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The dynamical method developed in a previous work [R. L. Stratonovich, Zh. ~ k s ~ .  Teor. Fiz. 
108, 1326 (1995) [JETP 81, 729 (1995)l for the purpose of calculating the average time 
until escape from a potential well is used to investigate the spontaneous decay of a cluster of 
identical atoms which attract one another. The decay constant with an arbitrary number 
of atoms is found for a simplified model of the interaction. The decay of a cluster of three atoms 
is studied in a more realistic approach for two forms of the interaction: square well and 
Lennard-Jones potential. O 1996 American Institute of Physics. [S1063-7761(96)01110-91 

1. INTRODUCTION 

In the present paper the dynamical method proposed in 
Ref. 1 for investigating escape from a potential well is elabo- 
rated for the problem of calculating the spontaneous decay 
constant of a cluster or a metastable molecule. 

Previously, the diffusive Markov theory of the approach 
to a boundary was employed to solve problems associated 
with escape from a potential well (see, for example Refs. 
2-4). However, when the number of atoms in the cluster is 
not too large, there are no grounds for assuming that statis- 
tically independent Scorrelated Langevin forces operate in 
the system, so that, strictly speaking, this theory cannot be 
used to investigate the spontaneous decay of such clusters 
and molecules. The purely dynamical method is based on the 
fact that the dynamical process is a fluctuational conse- 
quence of self-stochastization, i.e., dynamical chaos. If the 
average time until escape (decay) is much longer than the 
time constant for establishing a stationary or quasistationary 
probability distribution in phase space, then it can be as- 
sumed that for the overwhelming majority of the time the 
system possesses a distribution close to an equilibrium dis- 
tribution in a stable system obtained from the initial distri- 
bution by a small deformation. The insertion of an additional 
wall at the top of the potential barrier can serve as such a 
deformation preventing the escape of phase points. 

In Sec. 2 a simplified model of the interaction of atoms 
in a cluster such that the attraction between the atoms is 
seemingly separated from the repulsion between atoms is 
studied. The decay of the cluster then becomes analogous to 
the efflux of a gas of atoms, which repel one another, from a 
potential well. True, the dimensions of the well are micro- 
scopic and the velocity distribution of the atoms is not Max- 
wellian. In more realistic models the interatomic attraction is 
inseparable from the interatomic repulsion. 

In the present paper we take as the equilibrium distribu- 
tion in the deformed system the microcanonical distribution 

where T(u)=T,(p(v))  is the kinetic energy expressed in 
terms of the velocity v = q .  It is equivalent to the distribution 

w , (q ,p) = C ,  S(H(q , p )  - E) , since the Jacobian of the trans- 
formation p = p ( v )  is constant and can be included in the 
normalization constant. 

A stationary distribution in the deformed system can be 
used to find the decay constant a of the initial system, if this 
constant is small. The constant a is the escape probability per 
unit time. In Ref. I the formula 

was proposed for this constant. We shall employ this for- 
mula. Here x = ( q , p )  or x=(q,v) ,  f,(x)=i,(x), I' is a 
closed hypersurface in phase space, and T_ is the part of the 
hypersurface that corresponds to the condition of escape 
from a region lying inside T: f,dra>O. 

We shall employ the formula in the following variant: 
(1.2): 

where So is a closed hypersurface in coordinate space, n j  is 
the unit outer normal vector to So,  v jnj is the scalar product 
of multidimensional vectors, and ~ ( y )  =(1 +sign y)/2. Intro- 
ducing the factor g(vjnj), which selects the phase points 
where Cjvjnj>O, is analogous to selecting the exit part r- 
of the surface r in Eq. (1.2). In Eq. (1.3) vjnjdSodv plays 
the role o f f  ,dI' ". 

It is natural to place the hypersurface So, the crossing of 
which by an image point symbolizes the decay of a cluster, 
at the top of the potential barrier. This is how we proceed in 
the case of a square well. However, in many cases, for ex- 
ample, in the case of the Lennard-Jones interaction potential, 
the top of the barrier is at infinity. The question of where to 
place the boundary surface in this case is examined below in 
Sec. 5. 

