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A theory of quantum transitions in an atom of positronium is constructed that takes into account 
two-photon annihilation decay and optical transitions between two arbitrary states of the 
positronium atom. The problem is addressed without using perturbation theory by solving sixteen 
Heisenberg equations for the photon and atomic operators. Solutions to these equations are 
used to calculate radiative shifts of the energy levels of the positronium atom, phase relaxation 
times, and the lifetime of the positronium atom itself, taking into account spontaneous 
transitions and transitions stimulated optically between two quantum states. Radiative and 
nonradiative interactions of the positronium atom with the photon fields are distinguished. The role 
of coherent effects in positronium due to feedback from the fields of intrinsic and external 
photons is discussed. The kinetics of annihilation decay is investigated for various initial 
conditions. In addition, it is demonstrated that long-lived atoms of parapositronium can 
form in the field of an optical laser if one of the states of the positronium atom is a Rydberg 
state. O 1996 American Institute of Physics. [S 1063-7761 (96)007 10-X] 

1. INTRODUCTION 

In the physics of positronium atoms, an important role is 
played by theoretical and experimental investigations di- 
rected towards refining the wave functions of the electron 
and positron, which in turn are reflected in changes in the 
lifetimes and shifts of energy levels of the positronium atom 
in its various In this article we will regard these 
e + e - interactions as nonradiative in nature. 

The goal of this article is to neglect nonradiative inter- 
actions and investigate theoretically the radiative interactions 
of a positronium atom with the field of its own and external 
photons. As we will show below, such a field significantly 
changes the energies and lifetimes of states of the positro- 
nium atom. In contrast to previous works,475 this article will 
focus on the radiative e + e -  interaction with light and the 
absorption of optical photons in the course of annihilation 
decay. This allows us to clarify the roles of spontaneous and 
stimulated optical transitions in the radiative interaction of 
the positronium atom with the field of vacuum annihilation 
photons. 

A number of have noted the important role an 
optical laser can play in the process of annihilating a posi- 
tronium atom. Thus, in Ref. 6, Rivlin discussed the possibil- 
ity of spontaneously induced 3 y annihilation of an atom of 
orthopositronium, in which one of the modes of the annihi- 
lation photons is optical. In this article it will be shown that 
the field of an optical laser not only causes significant 
changes in the energy and lifetime of the positronium atom, 
but under certain circumstances also makes it possible to 
obtain a long-lived positronium atom if the radiation of the 
optical laser excites the positronium atom to a Rydberg state. 

2. EQUATIONS OF MOTION FOR PHOTON AND ATOMIC 
OPERATORS 

The effective Hamiltonian of the electron-positron sys- 
tem in the field of annihilation (modes 1, 2, 3, 4) and optical 
photons takes the form 

where hw;>0, fio;>0 are the energies of the electron (pos- 
itron) in states 1 and 2 of the positronium atom, c ,  c+ are 
annihilation and creation operators for optical photons, and 
fio, (a= 1, 2, 3, 4) are energies of the annihilation photons. 
The quantities U and U 2  determine the interaction energy of 
an electron and positron in states 1 and 2 of the positronium 
atom as second-order quantum electrodynamic effects (Fig. 
la). The quantities S1, S2 characterize the probabilities 
W2$1), W2,(2) for two-photon decay of a positronium atom 
in states 1 and 2 respectively; in the absence of higher cor- 
rections, these corresponds to a second-order effect (Fig. lb). 
The quantities G and G* define quantum transitions between 
states 1 and 2 of the positronium atom under the action of the 
optical laser. Such quantum transitions can be represented as 
third-order effects in quantum electrodynamics (Fig. Ic). In 
what follows the quantities S , ,  S2,  and G will be determined 
explicitly. The summation over different photon modes will 
be carried out in the final formulas. 

We use the equal-time commutation relations for photon 
and electron-positron operators1' to derive Heisenberg op- 
erator equations. After the necessary computations we obtain 
the following equations for the photon operators: 
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FIG. 1. Feynman diagrams for the e + e - in- 
teraction in a positronium atom which detcr- 
mine the effective Hamiltonian (2.1). 

where P I  = i l b  , P2= i 2 b 2  are atomic operators for states 1 
and 2 of the positronium atom. These equations must be 
supplemented by corresponding equations for the atomic op- 
erators: 

where flo,=w(,+)+w(,-), n l = a : a l + b ~ b l - 1 .  We obtain 
the rest of the equations analogously: 

1 
- - G * P : C + ~ ~ ,  n 
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where flo2=wP)+w$-). Equations (2.2)-(2.4) form a closed 
system, which will be used below to describe the various 
properties of the positronium atom in the field of intrinsic 
and external photons. 

