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Nonr,adiative (nonthermal) transitions in electronic--vibrational systems involving squeezed 
vibrational states are considered. The nonradiative transition rate is calculated for different methods 
of preparing squeezed states (using an ultrashort laser pulse or by inducing parametric 
resonance). The highest transition rate occurs at times when the width of the wave packet of the 
squeezed state is at its peak value. In the case of a no~adia t ive  nonthermal transition 
involving squeezed states the Arrhenius decay, which contains the dispersion of thermal vibrations, 
is shown to contain the dispersion of a super-Poisson distribution, which leads to an 
exponential increase in the nomadiative transition rate. Possible applications of this phenomenon 
are discussed. O 1996 American Institute of Physics. [S1063-7761(96)00610-51 

1. INTRODUCTION where i and f are the initial and final electron states, Q is the 

In recent years there has been an upsurge of interest in 
squeezed ( s q = s )  vibrational states of oscillators in mol- 
ecules and local centers of crystals (see, e.g., Refs. 1-3). The 
possibility of preparing such squeezed states by either apply- 
ing ultrashort laser pulses or parametrically driving the 
oscillator4 makes them fascinating objects for theoretical and 
experimental studies primarily because of the new relation- 
ship between the parameters of the squeezed vibrational 
states (in comparison to squeezed light) and, naturally, for 

amplitude of the vibrational coordinate, If iIS)(~,to)12 is the 
probability density of the distribution of the vibrational am- 
plitudes of the initial squeezed state at time to [see Eq. (2) 
below], and is the probability of a nonradiative '-t 
transition per unit time (the transition rate) when the electron 
interacts with a classical vibration of a given amplitude Q .  

The calculations of nonradiative transition rates can be 
done separately for different ways of preparing the squeezed 
vibrational states, by ultrashort pulses or parametrically. 

new applications. Suffice it to note that the rates of optical 
and no~adia t ive  transitions of electrons in molecules and 
condensed media determine the entire set of electron kinetic 2. NONRADIATIVE DECAY OF SQUEEZED 

characteristics. ELECTRON-VIBRATIONAL STATES EXCITED BY 
This paper discusses no~adia t ive  transitions taking PULSES 

- - 
place in electronic-vibrational systems, which in contrast to 
optical transitions make significant use of deviations from 
the Franck-C'ondon principle. 

As is known, above-barrier nonradiative transitions are 
determined by thermal fluctuations of the amplitude of oscil- 
lator vibrations, which leads to the Arrhenius law (the tran- 
sition rate W is proportional to exp{-AlkoT}, where A is the 
activation energy, and k o ~ = D :  is the dispersion of the ther- 
mal vibrations). At low temperatures the probability of such 
fluctuations is low and one must allow for tunneling decay. 
For squeezed vibrational states the super-Poisson nature of 
the oscillator amplitude distribution (for high squeezing ra- 
tios) increases the dispersion 0: of the vibration amplitude, 
so that D:>L);. One indication of this fundamental result is 
the possibility of an (exponentially) sharp increase in the 
probability of (nonthermal) nonradiative transitions, which 
may experimentally manifest itself in anomalous lumines- 
cence quenching, a sharp increase in chemical reaction rates, 
including enzyme catalysis rates, and other phenomena di- 
rectly related to rates of nonradiative processes. 

In the Appendix we will see how an exact quantum call- 
culation of the multiphoton transition rate w$' with 
squeezed vibration vacuum can be reduced to the form 

Squeezed states excited by ultrashort pulses realize a 
new class of states in molecules and solids.'-3 Of greatest 
interest here are electronic-vibrational systems with so- 
called hot luminescence5 associated with the 2 4  l transition 
(see Fig. l), which would indicate that the decay of excited 
vibrational states is slow. Electronic-vibrational ("vi- 
bronic") squeezed states in molecules make it possible to 
observe the almost classical motion of nuclei on time scales 
t shorter than the decay times td of these states. New optical, 
photoelectron, and chemical properties of such states mani- 
fest themselves on such time scales. Below we calculate the 
rate of the nonradiative decay of a squeezed state for the 
electronic-vibrational system (a molecule or a local center in 
a crystal) depicted in Fig. 1. 