In determining the normalization constants in Eq. (1.1) 
and also the decay constant (l.3), it is necessary to calculate 
multiple integrals, whose multiplicity can be lowered to 
some limit. For example, in the case of a cluster consisting of 
three atoms there remains a triple integral that determines the 
normalization constant and in the case of four atoms a SIX- 
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fold integral remains. To make it easier to calculate the in- 
tegrals, in Sec. 2 a simplified model of the interaction is 
studied. In this model the constant a can be found for an 
arbitrary number N of atoms. In the limit N+m the result 
assumes a form that is well known from the diffusion theory 
of the approach to a boundary. 

2. SPONTANEOUS DECAY CONSTANT IN THE SIMPLEST 
MODEL 

Consider a cluster consisting of N identical atoms that is 
described by the Lagrangian 

N 

where qa is the radius vector of the dh atom and U is the 
potential energy. In the case (2.1) we have the momenta 
pa=dLl&a=nzoqa and the Hamiltonian 

4 N 

In the case of pair interactions the potential energy has the 
form 

where the sum contains N(N- 1)/2 terms. The simplest pair 
interaction potential which takes account of both the attrac- 
tion and repulsion between the atoms is the square well: 

It can be represented as a sum of two terms @ ( r )  + Q2(r),  
where @,(r)=m for r < a ,  @,(r)=O for r > a ,  and 
cD2(r) = - E ~ ( d  - r) .  The term Ql(r )  corresponds to the re- 
pulsion between absolutely rigid spheres with diameter a 
and Q2(r) corresponds to attraction. Now we shall greatly 
simplify the problem, setting 

i.e., we change the mechanism of attraction. The role of the 
sum Z@,(lqa-qpl) is to ensure dynamical chaos in the sys- 
tem. After dynamical chaos is ensured, it can be assumed 
that the constant a is small. The microcanonical distribution 
(1.1) in the case of the potential (2.4) can be written as 

l ~ , 1 ~ - 2 r n ~ ' ( E + e )  f o r q € R 1 - R f ' ,  

0 outside R '  - R". 

(2.5) 

Here R' denotes the region in the 3N-dimensional space 
where Iq,(<d, ...,lq,l <d and R" denotes the part in the region 

R '  where Iqa-qpl<a holds for at least one pair of indices 
(a#). It is easy to see that the volume of R0=R1 - Rf' equals 

Here we have f(r)= - 1 for r<a  and f(r)=O for r>u. It is 
convenient to write c = v - ~ v ~ ,  where V =  4.rrd3/3. The in- 
tegral over R'  can be written as 

(see Eq. (2.4) from Ref. 5). Here, the summation extends 
over all different sets of values of m i  satisfying the condition 

where bj are the well-known cluster integrals (Eqs. (2.5) and 
(4.2) from Ref. 5). The normalization constant C in Eq. (2.5) 
is determined from the condition 

Here, v is the magnitude of the 3N-dimensional vector 
v= (v, ,..., v,) and Eo=  E + E .  We have transformed to hyper- 
spherical coordinates. The integration over angles has re- 
sulted in the appearance of the explicit solid angle f13, in 
3N-dimensional space. It can be detem~ined, e.g., by the 
formulas of Ref. 6 (p. 287). The integration in Eq. (2.6) is 
easily completed: 

Therefore 

To define the decay constant a =  l l ~ , ,  by the inverse average 
lifetime r,, until the detachment of the first atom, we employ 
Eq. (1.4), where 

is the scalar product of 3N-dimensional vectors. 
In our case we must make a stipulation with respect to 

the formula (1.3). The problem is that the distribution (2.5) 
appearing in the integrand undergoes a jump at the boundary 
surface So on account of Eq. (2.4). For this reason, the inte- 
grand must be determined more accurately. We shall take 
w(q,v) to be the values of this function outside the region 
Ro. There the potential energy equals zero. Therefore, in Eq. 
(1.3) we set 
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If, however, w(q,v) is taken to be ~ S ( Z , ~ v , ~ ~ - 2 ~ ~ l r n ~ ) ,  
which corresponds to the interior points of the region Ro, 
then dv .n )  must be replaced by ~ ( v  - n - J G ) .  The last 
factor will select only the velocities at which an atom ap- 
proaching the potential barrier is capable of overcoming the 
barrier. This happens when the kinetic energy mo(v.n)2/2 of 
its degree of freedom perpendicular to n is greater than 8. 

