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Quantum measurement of a small force with an error less than the standard quantum limit using 
a lossless optical interferometric sensor is discussed. The detector sensitivity has been 
investigated taking into account its nonlinearity. The case when the measurement time is shorter 
than the relaxation time of the optical cavity is considered. The conditions when the 
equations can be linearized in principle have been determined, and the limit sensitivity of the 
detector has been calculated with due account of the nonlinearity in the detection of the 
quadrature component of the reflected optical wave. Two methods for reducing the negative effect 
of nonlinearity have been proposed: (a) using nonlinear detection of the output optical wave 
(to measure the number of photons in the biased wave); (b) introducing additional nonlinearity to 
mechanical components of the device. Numerical estimates are given. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)00910-91 

1. INTRODUCTION 

Quantum noise in an optical sensor of mechanical dis- 
placement is a key problem in designing a gravitational in- 
terferometric antenna (the LIGO project) and in other funda- 
mental physical experiments. When the position is measured 
continuously, the backaction noise limits the detector sensi- 
tivity to the standard quantum limit.'-4 In a simple optical 
transducer in which the position of the test mass is extracted 
from the reflected wave phase (Fig. la), the backaction is 
caused by fluctuations in the light-pressure force. As a result, 
amplitude fluctuations in the input wave amplitude are trans- 
formed to phase fluctuations of the reflected wave. The stan- 
dard quantum limit is achieved at an optimal pumping power 
WsQL at which the initial phase uncertainty equals the phase 
uncertainty due to the backaction noise. It is generally ac- 
cepted that the standard quantum limit determines the mini- 
mum registered force. For example, if the force 

acts on a free mass m during its oscillation period 
tF= 27i-1wF, its standard quantum limit is 

FsQL' Jw, WsQL' mc2/ootg. 

In this paper we discuss the measurement of a force 
which is a known function of time. We also assume that 
there is no intrinsic mechanical noise. 

It is known that we can improve on the standard quan- 
tum limit even with coherent pumping, and this requires no 
special correlation of the device noise?4 modulation of the 
input wave: or nonclassical states (frequency 
anticorrelated: squeezed? etc.) if one measures not the 
phase, but a specially chosen quadrature component B(0) 
(Fig. 2), which is squeezed.89 It is the mechanical nonlinear- 
ity (in fact it is a mechanical version of the nonlinear sus- 
ceptibility X ( 3 ) )  causing the backaction that leads to squeez- 
ing of reflected light. If the component B(0) is measured, the 
backaction noise can disappear. An important consequence 

of squeezing the reflected wave is that, the angle 0 is not 
constant, but depends on the spectral frequency, 0= $ (a ) .  
In order to measure the spectrum-dependent squeezing over a 
wide range (i.e., at a small measurement time T=tF,  which 
is usually the case in experiments with gravitational waves), 
the phase of the local oscillator wave should be modulated in 
a specific manner in a balanced homodyne device throughout 
the measurement time. Then the error in the force measure- 
ment by the detector (Fig. la) is determined by radiation 
friction and can be reduced to 

~ , i , , =  S F ~ Q L ~ G G .  (2) 

Here o0 is the input optical frequency and is a numerical 
factor of the order of unity. This sensitivity is achieved at the 
optimum input power ~ , , , = m c ~ l t ~ .  In the power interval 
defined by the condition WsQLG WG W,,, we have8 

F= FsQL-- 

It is worth emphasizing that this procedure is not a quan- 
tum nonperturbing measurement because no urnperturbed 
variable of the mechanical oscillator is identifiable. In fact, 
the reflected wave carries little information about the posi- 
tion, the momentum, or their combinations because the mea- 
suring device strongly perturbs them. Only a variation in the 
position caused by the measured force is detected. Such mea- 
surements can be called quantum variation measurements. 
The detection of a signal action and quantum nonperturbing 
measurement are quite different problems, each of which re- 
quires a specific strategy that is, generally speaking, different 
from the other. 