The corresponding adiabatic potentials in the electron 
states 1, 2, and 3 interacting with the Q-vibration have the 
form 

Here m is the oscillator mass, and V is the electronic- 
(') vibrational coupling constant in the electron state 3, which 
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FIG. 1 .  Curves 1, 2, and 3 represent the adiabatic potentials for the corre- 
sponding electron states of the electronic-vibrational system (w ,  f w, and 
w,=w,), and curve 4 represents the repulsive term; E ,, E,, and E, are 
energies of the minima of the adiabatic potentials for the electron states 1,2, 
and 3. 

determines the horizontal displacement of the parabola 3 in 
relation to the parabola 2. 

A short light pulse of frequency 0 and field strength 
Fof(t)sin a t ,  where f ( t )  is the pulse envelope, excites a vi- 
brational state in the upper oscillator 2 (dipole optical tran- 
sitions 1 +2  are assumed allowed). ( ~ r a h a m ~  was the first 
to note the preparation of squeezed states resulting from a 
sudden change in the oscillator frequency.) 

The wave function of the upper oscillator 2 can be found 
by solving the following equation: 

Equations (2) and (3) describe the temporal variations of the 
wave packet in the motion of the nucleus in the electron state 
2. The quantity .172 (for q> I )  characterizes the squeezing 
parameter r of the vibrational mode, while for v< 1 the 
quantity 1tV2 acts as the squeezing parameter r ,  with 
r =  ( p +  v ) ~ ,  where ,u and v are the well known parameter of 
the Bogolyubov-Stoler transformation? satisfying 
lpI2- 1 vI2= 1. 

In the given model the decay of the squeezed state of the 
oscillator 2 with the wave function (2) is related to the prob- 
ability w$)= l / rd of a nonradiative transition from the elec- 
tron state 2 to the corresponding state 3. (Naturally, there are 
other decay channels, say, the radiative channel, but their 
probabilities are considerably lower.) 

The specific nature of the present problem manifests it- 
self primarily in the initial (to) distribution of the vibrational 
states cp,(Q) of oscillator 2, which depends on the properties 
of the C, coefficients: 

where E n  is the energy of the oscillator in state cpn(Q). 
Nonradiative (thermal) electron transitions are associ- 

ated with considerable deviation from the Franck-Condon 
principle. The theory of such processes is well-developed 
(see, e.g., Refs. 10 and 11). The main contribution to the 
nonradiative transition probability is provided by the region 
of quasicrossing (Q)  of the adiabatic potentials of the initial 
(2) and final (3) electron states. Here the nonradiative tran- 
sition rate is described by the formula 

W23=(w23(Q>), 
Here G(Q;t;Q1;t ') is the Green's function of the harmonic 

( 5 )  

osci~lator.~ Let us consider a pulse where ( .  . .) stands for averaging over the initial equilibrium 
distribution of the vibrational coordinate Q of oscillator 2, 

where r is the pulse length and To is the normalization con- 
stant, with 7- '+ w2. In what follows in order to simplify the 
calculations we assume9 r-+0 and f (t) = Tot?([), where 
S ( t )  is the delta function. This assumption does not alter the 
transition pattern qualitatively but it enables us to evaluate 
the integral with respect to t '  in ( I )  immediately. 

For fairly low temperatures the function $(Q1;O) coin- 
cides with the wave function of the ground state of the lower 
oscillator 1 (koT4fiwl ,  where T is the temperature). Inte- 
gration with respect to Q in (1) then yields 

and W23(Q) is the nonradiative transition probability at a 
fixed value of the coordinate Q: 

with V23(Q) the off-diagonal electronic-vibrational interac- 
tion matrix element mixing the electron states 2 and 3, 
V23(Q)=V23Q, and H 2 3 =  ?+ J ~ ~ ( Q )  (? is the kinetic en- 
ergy operator). 

If initially a squeezed vibrational state is prepared by an 
ultrashort pulse on the Franck-Condon transition 1 +2 (i.e., 
a new wave function of oscillator 2 is formed), the nonther- 
ma1 nonradiative transition rate w?? is 
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where by (. . .), we denote the operation of averaging over 
the initial distribution of the coordinate Q for the squeezed 
states of oscillator 2 at time to [in full agreement with the 
Appendix; see also Eq. (I)]. 