In our case the surface So decomposes into N sections 

N 

so= C S,. 

Here, S, is a hypersurface, determined by the equation 
Iq,l=d, in 3N-dimensional space, while the other vectors 
q1 ,..., 9,- ,,q,+, ,..., q, are less than d in magnitude. The con- 
tributions from different sections S, are the same on account 
of the symmetry of the problem. Therefore we can put the 
expression (1.3) into the form 

where we have written v l=ql ,  I,=ql/ql, and K, is a sphere 
determined by the equation Iqll=d. 

In Eq. (2.10) it is desirable to integrate first over 
v2 ,..., vN . We introduce into the analysis the 3(N- 1)- 
component vector u=(v2 ,..., vN)=u v where u is its magni- 
tude and v=ulu is a unit vector. Transforming to hyper- 
spherical coordinates and integrating over the angles and u 
gives 

Using this equality and also the formulas (2.7) and (2.9), we 
obtain from the expression (2.10) 

(3N-S)/2 2~ 

- v:) ?(rn, - v:) ? (v l~ l )Vl~ldKldvl .  

In this integral we integrate over vl first, setting 
2 ,-v, ,  + ( v , ( ~  anddvI=dvIldv,, where vl l=v,~Il  and v_, is a 

two-component vector lying in a plane perpendicular to II . In 
addition, we switch to polar coordinates: 

v,=(v, cos cp,v, sin cp), vl>O. 

Then 

where vo = J%& and K=(~N-5)/2. Here the integration 
over v, , is performed first and then the integration over v,, is 
performed. After the integration over vl , the integration over 
the sphere K1 is trivial. Finally, we obtain from Eq. (2.1 1 )  

It is convenient to write 

This is twice the kinetic energy per degree of freedom of an 
atom inside Ro. In the case of the canonical Gibbs distribu- 
tion, kT (where k is Boltzmann's constant and T is the ab- 
solute temperature) plays the role of E l .  Substituting Eq. 
(2.13), we obtain from Eq. (2.12) the probability per atom of 
an atom escaping from a cluster: 

(AU=&). This is the main result of this section. Holding the 
quantity (2.13) fixed as N and E increase, hence we obtain in 
the case d d l ~ l ' ~  (this condition is not necessary, but it 
gives a simplification) the asymptotic formula 

Here, the asymptotic formula RM=(Mln)  1 1 2 ( 2 ~ e l ~ ) " 1 2 ,  
which is valid for M 9  1, and Eq. (2.17) from Ref. 5 were 
used. Besides b l = l ,  the cluster integral b2=-21rc?/3 has 
been used. 

The exponential factor exp(-AUIE,), where E l  = kT, in 
Eq. (2.15) is also given by the diffusion theory of the ap- 
proach to a boundary. However, it is difficult to determrne 
the pre-exponential factor in the multidimensional case by 
means of this theory. The factor e ~ ~ [ u ~ ~ ~ / ( 2 d ~ ) ]  is due to 
the rigid repulsion of the atoms, which decreases the free 
space available for motion and increases the frequency of 
collisions with the wall of the potential well. However, it 
should be kept in mind that as a increases, the theory be- 
comes inapplicable. 

The variable y = d ( n ~ o l ~ ~ ) 1 1 2 a l ~  as a function of 
E,lAU, as described by Eqs. (2.14) and (2.15), is plotted in 
Fig. 1 for different values of the number N of atoms (num- 
bers on the curves) for the case a = O .  
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FIG. 1. 

3. ELIMINATION OF THE DYNAMICAL VARIABLES OF THE 
CENTER OF MASS 

The model examined in the preceding section is ex- 
tremely simplified. We shall not use it below. First, we shall 
eliminate the drawback that the potential energy is not trans- 
lationally invariant and we shall assume that U in Eq. (2.1) 
depends only on differences q a - q p .  Then the number of 
dynamical variables can be decreased by eliminating the 
center-of-mass variables. 