Equation (2) has been derived in the approximation lin- 
ear in the parameter 2woxlc (x  is the deviation of the detect- 
ing mass from its equilibrium position). Only in this approxi- 
mation can fluctuations in the reflected wave be described by 
a regular ellipse on the phase diagram (Fig. 2a). If terms of 
higher orders with respect to woxlc are included, the fluc- 
tuation ellipse is bent, whereupon the uncertainty in the 
quadrature amplitude increases (the segment CD in Fig. 2b 
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is larger when the ellipse is bent). In our previous 
publication'0 we analyzed in detail the effect of nonlinear 
terms and initial conditions on measurements of the quadra- 
ture component and demonstrated that the sensitivity de- 
scribed by Eq. (2) cannot be achieved at realistic values of 
o,, m ,  and tF . We also proposed a nonlinear scheme for 
measuring the number of photons in the shifted wave (non- 
linear quantum variation measurement) in order to distin- 
guish different bent ellipses. To do this, the reflected wave 
should be combined with an additional wave so that the bent 
ellipse describes the state of the resulting field squeezed with 
respect to its amplitude (photon number). This scheme does 
not fully compensate for the nonlinearity because the ellipse 
is not bent exactly to the circle with the center at the point 
0' (Fig. 2b) owing to fluctuating terms of the third and 
higher orders in the small parameter, but the negative effect 
of the nonlinearity on measurements is reduced. This, how- 

FIG. 1. (a) Simple and (b) interfero- 
metric optical displacement sensors. 
A change in the mobile m i m r  posi- 
tion due to the detected force leads to 
a phase shift in the reflected wave, 
which is measured by a balanced ho- 
modyne circuit. 

ever, is sufficient to obtain the sensitivity defined by Eq. (2) 
at realistic parameters of experiment. 

The sensor shown in Fig. l a  is convenient for theoretical 
analysis, but it cannot be used in real experiments because it 
demands very high input power Wept. From the viewpoint of 
a real experiment, such as LIGO, the interferometric sensor 
shown in Fig. lb  is more interesting. By linearizing its equa- 
tions with respect to the parameter oOxIcTFp, where TFP is 
the transmittivity of the input mirror, one can easily prove 
that its sensitivity limit is also described by Eq. (2), but it can 
be achieved at an input power smaller by a factor 
[~;,/16+ ( w , ~ ~ c ) * ) ]  - ' , where Lo is the separation be- 
tween the mirrors of the loaded optical cavity. The interfero- 
metric sensor, however, has a considerably higher nonlinear- 
ity since its power expansion parameter is 2ooxlcTFp 
instead of 2woxlc in the conventional detector. 

FIG. 2. Phase diagram of spectral amplitude of reflected light wave. (a) The mechanical nonlinearity due to the light pressure leads to a phase-amplitude 
correlation in the reflected wave, and the circle describing fluctuations in the input wave is transformed to an ellipse. Therefore one should measure not the 
phase, but a well defined quadrature component Bop, .  (b) Nonlinear corrections "bend" the fluctuation ellipse, and this bending is the higher, the higher the 
input power. The measurement e m r  is increased because the projection of all the points on a selected vector (segment CD) is longer than in the linear 
approximation. In order to distinguish between "bent ellipses," we propose to measure the number of photons in the biased wave. Adding a bias field with 
small fluctuations shifts, the origin of the phase plane to the point 0'. which is the center of the "ellipse curvature," and the field amplitude is measured with 
respect to the new coordinate system. 
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This publication is a logical continuation of our previous 
studylo and gives a detailed analysis of the interferometric 
sensor operation with due account of its nonlinearity. The 
conditions under which the equation describing its operation 
can be linearized have been determined, and the limit sensi- 
tivity has been calculated with due account of the nonlinear- 
ity in detecting the quadrature component of the reflected 
wave. We suggest two methods for improving the detector 
sensitivity: (a) nonlinear detection of the output optical wave 
(measurement of the number of photons in the biased wave); 
(b) introduction of mechanical nonlinearity to the device. We 
have demonstrated that the device sensitivity can be better 
than the standard quantum limit at a much lower input power 
than in the conventional detector, but the limit sensitivity of 
the interferometric detector is inferior to that of the conven- 
tional detector because even the combination of the two pro- 
posed techniques cannot totally eliminate the negative effect 
of nonlinearity, which is essentially stronger in the interfero- 
metric sensor. 