Thus, the difference between (5) and (7) consists in the 
different initial distribution of the vibrational coordinate Q: 
for ordinary (thermal) nonradiative transitions this is the fa- 
miliar Gaussian distribution, while for squeezed states it is a 
super-Poisson distribution. Note that the width (dispersion) 
of the super-Poisson distribution varies with time in such a 
way that the parameters of the initial distribution depend on 
the choice of to. As the wave packet characterizing the clas- 
sical motion of the nucleus in the initial electron state 2 
changes, the greatest contribution to the nonradiative transi- 
tion probability is provided by the times to at which the 
overlap of the nuclear wave functions I+b2(Q;ro) and 
I+b3(Q;to) is largest. More precisely, the times are 
t o = ~ / 2 w 2  for w,+w2 ( 7 4 1 )  and to=O for wl<w2 
( 7 %  1 ) (for more details see Sec. 4). 

Let us calculate W23(Q) in the classical limit. In (6) we 
must make the following substitutions: 

exp(%) exp ( - - i 2 t )  

+ e x p ( j - j f ( f i 2 ( t t )  h. 7 -H3(t t ) )d t1  

i~ t i~ t 
exp(-&) Q exp( - *) + Q COS( w2t + q) .  

Here q is the phase, and i i s  an arbitrary point. We obtain 

If the initial distribution over the vibrational states were of 
the Poisson type, the calculation of wZh would reduce to 
averaging (8) over the energy distribution in the initial co- 
herent state (see the Appendix). 

In the case of squeezed vacuum states we have 

Here stands for the average of N2 over the angle 6 [see 
Eq. (211. 

The integrals in (8) and (9) can be calculated directly 
and, ultimately the integrals are reduced to hypergeometric 
series.12 In the limit of small values of the parameter 

we find, reasoning along the lines of Refs. 13 and 14, 

w & ) q 2 p o -  l)!! wZh (10) 

(po is the number of phonons generated in the transition). In 
the most interesting case p- 1 ,  the hypergeometric series 
cannot be approximated, while the integral in (8) can be 
estimated by the saddle-point method. At the saddle point 
t* we can take the pre-exponential factor outside the integral 
sign: 

Now we can evaluate the integrals in (8) and (9). We employ 
the expansion 

+m 

where J,(x) is the Bessel function of a real argument. In the 
limit i+ - m, only the "diagonal" (n = m) structures remain 
in such expansions, i.e., the phase q is not involved in the 
calculation. The answer is (p- 1 ) 

where In(z) is the modified Bessel function. Allowing for 
decay in the electronic-vibrational state 3 with a dimension- 
less constant y =  y3 lo2 leads to a replacement of the delta 
function by a Lorentzian. For z>n we use the well-known 
expansion for the modified Bessel function. Then 

with p o =  E ~ ~ I J L w ~ ] ,  where [ao] is the integral part of 
the number ao.  

The above formula implies (for 7> 1 and w l >  w2) that 
the nonradiative transition probability satisfies 

and as the squeezing parameter l lV2 increases the probabil- 
ity w$) grows exponentially. 

3. NONRADIATIVE TRANSITIONS IN MOLECULES 
INVOLVING PARAMETRICALLY EXCITED SQUEEZED 
STATES 

An important class of squeezed states is represented by 
states excited parametrically. Parametric resonance in the 
quantum case leads to an oscillator wave function that has 
the form of the wave function of the squeezed state.4 The 
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squeezing ratio of such a state builds up exponentially with 
the passage of time according to the law exp{~aoo2t) ,  where 
a, is the dimensionless coupling constant of two vibrations 
interacting parametrically. 