We introduce new coordinates, specifically, center-of- 
mass and relative coordinates: 

It is easy to invert Eq. (3.1): 

I 
q = R + r - r ,  * = R - I ~  r , .  (3.2) 

N .=I N ,=I  

Substituting Eqs. (3.2) into Eq. (2.1), we obtain the Lagrang- 
ian in the new variables: 

The first term on the right-hand side. ~ r n ~ l ~ 1 ~ 1 2 ,  is the ki- 
netic energy of the center of mass of a cluster. Since the 
behavior of the center of mass is trivial, we shall not study its 
dynamical variables and we shall drop the indicated term. 
Then 

where x =  ( x l  ,.. . ,xn) = ( r l  ,..., r N -  ,), i.e., we have con- 
structed from r l  ,..., r N P l  the vector x with n = 3 ( N -  1 ) com- 
ponents. Summation over repeated indices is implied in Eq. 
(3.4) and below. The form of the mass matrix M =  [ m j l ]  is 
easily seen by comparing (3.3) and (3.4): 

i.e., E N - ,  is a ( N -  1 ) X (N - I ) matrix, all of whose ele- 
ments equal 1/(N- 1). It is easily verified that it possesses the 

P'oIJertY 

for any N -  1 2  1. Therefore, its eigenvalues all equal 0 or 1. 
If we write down the characteristic equation, it is easy to 
verify that one eigenvalue equals 1 and all others equal 0 .  On 
account of the property (3.7), any function go satisfies the 
formula 

where aland b are numbers. This formula makes it possible 
to find M - '  and to switch to the momenta that are conjugate 
to x i ,  but there is no need for us to do so, since instead of the 
microcanonical distribution we can study just as successfully 
the equivalent distribution ( l . l ) ,  i.e., 

where v j = i j .  From the normalization condition for the 
probability density (3.9), using Eqs. ( A l )  and (A2)  from the 
Appendix, we find 

Here the role of the factor rl(E- U ( x ) )  is to select the part 
of the space where E > U ( x ) ,  i.e., (by virtue of Eq. (3.9)) 
where mjkujuk>0.  In Eq. (3.10) Ro is the region of the states 
of the cluster. 

According to Eqs. (3.6) and (3.5) and on account of what 
$as been said above concerning the eigenvalues of the matrix 
E N - ,  , the matrix Mlmo possesses three eigenvalues equal to 
11N. The remaining eigenvalues equal 1 .  Therefore, Eq. 
(3.10) assumes the form 

We now define the region Ro of states of the cluster and the 
boundary So, the crossing of which signifies decay of the Here 1 ,  = [ ajk],  and 
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cluster of Ro. This definition is somewhat arbitrary, because 
a decision must be made as to what constitutes decay of the 
cluster. 

Let ro be a number. It is convenient to introduce vectors 
qap=qa-qp which are written as follows in the variables 
r ,, . . . ,  r N - , :  qu,=r,-r, for u , r S N - 1  and q,=r, for u S N  
- 1 .  

We assume that an atom is detached from a cluster when 
the distance of the atom from all other atoms is greater than 
ro .  Let the hypersurface So consist of N ( N -  1 )  sections: 

On the section Sap the cvth atom is at the detachment limit, 
and the closest atom to it is the Pth atom. This means that 
gap= r O ,  qmy> r0 for y#P and y# a, while the other vari- 
ables q,, , p,v2 a, are such that no atom has detached yet. 

Since all sections Sap make the same contribution to the 
decay constant, to obtain a the contribution from S I N  can be 
increased by a factor of N(N-  1 ) :  

where 

is an integral over the velocities va=ia  and K 1  is the sphere 
Irll =ro  in three-dimensional space. In addition, Il=rllr is 
the unit outer normal vector to K,.  Equation (3.13) assumes 
the form 

where 

We introduce the vector u=(v  , , . . . ,vN-,)  with m = 3 N - 6  
components. Then 

and in consequence of Eqs. (3.5) and (3.6) 

V T B V ,  = ( 1  - N - ' ) ~ v , ( ~ ,  

and d T  is simply the 3Xm matrix d T = ~ - l ( i 3 , i 3 , . . . , i 3 ) ,  SO 

that 

vTdT= ( V T I N , V ~ I N  ,..., VTIN) .  