To simplify our equations, we limit our discussion to the 
case which is most interesting for the LIGO experiment, 
when (a) the probe mass is effectively free, i.e., the time of 
force action is shorter than its inherent oscillation period; (b) 
the damping time of the optical cavity is longer than the time 
of force action: wFLOI~TFp% 1; (c) the cavity is resonant 
with the input optical frequency: exp(iLowo lc)= 1. In our nu- 
merical estimates we take the following parameters: 
w0=10l5 s-', w,=1o3 s-', ",=lo s-I, m=103 g, 
TFp= and L o = 3 -  lo5 cm. 

2. BASIC EQUATIONS 

Let us express the fields of the input and output waves as 
EBl e ~ ~ ( - i w ~ t ) + ~ ~ ~  exp(ioot) and EB2 exp(-ioot)+ EB+;? 
X exp(ioot), respectively. The field inside the interferometer 
can be expressed similarly (see notation in Fig. lb). We rep- 
resent the input wave as a sum of the average amplitude 
Eo (taking for definiteness E o = E t )  and the fluctuation 
eBl (t): EB, = Eo+ eBl(t). Then the average amplitudes of 
the output wave and the field inside the interferometer are 
given by the expressions ( E ~ ~ )  = E ~ ,  (EAI)  = 2~~ I 6, 
respectively. We assume that there are no losses in the mir- 
rors and mechanical components. 

Under a small perturbation of the mirror coordinate 
(x(t)lAoTFP<. 1) and slow damping of the field inside the 
cavity (TFPt/4r0<. 1) in the time 0 s  t S T ,  where T is the 
measurement time, the fluctuations in the input and output 
waves are related by the following equation: 

where eB2(0) is the fluctuating component of the output 
wave at the initial moment, TO= LOIc  is the time for light to 
travel between the cavity mirrors, A o =  oo1c,  ~ ( t )  is the mir- 
ror shift from its equilibrium position in the loaded cavity, 
S is the area of the movable mirror, A,= d m ,  
bl(w)  is the annihilation operator (its commutator with the 
creation operator is [bl(w),b:(wf)]= 6(w-wf)) .  Let us 
assume that the input wave is in a coherent state, i.e., 
(b1(o)b:(o1))= a(@- w'). 

Equation (3) must be supplemented with the equation of 
motion for a mechanical oscillator describing the mirror dis- 
placement: 

Here eBl(0) and eB2(0) are the initial values of the fluctu- 
ating components of the input and output waves, w, is the 
natural frequency of mirror oscillations, m is the mirror 
mass, and F s  is the detected force. We assume that the free- 
mass approximation applies, i.e., o M t 4  1. 

In deriving Eqs. (3) and (4) we introduced some approxi- 
mations, which are discussed in detail in Appendix A. 

3. LINEAR SCHEME OF THE QUADRATURE-COMPONENT 
MEASUREMENT 

In this section we will discuss the interferometric detec- 
tor sensitivity in the simplest linear approximation, when 
Eqs. (3) and (4) can be linearized and nonlinear terms can be 
ignored. 

The difference photocurrent J -  in the device shown in 
Fig. 1 b is proportional to the quadrature field component: 

where the function O(t) is determined by the phase modula- 
tion of the local oscillator wave ELO(t). If the detection time 
is limited, then the quadrature component is not measured, 
but rather the average 
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FIG. 3. Filtering function g s ( t )  (solid line) calculated by Eq. (10) and the 
function gc ( r )  (dashed line) for lK(o,)l= 5 X  lo3. 

The averaging function @(t) and the phase O(t) must be 
chosen so that the parameter BT should not contain informa- 
tion about the linear component of the backaction noise. Be- 
sides, the additional measurement error caused by (a) uncer- 
tainties of initial coordinate and momentum of the mirror and 
(b) uncertainties of initial fields inside the cavity and in the 
input wave must be eliminated. To this end, the following 
additional conditions must be satisfied (see Appendix B): 

d"g,(O) dngc(T) 
dt" dt" 

-0, n=O, 1, 2, 3. 