The wave-function probability density 1 $(Q;to) l 2  at 
times to= .rrklw2 (k = 0,1,2,3, . . . ) when the dispersion is 
maximal [d2(to)=d:,] is 

aow2fo 
(15) 

Q O ( ~ O )  = [ mw2 fi) li2ao e x p ( j  cos 02r,, 

where m is the oscillator mass. 
In the limit ao4 1 we can easily verify that the term with 

Qo(to) can be dropped from (15) [Qo(to)4d(to)] .  In this 
case for the probability of a nonradiative transition in which 
initially there is a squeezed state we can use the result of Sec. 
2, i.e., Eq. (14), in which a2( to)  is replaced by d2(to); 

where A is the potential barrier of the reaction. We have 
arrived at an expression that is similar to the formula for 
nonradiative transition rates for equilibrium thermal vibra- 
tions, with the only difference that 0; is replaced by 0: The 
distinguishing feature of (16) and its difference from (14) 
primarily lies in the fact that for parametrically excited 
squeezed vibrational states, d:, and hence 0: exponentially 
increase with time. 

4. DISCUSSION 

We start our discussion with the case of a squeezed vi- 
brational state prepared by an ultrashort light pulse. For 
p B  1 [see Eq. (14)] 

The value of the parameter K is determined by v ; ~ / v ~ ,  i.e., 
the ratio of the off-diagonal electronic-vibrational interac- 
tion matrix element to the diagonal element. The typical val- 
ues of this ratio lie in the range 1 0 - ~ - 1 0 - ~ ,  so that the 
nonradiative decay of the electronic-vibrational states of 0s- 
cillator 2 "allows" the wave packet to perform a large num- 
ber (of order IIK) of oscillatory variations of its halfwidth 
after the initial moment at which the squeezed state was pre- 
pared. 

To discover nonradiative transitions in experiments one 
can use the method of a second reading pulse (delayed after 
the initial moment of preparation of the squeezed stated by 
time T I )  with a frequency vo, a pulse that mixes the states of 
the oscillator 3 with those of the repulsive term 4 (see Fig. 

I ) . ~  (Direct mixing of the states of oscillator 2 with the term 
4 takes place at frequencies higher than vo and may be for- 
bidden by, say, selection rules.) States 2 and 3 are assumed 
to have different symmetries. 

Since the Stokes constant 

Va(7-1) 
a= (F) 

depends on the delay time T I  and this dependence is of a 
pulsating nature? the densities of the products of the sys- 
tem's decay to the repulsive term are also pulsating functions 
of the delay time T,  and reach their peak values at 
T l = t o + 2 ~ k l w 2  (k=0,1,2,3 ,..., t 0 = ~ / 2 w 2 ,  and wl 
B w2). 

At low temperatures, the excitation of the system by a 
long pulse may lead to a high quantum yield of luminescence 
in the 2 4  1 transition, which is due to a low tunneling decay 
probability w:; But when the system is excited by an ul- 
trashort pulse, the nonradiative transition probability w$) 
becomes high (w!&)!s:.> WE) and the quantum yield lumines- 
cence on the 2+ 1 drops sharply. 

Other spectroscopic methods, for instance, resonant scat- 
tering involving oscillator 3, can also be used. 

Now let us use the results of Sec. 3 to examine the case 
of squeezed vibrational states generated parametrically. Para- 
metric resonance in molecules has been thoroughly studied, 
starting with the works of Fermi and Mandel'shtam (see Ref. 
15). In the simple case of a molecule of the C 0 2  type, the 
stiffer valence vibration x of frequency 2w2 drives the de- 
formation vibration y of frequency w, due to the anharmonic 
interaction of the vibrations, H '  cx aoxy2. Since the shift in 
levels related to a Fermi resonance is small, the dimension- 
less constant a. is usually of order 10-'-10-~. 

Suppose that at time t = 0 a quantum electron state i was 
prepared (by optical excitation or in some other way). The 
decay rate of this electron state in a molecule for which there 
is coupling between the electron and the deformation vibra- 
tion can be calculated by Eq. (16). [When the vibrations are 
considered in the classical setting, the emergence of a para- 
metric resonance for small a. is related to the fact that in the 
energy of the anharmonic interaction the stiff valence vibra- 
tion is assumed harmonic, so that H r a a o x o  ~ i n ( 2 ~ t ) y ~ .  
Note that the amplitude xo is fixed by the initial condition. 
Here it is important that d 2 ( t o ) 5 x ~ . ]  