If we set 

The integral (3.15) can be calculated using the relation (A6) .  
According to Eqs. (3.16) and (3.8) 

Therefore 

For this reason, application of Eq. (A6) puts Eq. (3.15) into 
the form 

where u:< 4 ( ~  - U ) l m o .  The integration over v l  =(uIl,v,) in 
Eq. (3.14) is performed as done in Sec. 2. The result is 

To obtain the decay constant, it remains to substitute the 
expression (3.17) into Eq. (3.12). 

4. CASE OF THREE ATOMS 

In the case N=3 we have two vectors r ,  and r 2 .  Further, 
let r3=r l - r , .  We denote the magnitudes of these vectors by 
r , ,  r , ,  and r 3 ,  respectively. According to Eq. (2.2), the po- 
tential energy is U =  @ ( r l )  + cD(r2) + @ ( r 3 ) .  

We now determine the region Ro in a six-dimensional 
coordinate space, such that escape from this region signifies 
the decay of the cluster. We represent it by the sum 

Here Rap, is the subregion of Ro where r a a r p = = r r .  Sup- 
pose ro is some number. We make Rapy more precise and 
thereby determine the region (4.1) by the inequality 

Therefore we assume that the cluster decays when a system 
consisting of two atoms and a third atom become separated 
by a distance ro or greater or all three atoms separate from 
one another by this distance. 

The region Ro determine above with the aid of Eqs. (4.1) 
and (4.2) is bounded by the five-dimensional surface 

~ 0 ~ ~ 1 2 3 ~ ~ 1 3 2 ~ ~ 2 1 3 ~ ~ 2 3 1 ~ ~ 3 1 2 ~ ~ 3 2 i ~  (4.2a) 

where Sap, is the section of this surface that is given by the 
formula 

r a > r p = r o > r y .  (4.3) 

The equation (3.1 1) with N=3 gives 
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where I is an integral over the region Ro and, on account of 
Eq. (4.1), assumes the form 

Here we used the fact that all integrals IOpy, make the same 
contributions to I and 

We shall now show how the number of integrations in Eq. 
(4.5) can be decreased. We fix rl and switch from r, to 
spherical coordinates, 

q = ( r 2  sin 6 sin p,r2 sin 6 cos cp,r2 cos a ) ,  

where 6 is the angle between r, and r2 ( 0 < 6 < ~ ) .  Then 

JR123 dr,.2n- dr2r2 d 6  sin 6f J 2J 
Here the integration over cp has already been performed. The 
condition r3<r2 can be satisfied only if 

(otherwise the triangle inequality is violated). Moreover, al- 
lowance must be made for the fact that r3>r1  - r2  holds for 
r ,  > r2 .  To replace the integration variable 6 by r3,  we em- 
ploy 

dr;=d(r:+r;- 2 r l r2  cos 6 )  = 2 r l r 2  sin 6 d 6 ,  (4.9) 

if r ,  and r2 are fixed. Switching in the expression (4.7) from 
r ,  to the corresponding spherical coordinates and taking ac- 
count of Eqs. (4.8), (4.9), and (4.2) and the inequality 
r3>r1- r2 ,  we obtain 

This integral can be divided into two parts: = I;23 
+ I:,, , where 

This partitioning is convenient in the case of the square well 
(2.3). For this interaction potential we must set ro=d.  The 
calculation using the formulas (4.1 1) for the case (2.3) with 
y=dlua2 gives 

ITL 
I' =- u6(5 y6-32y3+ 1 8 ~ ~ + 2 6 ) ( ~ + 3 e ) ~ ,  

l2  36 
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In addition, we have 

for l<yG2. Here it is assumed that E+3e>O. 
We now consider the decay probability (3.12) per unit 

time. Since according to Eqs. (4.2a) So consists of six sec- 
tions, which all make the same contributions to the decay 
constant a ,  we can study the six-fold integral over the section 
S123 determined by the formula r2> r l  = rO>r3.  The relation 
Ir,l=ro defines a sphere K1 (in three-dimensional space). 
Therefore 

(Il=rllr ,  is a unit outer normal vector to K,). Here, the 
velocity integral is identical to the integral in Eq. (3.13). 
Therefore 

Here, allowance was made for the fact that on account of Eq. 
(3.17) and the relation 

J is a function of r2=lr21 and r3=lr31. In Eq. (4.14) we set 
r ,  = ro+O for the case of a jump in the potential @ at the 
point ro. The potential (2.3) undergoes such a jump at ro=d.  
It is assumed that the expression (4.14) is nonnegative, i.e., 
we are interested in the cases when the potential barrier has 
already been overcome. 