Here gs(t)=*(t)sin qt), gc(t)=6(t)cos qt), and W is the 
average power of the input wave EBl(t). Then the parameter 
BT defined by Eq. (6) can be expressed as 

+ i(eBl(t) +e i , ( t ) )  dt. I 
The function gs(t) is derived using the technique of op- 

timum filtration, namely, the signal-to-noise ratio is maxi- 
mized under the conditions defined by Eqs. (7) and (8). The 
condition (8) is introduced to get rid of the uncertainty of 
initial conditions. 

Obviously, the additional conditions defined by Eq. (8) 
lead to a lower sensitivity, otherwise the function gs(t) 
would be simply proportional to the output signal [the first 
term in the brackets on the right-hand side of Eq. (9)]. Let us 
consider as an example the detected force Fs(t) described by 
Eq. (1) that should be measured during the time of its action 
T= 21~1 w~ . The detector output signal is proportional to 

But with due account of Eqs. (7) and (8) we obtain (Fig. 3) 

Hence the minimum detectable force is 

where p = 6 0  is the numerical factor characterizing the deg- 
radation of the detector sensitivity owing to the additional 
conditions (7) and (8), and IK(wF)I is the absolute value of 
the squeezing factor of the output wave at the frequency 

We note at this point that Eq. (1 1) is valid only in the 
case when the detector sensitivity is considerably higher than 
the standard quantum limit, i.e., when the reflected wave is 
strongly squeezed: I K(o,)l+ p2. If the expected gain in the 
sensitivity is small, it is quite unnecessary to satisfy the zero 
initial conditions (7) and (8) for gs(t) and its derivatives. If 
the expected sensitivity is within the standard quantum limit, 
there is no need whatever to eliminate the uncertainties in the 
initial conditions. For simplicity, we do not describe a full 
derivation of the optimization conditions for gs(t) in an ar- 
bitrary case, but limit our discussion to the case of strong 
squeezing. 

Note that the output of the interferometric displacement 
sensor is controlled not by the instantaneous mirror displace- 
ment, but by its time integral [the first term in the brackets in 
Eq. (9)]. Therefore its sensitivity can be improved by in- 
creasing the detection time to the optical cavity damping 
time. 

It follows from Eq. (1 1) that in the linear approximation 
the sensitivity of the device as a detector of classical force is 
unlimited. It increases with the input power proportionally to 
fi. A more accurate calculation, however, indicates that 
the sensitivity in this case is limited to that described by Eq. 
(2) owing to radiative fr i~t ion.~ In reality, the limitations due 
to the nonlinearity of the sensor are more essential. 

4. LIMITATION OF THE LINEAR-SCHEME SENSITIVITY 

It is significant that the nonlinear terms in Eqs. (3) and 
(4), describing the nonlinear backaction noise, increase with 
the input power. If the quadrature component of the output 
wave described by Eq. (5) is detected, the sensitivity is lim- 
ited by the terms which are quadratic in x(t). Suppose that 
the nonlinearity in the equation of mechanical motion is 
small, which is described by the inequality 
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Then x(t)  can be expressed as the sum x(t)=xLin+xNLin, 
where xLin is a solution of the linear equation and 

Let us write the expression for BT derived from Eq. (6) re- 
taining to second order in x(t): 

Here the first term in the brackets is due to the nonlinearity 
of the optical system and the second is due to the quadratic 
stiffness characteristic of the mechanical components. Given 
that the damping time of the optical cavity is long, the sec- 
ond term is larger than the first by i.e., the 
sensitivity the quadrature-component measurement is limited 
due to the dynamic nonlinearity in the mechanical oscillator. 

From Eq. (14) we derive the minimum detectable force 
when the quadrature is measured: 

With the parameters quoted in the Introduction, we have an 
estimate F12inCoh=2X I O - ~ F ~ Q L .  Note that the factor pl  re- 
sulting from the need to correct for the initial conditions is 
considerably smaller than that derived in the previous section 
because of the relatively small compression factor: 
IK(wF)l s p 2  (see the previous section). Our estimates yield 
p1 =2. The input power needed to achieve the sensitivity 
defined by Eq. (15) is determined by the equation 

Note that when a similar procedure is applied to the conven- 
tional detector,'' its sensitivity is a factor of = higher 
because its nonlinearity is weaker. 

