavelength range 
kXeiS I .  

4.2. Surface impedance 

The transverse dielectric permittivity (4.6) must be 
known in describing the penetration of an electromagnetic 
field into a plasma. We illustrate this need in the example of 
the incidence of an s-polarized (polarization vector perpen- 
dicular to the plane of incidence), low-frequency electromag- 
netic wave on a semi-infinite plasma. We choose a coordi- 
nate system with the x axis directed along the normal to the 
surface of the plasma, the z axis lying in the plane of wave 
incidence, and the y axis perpendicular to this plane. The 
dependence of the amplitude of the electric field E, on the 
coordinate x can then be written in the form24 

where k~=(021c2)sin2B, and B is the angle of wave inci- 
dence. Since the contribution of ions to E' is proportional to 
the small quantity -Zm, / m i  , we include only the electron 
contribution. 
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5. CONCLUSION 

FIG. 14. Absorption coefficient of an electromagnetic field (wavelength 
A =  1 pm) in a semi-infinite plasma ( n o =  loz3 ~ m - ~ ,  Z =  10) vs tempera- 
ture, plotted using the dielectric permittivity (4.13). which leads to the nor- 
mal skin effect (curve 2). the expression (4.14) corresponding to the anoma- 
lous skin effect (curve 3), and the exact equation (4.6) (curve I ) .  

The coefficients of absorption A and reflection R of elec- 
tromagnetic radiation can be expressed in terms of the sur- 
face impedance, defined as the ratio of the electric and mag- 
netic fields at the boundary: 

E (0) z , = L  = - - - 
2 i  "I" dq 

(4.1 0) 
B,(O) .rr c k ~ + q 2 - ( ~ 2 / ~ 2 ) ~ "  

in accordance with the relation 

In the case of interest involving a low-frequency field the 
absorption coefficient is small ( A e l )  and, according to 
(4.1 I), 

is proportional to the real part of the impedance ReZ, . 
In the strongly collisional limit veiBkuTe the transverse 

permittivity goes over to the well-known expression 

which corresponds to the normal skin effect, and in the col- 
lisionless limit uei< kv Te the equation 

corresponds to the anomalous skin effect. Here up, is the 
electron plasma frequency. 

Equation (4.6) can be used to quantitatively describe the 
surface impedance of a semi-infinite plasma over a wide 
range of variation of the parameters from the strongly colli- 
sional limit (4.13) to the collisionless limit (4.14). This is 
what differentiates our description from the one proposed 
e a r ~ i e r ~ ~ , * ~  using interpolation formulas for E'. 

Figure 14 shows the temperature dependence of the ab- 
sorption coefficient (curve 1) in comparison with the corre- 
sponding dependences within the known limits of the normal 
(curve 2) and anomalous (curve 3) skin effects. 

In summary, we have developed a systematic quantita- 
tive theory of nonlocal transport for small perturbations in a 
plasma whose ions have a high ionization state. The quasi- 
hydrodynamic equations (3.3)-(3.8) derived here to describe 
nonlocal hydrodynamics are fully equivalent to the kinetic 
description and are natural for investigating radiation trans- 
port over a wide range of the collisionality parameter: from 
the strongly collisional range of classical transport to the 
collisionless limit. 

We have compared the analytical theory with numerical 
kinetic calculations" and found that it exhibits good qualita- 
tive agreement with the latter. We have thus demonstrated 
the advantages of the new theoretical nonlocal transport 
model, whose practical implementation, in contrast with ki- 
netic calculations, does not require large computational re- 
sources. We have also demonstrated the incorrectness of the 
previously proposed definition of the thermal c o n d u c t i ~ i t ~ ' ~  
for a weakly collisional plasma, where the ionic convection 
contribution to the heat flux is not expressed explicitly. 

The foregoing theoretical study of nonlocal transport is 
based on perturbation theory. However, the domain of valid- 
ity of the theory can be expected to extend beyond the im- 
plied limitations. In particular, kinetic  calculation^^^ have 
demonstrated specifically for the case of nonlocal transport 
the feasibility of extrapolating results obtained numerically 
in the small perturbation approach1' to larger perturbations 
of the density and temperature by means of a certain proce- 
dure for averaging the transport coefficients over the electron 
mean free path. This possibility opens the door to practical 
applications of the present nonlocal transport equations. 

The nonlocal hydrodynamic equations derived in the ar- 
ticle can be used to investigate plasma instabilities for which 
transport phenomena are important. A significant result of 
the theory is the expression found for the dielectric permit- 
tivity of a plasma in the low-frequency range for an arbitrary 
collisionality parameter. We have demonstrated its useful- 
ness in the example of calculating the ion-acoustic damping 
and surface impedance of a plasma. 