The integration in Eq. (4.13) can be represented in the 
form 

which is reminiscent of and is derived by the same method as 
the expression (4.10) (if in Eq. (4.10) we drop the integration 
over r2, set r2=r,,  and replace the index 1 by 2). In Eq. 
(4.15) the integration over the sphere has already been per- 
formed. Taking account of the expression (3.17) with N=3, 
we find 

where 
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and the function (4.14) is denoted as q(r2  , r 3 ) .  For the par- 
ticular case of the potential (2.3), when ro=d=  y u ,  the last 
integral is 

On account of Eqs. (4.4) and (4.5) the result (4.16) assumes 
the form 

where I I z 3  and L(ro)  are defined above. We see that the 
decay constant increases with the amount AE= E- Emh by 
which the energy E exceeds the minimum energy Emin= - E  

required for decay. For fixed ratio y=dla  the constant (4.19) 
is inversely proportional to the width of the potential well. 
We note that the vanishing of 1123 as y+l (when the well 
vanishes) not only compensates for the vanishing of the ex- 
pression (4.18) but also results in an increase of a. 

5. THREE ATOMS INTERACTING VIA A LENNARD-JONES 
POTENTIAL 

In contrast to a square well, the Lennard-Jones potential 

and a number of other potentials (see Ref. 5, pp. 41-43) 
grow continuously for values of r  larger than the value cor- 
responding to the minimum of the potential and they ap- 
proach zero asymptotically from below. The question of the 
choice of the limiting radius ro merits a special discussion. 
The difficulty is that the potential barrier does not possess a 
top where it would be natural to place the boundary surface. 
It will be clear below how this problem can be solved. 

For the time being we limit the choice of ro by the con- 
dition 

Moreover, we shall assume that the quantity Eo = E + e sat- 
isfies the inequality 

as a result of which the decay constant is small. We shall 
show that the inequalities (5.1) and (5.2) make it possible to 
calculate approximately the integral (4.17) appearing in Eq. 
(4.16), where q = E -  @ ( r o )  - @ ( r 2 )  - @ ( r 3 ) .  Consider the 
condition q ( r 2  , r3 )  =0 ,  i.e., 

where the inequalities (5.1) and r2>r0 were employed. The 
equation (5.3) determines the limiting points of the segment, 
fixed by the condition q ( r 2 , r 3 ) > 0 ,  over which the integra- 
tion over r3  must actually be performed on account of the 
factor of ?7q(r2 ,r3))  in Eq. (4.17). But the right-hand side 
of Eq. (5.3) is very small on account of the inequalities (5.1), 
(5.2), and r2> ro . Therefore, to determine the roots of 13q. 
(5.3) the function on the left-hand side can be expanded in a 
Taylor series in powers of r 3  - ao= r3 - 2  lI6a at the point of 
the minimum r 3 = a o .  It is sufficient to approxinlate it by the 
parabola 

where co= 18.2213. Then we find from Eq. (5.3) the integra- 
tion segment 

where 

Observing that the integration over r3  cannot exceed the lim- 
its of the segment (5.5) and taking account of the integration 
in Eq. (4.17), we find that the integral 

reduces to integrating the expression q5I2r3 from go-aA to 
a,+aA with 0<r2-ro<ao-aA (first segment on the r2  
axis) and from r 2 - r 0  to uo+uA for ao-aA<r2-ro<ao 
+ a A  (second segment). The integral S=O for r2 -  ro>ao 
+ a A  (third segment). In the subsequent integration over r 2 ,  
prescribed by Eq. (4.17), the first segment ro<r2<ro+ a. 
-aA-ro+ao  makes the main contribution to L, since the 
length of the this segment, approximately equal to a,, is 
much greater than the length 2aA of the second segment. 
Therefore, the integral over the second segment can be ne- 
glected, but @ ( r 2 ) = @ ( r o )  holds on the first segment, since 
on account of the inequality (5.1) the difference r 2 - r o  
(which is less than ao-uA=ao) is much less than ro and 
therefore r2  also. Therefore, the integration over the first seg- 
ment is trivial, and from Eq. (4.17) we obtain 