It follows from Eq. (15) that the nonlinearity of the in- 
terferometric sensor leads to an essential limitation of the 
minimum detectable force. In order to improve its sensitiv- 
ity, one should linearize the detector by changing the char- 
acteristic of the mechanical components, i.e., by introducing 
a mechanical nonlinearity with a sign opposite to that of the 
dynamic nonlinearity. Suppose that the nonlinearity has been 
cancelled. Then in the case of linear detection (measurement 
of the quadrature component) the sensitivity, as in the case of 
the conventional detector, will be controlled by the optical 
nonlinearity, which leads to the bending of the fluctuation 
ellipse shown in Fig. 2b and is described by the first term in 

the brackets in Eq. (14). The minimum detectable force will 
be reduced by a factor (wFrO ITFP)l15 compared to that given 
by Eq. (15). In order to compensate for this optical nonlin- 
earity, we propose a nonlinear measurement procedure which 
allows one to distinguish between bent ellipses. 

5. NONLINEAR SCHEME FOR MEASURING ENERGY OF A 
BIASED WAVE 

Suppose that the device shown in Fig. Ib  measures only 
the current J 2 ,  which is proportional to the energy of the 
biased wave (the current J 1  is ignored): 

where @(t) is the averaging function, E N =  E&,, is the 
field added to the field E2 of the reflected wave, ELO is the 
field of the local oscillator wave. We assume that the trans- 
parency of the beam splitter is small, Tsp< I, in this case 
fluctuations in the wave EN may be ignored. Suppose that the 
wave EN(t)  is amplitude and phase modulated. We introduce 
the notation 

The backaction noise will be cancelled if the following con- 
ditions are satisfied: 

and 

Here f ( t )  is an arbitrary small function smooth on the seg- 
ment [O,T] and satisfying the condition 
sup1 f (t)  1 <( wo lc)suplx(t)l. Equation (17) describes the 
cancellation of the linear terms proportional to xLin(t) and 
Eq. (18) that of the quadratic terms proportional to xZin(t). 
The function Gs(t) is derived using the optimum filtration 
technique, just like gs(t). It is obvious that the condition 
(17) is equivalent to Eq. (7). In this case, the detection sen- 
sitivity is determined by the third-order backaction noise 
proportional to xlill(t) and the uncertainty of the initial phase 
of the input wave. The measured parameter can be expressed 
as 

which yields the equation for the minimum detectable force: 
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6. CONCLUSION The input power needed to achieve this sensitivity is deter- 
mined by the equation 

To conclude this section, let us discuss the problem of 
preparing the measuring system. In the linear approximation, 
the uncertainty in the initial conditions, Axini, does not affect 
the measurement accuracy if the condition (8) is satisfied. 
When the nonlinear corrections are taken into account, this 
uncertainty can be neglected if 

where axdist is the coordinate perturbation due to fluctua- 
tions in the light pressure (backaction). At the Pnasurement 
time T=tF,  the parameter Axdist can be e~~irnated as fol- 
lows: 

The uncertainty Axini can be expressed in terms of initial 
uncertainties of the coordinate, Ax(0) , momentum, Ap(0) , 
and force acting on the mechanical oscillator, AF(0) (the 
uncertainty in the force is due to initial uncertainties of the 
fields inside the cavity, which are considered constant 
throughout the measurement time): 

Here our aim is not to propose an optimum design for 
the device, but to consider a procedure which can be easily 
followed in an experiment using the same input wave with- 
out amplitude and phase modulation. Let the input wave be 
in a coherent state for a long time prior to the measurement 
and its power be constant. Then the coordinate is strongly 
perturbed at large K ( w ~ )  and the condition (21) is not satis- 
fied. Let us demonstrate that this perturbation can be mea- 
sured, hence corrected for. This procedure can be used if 
sequential measurements of force are needed. Information 
about initial conditions can be derived from measurements of 
the reflected-wave phase during the time r=  T / I K ( o J ~ ) ~ " ~  at 
the end of the previous measurement since the phase is the 
measured parameter during the time 7 at the end of the time 
interval [O,T] if Gs(t) is determined by Eq. (10). In this case 
the coordinate can be determined with an error 

the momentum with an error 

and the force with the error 

This measurement accuracy corresponds to the standard 
quantum limit at the measurement time r. Given these equa- 
tions, one can easily find 

and the condition (21) is satisfied. 