We are grateful to Prof. T. Johnston for several valuable 
suggestions regarding the mode of presentation the newly 
developed theory, which in our opinion have contributed 
largely to a better understanding of the results. 

This work has received partial support from the Russian 
Fund for Fundamental Research (Grant No. 96-02- 16165-a). 

APPENDIX A: THE ELECTRON-ELECTRON COLLISION 
INTEGRAL 

We proceed from the standard Landau form of the ee 
collision integral24: 

X I dv'  
(v- v ' ) ~ ~ ~ ~ - ( v -  v ' ) ~ ( v -  v r ) j  

(v-v'I3 
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This equation is simplified by linearizing it with respect 
to a small deviation of the electron distribution function from 
a Maxwellian equilibrium distribution and isolating its iso- 
tropic part, since we include the contribution of ee collisions 
only in the equation for the isotropic part of the perturbation 
of the electron distribution function. The ee collision opera- 
tor obtained in Eq. (2.4) as a result of these transformations 
has the form 

where the functional operator G[h(v)] is written as follows: 

and y(312 ,x) = S;dx&exp( - x) is a generalized incom- 

plete gamma function. 

APPENDIX 6: APPROXIMATE EXPRESSIONS FOR THE 
MODIFIED ELECTRON-ION COLLISION FREQUENCIES 

The functions hl,,(kvl vei)= vr, lvei  are determined 
from the recursion relation (2.8), which is not very conve- 
nient for practical application. We therefore use simple alge- 
braic approximations for h lo  and h , , ,  which work within 
error limits of no more than a few percent for 
X= kvlvei- 1 and have correct asymptotic representations 
for X+ 1. 

First of all, we note that both functions exhibit similar 
behavior in the strongly collisional limit (X< 1): 

In the weakly collisional limit ( X S  1 ) the first term on the 
right-hand side of Eq. (2.8) can be disregarded. Hence it 
follows that hlm are linear functions of their argument: 
hl,(X)=s,,X/2, where the coefficients sl, are given by the 
recursion relation 

( l + ~ ) ~ - r n '  1 

S1m=4(1+ 1 sl+,,, ' (B2) 

Applying these relations in succession, we obtain the follow- 
ing expressions by mathematical induction: 

4N+ 3 [ 2 2 N ( ~ ! ) 2 ] 2  
slo= lim - 

+ 3 ( 2 N + l ) !  ' 

(4N+3)(2N+ 1) (2N)! 
s l l=  lim +.. 3(N+ 1) [22N(N!)2] ' 033) 

Calculating the corresponding limits by means of Stirling's 
formula, we obtain slo= ~ 1 3  and s,, = 8 1 3 ~ .  

The approximation (2.9) seems reasonable in light of the 
quadratic behavior of the functions hlo  and h , ,  for small 
values of the argument and their linear behavior for large 
values of the argument. 

This approximation was proposed earlier1* for the func- 
tion h ,o. The exact expressions for h lo and h and the ap- 
proximate equations (2.9) are shown in Fig. 1. Despite the 
slight difference in the coefficients of x2 in the strongly col- 
lisional range, these expressions approximate the true func- 
tions within 5% for X- 1. The accuracy of approximation is 
even better in the weakly collisional range. 

APPENDIX C: SYMMETRY PROPERTIES OF THE KINETIC 
COEFFICIENTS 

Here we show that the kinetic coefficients (2.17) form a 
symmetric matrix. This follows directly from Eq. (2.16). Let 
the functions $* and $B be two finite solutions of Eq. (2.16) 
corresponding to two distinct sources SA and S B .  We multi- 
ply Eq. (2.16) for @ A  by the function @ and integrate the 
result with respect to the velocities from zero to infinity with 
weight ( 4 ~ l n ~ ) v ~ ~ ~ ( v ) .  In the resulting expression we then 
replace A by B and vice versa and subtract one of these 
equations from the other. The subtraction result expresses the 
difference between the kinetic coefficients in terms of the 
integral of the ee collision operator: 

Using expressions (A2) and (A3) for the ee collision integral, 
we can integrate the left-hand side of Eq. (CI) by parts. This 
operation yields the expression 

The first term in G (A3) is linear in $, hence it is symmetry 
in the indices A and B and does not contribute to Eq. (C2). 
The last two terms can be written as a double integral: 

Changing the order of integration in one of the integrals in 
Eq. (C3), we see that both integrals are symmetric in A and 
B, so that the right-hand side of Eq. (C3) vanishes. 

The symmetry of the kinetic coefficients J ;  can be re- 
garded as a generalization of Onsager symmetry to the inter- 
mediate range of values of the collisionality parameter. 
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