2.1. Conservation laws 

From Eqs. (2.3) and (2.4) we can derive the conservation 
law: 

Therefore, we have the following integrals of the motion: 

where nol,no2 are constants. 
The quantities no, and no, can be found from Eqs. (2.7) 

and (2.8) and the commutation relations 

In what follows the initial conditions will be discussed in 
detail, and a solution to the equations of motion will be ob- 
tained for the atomic and photon operators. 
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2.2. Adiabatic approximation and obtain from Eq. (2.2) the following operators: 

Let us use the adiabatic approximation, where 

c , ( t )  = ~ j e ) ( t ) e - ' ~ r ' ,  c t ( t )  = c;)' (r)eiWr',  (2.10) 

P,,,P&,C;) ,c:)+ are slowly varying amplitudes; f l ,  is the 
frequency of the positronium atom in states n=1;2 
(fl,=Oo,+U,lh); and p= 1,2,3,4 labels the modes of the 
annihilation photons. Then we obtain from the first equation 
in (2.2) 

where c v ( t )  = c l u ( ~ )  e-iWl' consists of vacuum-field opera- 
tors, 

and l(x) is the Heitler l - f~nct ion: '~  

P 1 - e - i ~ '  
{ ( x ) =  --i.rr~?(x)=lim -. 

X 
(2.13) 

1-m ix 

By analogy we obtain the following operator equations: 

c2( t )  = ~ 2 , ( t ) + d Z ( t ) c :  ( t ) ,  

~ : ( t ) = ~ : , ( t ) + d t ( t > c 2 ( t ) ,  

c2f ( t )=cL( t )+d;( t )c l ( t ) .  (2.14) 

From Eqs. (2.1 I ) ,  (2.14) we obtain the following operators: 

We transform the operator ( 1 - d,*d2) - ' ,  using its expansion 
in a series 

where 

Thus, in place of (2.15) we have 

cl=(c l .+c; .do2~2)(  1 + ~ 0 2 p : p 2 ) .  

c : =  t 1 + ~ 0 2 p : p 2 ) ~ c : ~ + d ; 2 p : c 2 , ) ,  

~ 2 = ( ~ 2 ~ + ~ : . d o 2 ~ 2 ) (  1 + ~ 0 2 ~ : ~ 2 ) ,  

C:  = ( 1  + ~ 0 2 ~ : ~ 2 ) ( c ~ + d ; 2 ~ : c 1 , ) .  (2.17) 

We also introduce the operator 

where 

Factoring out the slowly varying amplitude in the photon 
operators c ( t )  and c + ( t ) ,  we obtain 

where 

In obtaining the operators (2.17), (2.19), and (2.20), we 
have used the ordinary properties of fermion operators of the 
electron-positron field. In calculating these operators, arbi- 
trary powers of the interaction constants ISI( and IS2/ are 
included, i.e., as is clear from (2.16), restriction on the no 
perturbation-theoretic series is invoked in our investigation. 

By substituting the operators (2.17), (2.19), (2.20) into 
the equations of motion (2.3) and (2.4) for the atomic opera- 
tors, we can transform these equations. In this case, it is clear 
from (2.17) and (2.19) that in our discussion the coupling 
between photon and atomic operators arises from the optical 
photon operators (2.20). 