We emphasize that the limitation on the interferometric 
detector sensitivity due to its nonlinearity can, in principle, 
be eliminated completely. To this end, in addition to intro- 
ducing the delayed nonlinearity to mechanical components 
balancing the nonlinear dynamic backaction, one should per- 
form a nonlinear transformation of the output wave to a state 
similar to that of the input wave without changing its phase 
shift, which carries interesting information. From the theo- 
retical viewpoint, it may be transmission of the output wave 
through a nonlinear medium with a specific nonlinear sus- 
ceptibility X(3)(fl). One may correct for the nonlinearity not 
completely, but only for the component which is responsible 
for bending the ellipse, for example, by introducing into the 
detector an additional nonlinearity with a specific delay char- 
acteristic. In this case, the detected force can be measured 
with an error given by Eq. (2). Unfortunately, we have no 
idea about how to produce this nonlinearity in experiment. 
The limitations discussed in this paper are caused only by the 
nonideal characteristics of the proposed facility measuring 
the energy of a biased wave, capable of only partially cor- 
recting for the nonlinearity. 

The work was supported by the Russian Fund for Fun- 
damental Research (Grant No. 9402-04219) and USA Na- 
tional Science Foundation (Grant PHY-9503642). 

APPENDIX A 

A Fabry-Perot interferometer with a movable mirror 
(Fig. lb) tuned to an optical resonance is described by the 
equation system 

E A I ( ~ ) = E B I ( ~ ) ~ - E A ~ ( ~ ) ~ ,  

Here EAj, Bj, and Ec j  are slow amplitudes of plane electro- 
magnetic waves. This system includes only terms of order 
i ( t ) l c  [those proportional to ( i ( t ) ~ c ) ~  are omitted]. Let us 
assume that the time for light to travel between the mirrors, 
rO, is smaller than all other characteristic times of the sys- 
tem. Then we can use the following power expansion: 

Without specifying the function x(t), one can derive from 
Eq. (Al) an approximate equation for the output wave: 
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Equation (A3) can be solved formally. Then its solution is 
expanded in powers of x ( t )  and terms through third order are 
retained. As a result, one obtains Eq. (3). 

Equation (Al) should be supplemented with the equation 
describing the motion of the mirror: 

Then, using Eq. (Al) and expansion (A2) and representing 
the position as the sum, X = X o + x ( t ) ,  where Xo is the aver- 
age shift of the mirror due to the light pressure and x ( t )  is 
the fluctuating component, one obtains Eq. (4). 

APPENDIX I3 

Let us write the linearized equations (3) and (4) as the 
system of equations 

+ Here yj= eBj+  eBj  describes amplitude fluctuations of the 
field, z,= - i ( e B j - e ' )  describes phase fluctuations of the "i field, and S= 8Wlmc TFP is the damping parameter of the 
mechanical system due to radiation friction. 

The system of equations (Bl) is linear, so the fluctua- 
tions in the input and output power are independent of each 
other. Assuming a free mass and slow damping of field in the 
cavity, we obtain the output signal in the form 

Note that the signal is also carried by the output amplitude, 
but is very small ( z ~ ~ / ~ ~ ~ - w ~ / o ~ ) .  The following expres- 
sions for the fluctuations y j  and z j  can be derived from Eq. 
(B 1): 

The function z ~  contains information about the backaction 
noise. 

The homodyne technique measures an integral of the 
reflected-wave quadrature component: 

Let us take gs ( t )  in the form 

where 

Then for the boundary conditions given by Eq. (8) and in 
approximations described above, Eq. (B4) does not contain 
zz ,  so it can be transformed to Eq. (9), and the condition 
(B5) to Eq. (8). 
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