We can employ the approximation (5.4) in the integrand in 
Eq. (5.6), after which the integral is easily calculated. This 
gives 
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The decrease of the factor [E,-2@(r0)l3 where u is a m-component column vector and 2 is a real 
-[Eo + 8 ~ ( o l r , ) ~ ] ~  in Eq. (5.7) with increasing ro is the positive-definite mXm-ma%ix. We switch to new integration 
main effect-the number of atoms which have been lost de- yariables y =A1I2u, where A lt2 is a positive-definite root of 
creases as the potential barrier 2@(ro)+3& increases ( - 3 ~  is A .  Then Eq. (Al) assumes the form 
the minimum value of the potential @(r,)  + @(r2) +@(r3)). 
As one can see from the expression (5.7), however, there is 
also a secondary effect-the factor r: increases, i.e., the area ~ , = d e t - " ~  A ~ ( ~ ~ ~ - c ~ ) d ~ ~ .  
of the sphere K 1  increases. It is obvious that it is pointless to 
increase ro up to values at which the secondary effect ex- 

I 
ceeds the main effect. The value of r~ can be determined Switching to hyperspherical coordinates, we easily find that 
from the condition that these effects are balanced, i.e., from 
the condition of an extremum 

(XO= r$c2) which gives xo= ~ ( F I E O )  ' " 9  ro= ~ ~ ( & J E o )  ,I6. we ,, the more complicated integral 
We can see that the condition (5.1) is satisfied on account of 
the inequality (5.2). 

We shall now examine the problem of calculating the 
integral (4.10) in the case of the Lennard-Jones potential. It 12= $uTAu-2bTu--s)dmu, I (A3) 

is convenient to switch in this integral to the dimensionless 
variables x, = ril(r2, x2= r;la2, and x3 = rzla2. Then 

where bT is a m-dimensional row vector. It is easy to see that 
Eq. (A3) can be put into the form 

E 
(5.8) where 

for xo= r;l(r2 and F(x) = 4 ~ - ~ -  4 ~ ~ ' .  The range of inte- 
gration over X' is limited by the condition d = k l b .  (A51 

EIE - F(xl)  - F(x2) - F(x3)>0. The limiting points of the 
segment where this condition holds are easily found: Introducing the new integration variables G=u-d in Eq. 

(A4), to calculate this integral it remains only to apply Eq. 
x; = rnax[O,(; - &) - lt3], (A2). This gives 

Here, t= [EIE - F(xl)  - F(x2)]/4. Therefore, the integration 
overx3 inEq. (5.8) extends frornmax(~y&~ + x2 - 2 6 )  to 
min(x;,x2). In principle, this integration can be performed 

where Eq. (A5) was used. It is assumed that s+bTi- 'b>0, 
otherwise 12=0. 

analytically. The integrals over x ,  and x2, however, can be 
calculated numerically on a computer. 
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6. APPENDIX 

Multidimensional integrals with a delta function 

First, we calculate the integral 

I, = ~ ( u ~ i u -  c2)du, I 

3 ~ .  A. Kramers, Physica 7 ,284  (1940). 
4 ~ .  L. Stratonovich, Topics in the Theory of Random Noise, Gordon and 
Breach, New York (1967). Chapter 3. 

'J. Hirschfelder, F. Curtiss, and R. Bird, Molecular Theory of Gases and 
Liquids, Wiley, N. Y., 1964 [Russian translation, Inostr. lit., Moscow, 
19611. 

6 ~ .  Madelung, Die mathematischen Hi[fsmitrel des Physikers, Springer, 
Berlin, 1964 [Russian translation, Fizmatgiz, Moscow, 19611. 

(A l )  Translated hy M. E. Alferieff 

715 JETP 83 (4), October 1996 R. L. Stratonovich and 0. A. Chichigina 715 