3. OCCUPATION NUMBER OF POSITRONIUM-ATOM 
STATES IN A FIELD OF OPTICAL PHOTONS 

From Eqs. (2.3) and (2.4) with normally ordered opera- 
tors we have 

Let us substitute the photon annihilation operators (2.17) and 
(2.18) into (3.1). Multiplying out the brackets, we take the 
quantities d o , ,  do, and p o l ,  po2 as parameters for estimating 
the contribution from different terms. We will also assume 
that 

We assume that there are no bare photons in niodes 1,2 
and 3,4 of the free (vacuum) field. This implies that the fol- 
lowing equations hold: 
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where Ivac) is the wave function of the vacuum field in the 
occupation-number representation of the photon states, and 
(...) denotes an average value computed by using this wave 
function. After multiplying out the operators in (3.1), we 
average out the atomic operators in the final expressions with 
the help of a certain wave function I@) in the occupation 
number representation of the electron-positron states. In ad- 
dition to this we will use the following identities: 

Adding all the terms in the operator equation (3.1), we 
obtain the following equation for the average value (we omit 
the symbol (...)): 

where 

In order to solve Eq. (3.5), it is necessary to determine 
the explicit time dependence of the occupation numbers n l  
and n2. For this we once more turn to Eqs. (2.3) and (2.4). 
Following the computational procedure described above, af- 
ter averaging over the vacuum from (2.3) we obtain 

Analogously, we obtain from the third term of (2.4) 

We distinguish the nonlinear terms in Eqs. (3.6) and 
(3.71, i.e., 

where the meaning of the coefficients a,, b, ( p =  1,2,3,4) is 
easily established by a comparison with Eqs. (3.8), (3.7) and 
(3.6). 

Subtracting Eqs. (3.8a) and (3.8b) from one another and 
using Eq. ( 3 4 ,  we find the following solution: 

n2(t) = - R,+[n2(0)+ RJexp 

(3.9) 

where 

Substituting (3.9) into Eq. (3.8a), we obtain 

R 1 
n l ( t )  = - -- 

2R2 
exp - - ( a3 -b l  

B l  a 3 - b l - C l + B l  I :  

where 

Solving (3.10), (3.9) allows us to determine the time 
dependence of the occupation numbers of states 1 and 2 of 
the positronium atom in a field of optical photons in the 
single-mode approximation. In what follows these solutions 
will be used to solve Eq. (3.9,  taking into account the mul- 
timode nature of annihilation decay. 

4. COHERENCE OF STATES OF A POSITRONIUM ATOM 

Following the terminology of resonance optical 
spectroscopy,13 we will estimate the coherent effects in a 
positronium atom with the help of nonzero average values of 
the operators P I , P :  and P, , P: .  For this we turn to Eq. 
(2.3) and transform the following atomic-field operator: 

679 JETP 83 (4). October 1996 0. N. Gadomskii 679 



making use of Eqs. (2.20) and (2.19) and normal ordering of Obviously it is necessary to carry out a summation in 
the operators. Eqs. (4.4) and (4.6) over the various frequencies of the an- 

After vacuum averaging we obtain the following equa- nihilation and optical photons, and also over the various di- 
tion: rections these photons are emitted in. This procedure does 

not give rise to any special difficulties, if we take into ac- 
count that the functions f ,F , f o  , f2 ,F2 have sharp maxima 
as t 4 ~ .  

Analogously, we obtain from Eq. (2.4) 

Using the explicit values of (2.20a), (2.18) and (2.1 2) for 
the complex quantities d o , ,  do,  and l o ,  we can identify the 
real and imaginary parts in Eqs. (4.2) and (4.3), which deter- 
mine the energy shift and the relaxation time of a positro- 
nium atom in states 1 and 2. 

We point out several fundamental properties of the shifts 
AEl  and AE,.  

1 )  In Eqs. (4.4) and (4.6) we have used the representa- 
tion of the 5 function for finite time intervals. This allows us 
to trace the time dependence of the shifts AE and AE2 for a 
stepwise change in occupation numbers n and n2 according 
to the solutions (3.9) and (3.10). 

2)  Since we have ( s ~ / ) ~ - w ~ ~ ( ~ )  and 
( I  ~ , l l h ) ~ -  ~ , , ( 2 ) ,  the energy shift of a parapositronium 
atom amounts to several gigaherz, which is comparable in 
value to the energy shifts caused by nonradiative interactions 
in a positronium atom.' 

3) The energy shifts AEl  and AE,  depend on the choice 
of initial conditions and excitation conditions of the quantum 
transition 1 5 2  involving optical photons. 