The most interesting application of Eq. (16) is the cor- 
ollary by which D:> A, i.e., exp(aoo2td2) > 2Alhw2, and 
the nonradiative transition probability attains its maximum 
value. Here the activation dependence vanishes from (16) 
and we have 

It is this probability that must be compared with the 
probability of the decay of the electron state by other pos- 
sible channels. The nonactivational nature of the nonradia- 
tive transition probability in the interaction with squeezed 
vibrations could be important for the kinetics of chemical 
and biological processes; for instance, it could lead to an 
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anomalous increase in the rate of redox enzyme reactions 
(for the various aspects of multiphoton enzyme catalyses see 
Ref. 16). Here the initial moment is when the substrate ant1 
enzyme collide and form a substrate-enzyme complex. The 
anomalous increase of the enzyme catalysis rate occurs when 
the coordinate of the reaction of transformation of the 
substrate-enzyme complex into a free product and an en- 
zyme coincides with the coordinate of the squeezed vibration 
or when then two are related indirectly. Since the conforma- 
tional states of the active center of the enzyme play an im.- 
portant role in catalysis, the deformation of such configura.- 
tions in parametric resonances may have a strong effect on 
the catalysis rate (the vibrations can be excited by the energy 
of the substrate-enzyme collision). 

A simple example (a fragment of more complex chemi.- 
cal reactions) is the breaking of the peptide bond in the for- 
mamide molecule H2N-COH in the molecule's collision 
with the OH- ion (see Ref. 17). The process releases 4.3 eV. 
The resulting complex 

contains two hydrogen bonds, whose breaking forms two 
free molecules, NH3 and COOH-. The necessary energy is 
0.78 eV. According to Ref. 18, w,-,,-3000 cm-' and 
wco= 1400 cm-I. Since these vibrations are coupled by an 
anharmonic interaction, there can be a resonance between an 
overtone of the CO-vibration and the fundamental tone of the 
CH-vibration. The driving of the CO-vibration caused by the 
stored energy in the stiff vibration of the CH-bond changes 
the coordinate of the reaction of breaking of the hydrogen 
bond and ensures the rapid formation of free reaction prod- 
ucts. 

Other obvious manifestations of the increase in the non- 
radiative transition rates caused by parametric excitation of 
squeezed vibrations can also be related to a change in the 
quantum yield of luminescence, i.e., anomalous quenching of 
luminescence. 

I am grateful to A. V. Belousov and E. Yu. Kanarovskii, 
researchers at the Laboratory of Physical Kinetics of the In- 
stitute of Applied Physics of the Moldavian Academy of 
Sciences. for fruitful discussions and remarks. 

APPENDIX 

Let us calculate the mathematical expectation of the evo- 
lution operator R over the squeezed states IP(to)) at the 

SI1 
initial time to, with the operator reduced to the antinormal 
formI9 

A ~ = A  exp [ - -(I iL  -e-i"')aJ 

where a+ and a are the photon creation and annihilation 
operators. The coefficients A,(t) are determined by (Al). 

The mathematical expectation of the operator I?, or I?, 
can be written as 

We can easily establish that 

Here Jo(b)  is the Bessel function of a real argument. The 
expression (A3) has the meaning of the expectation value of 
the evolution operator calculated for coherent states. This 
can be verified directly by averaging (Al)  with the coherent- 
state distribution function (see, e.g., Refs. 19 and 20). 

It is well known that Rcoh(a) corresponds exactly to the 
quantity calculated for a classical vibration (if one ignores 
unimportant extensive corrections of order 1/L3,  where L3 is 
the volume of the main region). Thus, 

Let us write in the form 

where 

and cClp(,,,(x) is defined in (2). Here cpn(xluo) is the oscilla- 
tor wave function. 