4.2. Phase relaxation time 
4.1. Energy shift of a positronium atom in the field of 
annihilation and optical photons Taking into account the imaginary part of the 5 function 

in Eqs. (4.2) and (4.3), we find the characteristic times 
According to Eq. (4.2), we determine the energy shift 

~ $ 1 )  and T G ( 2 )  for phase relaxation of states 1 and 2 in A E ,  of the state 1 from the following expression 
the single-mode approximation: 

where we introduce the notation 

Analogously, we obtain from Eq. (4.3) the energy shift 
of state 2: 

where 

where 

The quantities T;,'(I) and Ti,'(2) are analogs of the phase 
relaxation times in coherent resonant optics,13 and determine 
the time interval during which the average values P I  and P 2  
fall to zero due to annihilation. However, as is clear from 
(4.8) and (4.9), the phase relaxation time contains contribu- 
tions with opposite signs, due both to annihilation decay and 
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the influence of optical photons. Competition between these 
contributions can change the phase relaxation time signifi- 
cantly compared to cases where no optical photons are 
present. 4 

4.3. Initial conditions 

Let us compute the quantities no, and no, using conser- 
vation laws (2.7) and (2.8). 

The commutation relations (2.9) and the identity (3.4) 
imply that 

If we assume that at the initial time t=O the average occu- 
pation number satisfies (nl)o=l and we have (P,P:),=o, 
then no,=3/2. However, we can show that annihilation of a 
positronium atom in state 1 is impossible for this initial con- 
dition. In fact, let us calculate the operator d ( ~ , ~ : ) l d t  us- 
ing the operator equation (2.3) and operators (2.19) and 
(2.20). After multiplying all the operators and averaging the 
final states we find d ( ~ , ~ : ) l d t = ~  for no,=3/2 and 
(n 1. Therefore, we will assume that at the initial time 
( P , P : ) ~ =  A I F  holds. Then from Eq. (4.1 1) we find that 
no,= 3 ( A  ,,+ 112). In order to calculate A I F ,  we use the ob- 
vious identity (P:P ,12 = P: P ,  . Then, using (3.4), we ob- 
tain 

and for (n  1 we have A, ,= -312. 
We find no2 analogously. From the conservation law 

(2.8) we have 

Assuming that at the initial time (P,P;),=A,, holds, we 
obtain 

For (n2)o=0 we have A2,=-112. Substituting the initial 
conditions (4.12), (4.14) into Eqs. (4.8) and (4.9), and also 
into (4.4) and (4.6), we can compute the relaxation time and 
energy shift when the conditions for interaction of the posi- 
tronium atom with optical photons are specified. 

5. LIFETIME OF A POSITRONIUM ATOM IN A FIELD OF 
OPTICAL PHOTONS 

Let us now solve Eq. (3.5) with the initial conditions 
(4.12) and (4.14). We will take into account the multimode 
annihilation decay when the quantities B , , Bo, C, , and Co 
are &functions. For this it is necessary to multiply these 
quantities by the density of the number of photon states 

and integrate over the frequency w, assuming for simplicity 
W ,  =q and 03=w4 for the case of a motionless positronium 
atom in accordance with energy-momentum conservation 
when states I and 2 decay. Here V i  is the quantization vol- 
ume of the electromagnetic field, and dCIA is the element of 
solid angle in whose direction the annihilating photons are 
emitted. We denote by B, , &, C,  , and Co the corresponding 
constant quantities on the right side of Eq. (3.5) in which we 
have used our procedure for taking into account the multi- 
mode nature of the process. Similarly, we denote by a, and 
b, (p= 1,2,3,4) the quantities a ,  and b ,  in Eq. (3.8), where 
the multimode nature can also be taken into account. Then 
we introduce the constant quantities &, 6, it, io, el, and 
f?,, into the solutions to Eqs. (3.9) and (3.10). 

In keeping with the meaning of the effective Hamil- 
tonian (2.1), the quantities lSll and  IS,^ correspond to free 
annihilation decay of a positronium atom in states 1 and 2, 
without taking into account the feedback of the field of an- 
nihilating photons and field of optical photons, with prob- 
abilities A ~ $ : ( 1 )  and A wiY(2) per unit time for emission of 
annihilating photons into an element of solid angle Ail. Then 

For isotropic decay 

and lSll and IS21 do not depend on the element of solid angle. 
In this case  IS,^ and IS2[ consist of the interaction energy of a 
positronium atom with the field of free (vacuum) annihila- 
tion photons. 

Let us clarify the meaning of the quantity Vk . The quan- 
tity VL has the sense of the effective interaction volume of 
the positronium atom with the photon field, and is deter- 
mined by the characteristic wavelength in the spectrum of 
the positronium atom in state 1 (or 2). For the 1 S state of a 
positronium atom we have 

where m is the electron mass and e is its charge. The volume 
VA is chosen in such a way as to "resolve" the characteristic 
frequency of a parapositronium atom in state 1s. For the 
state 1 S we have w$?,!(l S )  = (a5rnc2/2h),  where a is the 
fine structure constant.' Thus, the characteristic frequency 
for effective interaction of a parapositronium atom in this 
state with a field of annihilation photons equals 

The constant quantities pol and pO2, which are deter- 
mined by Eqs. (2.16a) and (2.19a), enter into Eq. (3.5). In the 
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integration over frequencies of the annihilating photons we 
have used the properties of the Heitler [-function, and we 
find that 

where 72, is the characteristic time for observing this process 
of interaction of the positronium atom with the field of an- 
nihilating and optical photons, i.e., the lifetime of a positro- 
nium atom taking into account feedback of the photons and 
optical transitions of the positronium atom between states 1 
and 2. 

Let us substitute the solutions (3.9) and (3.10) into Eq. 
(3.5). After some calculations, taking into account the re- 
marks we made above, we find 

where 

where 1 / 7 = 4 ~ ~ d ~ / 3 c ~ h  is the Einstein coefficient for spon- 
taneous transitions of a positronium atom from state 2 to 
state 1 with emission of an optical photon with frequency 
wo=Cl2-S1,, and d is the dipole moment of the transition. 

Using initial conditions in which we assume that state 2 
is not occupied at time r=O, we obtain 

Then we determine the lifetime of the positronium atom 
from the solution (5.7): 

Let us discuss the physical meaning of this result. Correc- 
tions to the probability per unit time of annihilation decay of 
a positronium atom in the l l so  state calculated to order 
O(C? In a-') lead14 to a decrease of this quantity compared 
to ~ $ $ ( 1 ) .  These corrections will be regarded as nonradiative 
corrections, since they are caused by the effects of quantum 
electrodynamics with Feynman diagrams that contain only 
closed photon lines. In this case the procedure for calculating 
nonradiative corrections does not include the possibility of 
creation of a positronium atom due to feedback of the photon 
field. In our discussion, which is based on the closed system 
of Heisenberg equations of motion for the photons and 
atomic operators, this possibility is included automatically. 
Therefore, in contrast to Ref. 14, and also to other papers in 
which higher-order nonradiative corrections are discussed, 
Eq. (5.9) corresponds to different, i.e., radiative corrections. 
In keeping with the meaning of the effective Hamiltonian 
(2.1) we include nonradiative corrections of all orders in the 
interaction constants of the positronium atom with the pho- 
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ton field. Then Eq. (5.9) will be complete enough for com- 
parison with experimental results, in which record accuracy 
is achieved in measuring the spectroscopic characteristics of 
a positronium atom.' Let us now discuss the solution to (5.7) 
for other initial conditions where at the initial instant of time 
state 2 is occupied. In this case 

Let us find the lifetime 72y of a positronium atom, assuming 
that at time t = 72, the average occupation numbers reduce to 
zero, i.e., n,  + n2 =O. The exact value of 72, can be found by 
numerical methods. However, if we take into account that Q, 
and Q2 are functions of 72,, that vary more slowly than an 
exponential function, we can replace 72, in the expressions 
for Q,  and Q2 by, e.g., [W$?$l)]-'. Then we obtain the ap- 
proximate expression: 

where Q = - Q '/Q2, and we assume that (I~,l/fi)~&,G 1, 
( I ~ ~ l l h ) ~ ~ $ <  I. This expression demonstrates quite clearly 
the relative contributions of annihilation and optical transi- 
tions to the lifetime of the positronium atom. 