Further calculations can be done most easily if we take 
into account (A4) and evaluate the integral with respect to 
(A2) ( l a l = Q l a o  and ~ ~ a = Q d Q d ~ l u ; ) .  We also use the 
expansion 

,Z cos P= x ~ , ( z ) e ' ~ ' P .  
m=-m 

Here I,(z) is the modified Bessel function. The term with 
m = 0 provides a nonzero contribution. Usually the most im- 
portant range of parameter a is that in which the multiphoton 
transition probability is far from vanishing, so that 
I a I ~ a ~ l f i w > l  holds ( r 9 1 ;  see above). For z S 1  we have 
the following expansion for 10(z): 

Bearing in mind the above remarks, we obtain 
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As is known, the mathematical expectation of the evolu- 
tion operator, I?, determines (with exponential accuracy) the 
dependence of the rate of a multiphoton process of the pa- 
rameters of the system. Allowing for the pre-exponential fac- 
tors and Eq. (A5), we can write the expression for the non- 
radiative transition rate in the final form as 

This is similar to the formula for the rate of a multiphoton 
transition in the interaction of a localized electron with the 
squeezed vacuum of the electromagnetic-field.2132z 

'J. Janszky, P. Adam, An. V. Vinogradov, and T. Kobayashi, Chem. Phys. 
Lett. 213, 368 (1993). 

'J. Janszky and Y. Yushin, Phys. Rev. A 3 9 ,  5445 (1989). 
3An. V. Vinogradov and J. Janszky, Zh. Eksp. Teor. Fiz. 100, 386 (1991) 
[Sov. Phys. JETP 73, 211 (1991)l. 

4V. P. Bykov, Usp. Fiz. Nauk 161, No. 10, 145 (1991) [Sov. Phys. Usp. 34, 
910 (1991)l. 

'v. V. Khizhnyakov, Izv. Akad. Nauk  st. SSR, Ser. Fiz. Mat. 26, 260 
(1977). 

6 ~ .  G ~ e b e l e  and A. H. Zewail, Phys. Today, No. 5, 24 (1990). 

'I. R. Graham, Mod. Opt. 34,873 (1987). 
'1. I. Gol'dman and V. D. Krivchenkov, Problems in Quantum Mechanics, 
Academic, New York (1960). 

9 ~ .  A. Kovarskii, Pis'ma Zh. Tekh. Fiz. 20, No. 12, 59 (1994) [Tech. Phys. 
Lett. 20, 999 (1994)l. 

'OE. S. Medvedev and V. I. Osherov, Radiationless Transitions in Poly- 
utomic Molecules, Springer, New York (1995). 

"V. A. Kovarskii, N. F. Perel'man, and 1. Sh. Averbukh, Multiquar~tum 
Processes [in Russian], Energoatomizdat, Moscow (1985), p. 161. 

121. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and 
Products [in Russian], Nauka, Moscow (1962). p. 1108 [Academic Press, 
New York (1980)l. 

131. Janszky and Y. Yushin, Phys. Rev. A 36, 1288 (1987). 
1 4 ~ .  V. Belousov and V. A. Kovarsky, in: Proc. 2nd Int. Workshop on 

Squeezed States and Uncertainfy Relations, Greenbelt, Maryland 20771, 
NASA CP-3219(1993). 

l5 G. Gorelik, Oscillations and Waves [in Russian], GFML, Moscow (1959), 
p. 572. 

161. Sh. Averbukh, L. A. Blumenfeld, V. A. Kovarsky, and N. F. Perelman, 
Biochim. et Biophys. Acta 873, 290 (1986). 

"c. Alagona, E. Scrocco, and J. Tomasi, J. Am. Chem. Soc. 9, 6976 
(1975). 

"G. Herzberg, Infrared a d  Raman Spectra of Polyatomic Molecules [in 
Russian], Izd. Inostr. Lit., Moscow (1949), p. 648 [Original edition: Van 
Nostrand, New York ()944)]. 

I9v. A. Kovarskil, Zh. Eksp. Teor. Fiz. 57, 1217 (1969) [Sov. Phys. JETP 
30, 663 (1970)l. 

"v. M. Fain, 3. Chem. Phys. 65, 1854 (1976). 
2 ' ~ .  V. Belousov, V. A. Kovarskii, and 0. B. Prepelitsa, Zh. Eksp. Teor. 

Fiz. 108, 447 (1995) [JEW 81, 241 (1995)l. 
2 2 ~ .  A. Kovarsky, Phys. Lett. A 212, 195 (1996). 

Translated by Eugene Yankovsky 

675  JETP 83 (4), October 1996 V. A. Kovarskii 675 