5.1. The role of stimulated optical transitions 

The solution to the equations of motion contains a con- 
tribution from spontaneous optical transitions 2 4  1 between 
states of the positronium atom. The origin of these transi- 
tions is connected with inclusion of third-order quantum- 
electrodynamic effects (Fig. Ic) in the effective Hamiltonian 
(2.1). The radiative interaction of a positronium atom with 
the field of annihilating and optical photons is treated in the 
nonrelativistic theory based on the Heisenberg equations of 
motion for atomic and photon operators without perturbation 
theory. Within perturbation theory, an external field can be 
introduced into quantum electrodynamics in two ways. The 
first is connected with introducing the field into the Dirac 
equation, whose solutions are then treated as basis functions 
for quantum-electrodynamic perturbation theory. This ap- 
proach was used previously by the authorI5 in order to dem- 
onstrate the possibility of quantum beating in the annihila- 
tion decay of the positronium atom in a mixed state. The 
mixing of two atomic states of a positronium atom was 
implemented in Ref. 15 using a powerful resonance optical 
laser; as was shown in Ref. 15, the probability of annihila- 
tion decay oscillates with the frequency of the optical tran- 
sition. The second way to include an external field is based 
on corrections to the quantum electromagnetic field of the 
external field. In the present work, this is the method used to 
include the effect of an optical laser with frequency wo. In 
light of the previous discussions, the method can be imple- 
mented by making the following replacement in solution 
(5.7): 

where A 0  is the solid angle within which NL optical photons 
of the optical laser act on the positronium atom. 

Let us investigate the role of stimulated optical transi- 
tions, using the solution (5.7) and the following equations: 

We assume that at time t=O states 1 and 2 are unoccu- 
pied, i.e., n (0) + n2(0) =O. Then Q,  = - Q2 and we must 
satisfy the equation 

from which we find the lifetime of the positronium atom 
after some transformations: 

where 

For small values of the quantity a (IalGl), as is clear 
from (5.7b), 

i.e., the lifetime depends weakly on optical transitions be- 
tween states 1 and 2. The role of the induced transitions in 
Eq. (5.7b) can be significantly enhanced by the transforma- 
tion (5.12), which changes the numerical value of the quan- 
tity a .  

5.2. Long-lived state of a positroniurn atom in the field of an 
optical laser 

In Ref. 9, Ziock et al. investigated optical saturation of 
the 1 3 ~ - 2 3 ~  transition of a positronium atom in a constant 
magnetic field, and hence in the presence of mixing of the 
triplet and singlet states. In contrast to Ref. 9, this article 
treats the selective excitation of singlet states, e.g., ~ I P , ,  of a 
positronium atom using an optical laser. In this case the tran- 
sition I ' So -+2  'Po corresponds to a wavelength A=2429.6 
A, and the 2y-annihilation of a parapositronium atom is 
treated in the absence of triplet states. Whereas the lifetime 
of a parapositronium atom in state I 'So equals 125 ps (Refs. 
1 and 9), it is eight times larger1 in the state 2 ' ~ ~ .  In this 
case, a transition of a positronium atom from state 2'Po to 
state llSo due to spontaneous emission of optical photons 
with a characteristic time r=3.2 ns takes place? Based on 
the solution (5.7), let us consider the possibility of creating a 
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long-lived state of a positronium atom under the action of an 
optical laser. For this we assume ( d l d t ) ( n ,  + n2)  =O. Then 
from (5.7) we find 

where 

It is possible to satisfy condition (5.13) if the individual 
terms in (5.13) reduce to zero for appropriate interaction pa- 
rameters of a positronium atom with the field of annihilating 
and optical photons, i.e., 

As follows from (5.7), condition (5.14) can be realized if we 
assume that state 2 corresponds to a certain highly excited 
state (large values of the principal quantum number n)  of the 
positronium atom, for which ~ $ 7 ( 2 ) - + 0 .  We assume that 

where M G 1. Then 

where wo is the frequency of the transition 1 4 2 .  Similarly, 
we can calculate Q3 when condition (5.15) is satisfied. It is 
easy to show that this quantity reduces to unity if the quan- 
tity (5.16) goes to zero. Thus, by choosing the parameters 

wo, d ,  AQ and NL we can create a long-lived state of the 
positronium atom without annihilation into gamma rays if 
we first place the positronium atom in a certain Rydberg 
state. 

Thus, in this article we have shown that the interaction 
of a positronium atom with a photon field must be under- 
stood as a radiative interaction, and also that radiative inter- 
actions appreciably change the kinetics of annihilation de- 
cay. 

This work was partially supported by the Russian Fund 
for Fundamental Research. 
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