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We investigate the polarization dependences of momentum, angular, and energy distributions and 
ionization rates for field and atomic parameters corresponding to the regime of optical 
tunneling. We describe the evolution of the differential distributions as the polarization changes 
from circular to linear. In particular, we show that over a wide range of ellipticities the 
angular distribution is extended along the small axis of the polarization ellipse in the direction 
transverse to the maximum electric field. Only for very small ellipticities does the 
distribution readjust to extend along the electric field, i.e., the case of a linearly polarized field. 
For the momentum and angular distributions we obtain closed analytic expressions valid 
for arbitrary ellipticity. O 1996 American Institute of Physics. [S 1063-7761 (96)005 10-01 

1. INTRODUCTION 

In recent years there has been a continuing expansion of 
the frontiers of experimental and theoretical investigations of 
the nonlinear ionization of atoms and molecules in the opti- 
cal tunneling regime, for which the Keldysh adiabaticity pa- 
rameter is less than unity. Under these conditions, the simple 
Amosov-Delone-Krainov ionization probability, which is 
based on the idea of tunneling, is commonly used to describe 
the measured ion output.192 For the next generation of experi- 
ments, in which both the ionization mechanism itself and 
accompanying processes that generate high harmonics will 
be investigated, a more detailed description is required, 
which includes the energy and angular distributions, as well 
as their dependence on the laser polarization. Interest in the 
dependence on polarization has increased in connection with 
discussions of harmonic generation in an elliptically polar- 
ized field.3 

Simple analytic expressions that describe the momentum 
distribution of photoelectrons in the tunneling regime are 
known for the special cases of circular and linear polariza- 
tion (expressions and citations can be found in Refs. 1 and 
4). In a circularly polarized field, the angular distribution 
possesses axial symmetry relative to the direction of propa- 
gation of the field, and the spectrum has a maximum near an 
energy equal to the average vibrational energy. In a field 
with linear polarization, the angular distribution is axially 
symmetric relative to the direction of the polarization, and 
the maximum in the energy spectrum occurs at low energies. 

The goal of this paper is to trace the transition as the 
ellipticity changes between these significantly different ex- 
pressions for the distributions, and as far as possible to de- 
scribe this evolution using analytic expressions that reveal 
the basic dependence on the field and atomic parameters. 
This goal can be achieved in principle by taking the tunnel- 
ing limit of the more general expressions based on the 
Keldysh-Faisal-Reiss (KFR) approach (reviewed in Ref. 5) 
and used for arbitrary values of the adiabaticity parameter. 
For an elliptically polarized field, the angular distributions in 
the form of a sum over above-threshold peaks are known for 

short-range potentials6 and for a zero-range potential.7'8 In 
this case, however, it is found that the expressions in the 
tunneling regime given in Ref. 6 give the correct limiting 
transition to linear polarization, but do not describe the tran- 
sition to circular polarization. Meanwhile, in Refs. 7 and 8 
the probability amplitude for an individual above-threshold 
peak is expressed in terms of an infinite sum of products of 
two Bessel functions (generalized Bessel functions according 
to Ref. 5). Expressions of this type are ill-suited for compu- 
tations in the tunneling regime, where a large number of 
partial contributions have comparable values. 

In this work, our starting point for calculating the differ- 
ential distributions of electrons during ionization by an ellip- 
tically polarized field in the tunneling regime will be the 
ordinary starting expressions of the KFR model in the vector 
potential gauge.5 The main difference between our approach 
and that of previous workers is that in our case the contribu- 
tion to the transition amplitude from a single optical period is 
calculated without using a Fourier expansion?710 The conse- 
quences of this approach are twofold. First of all, the picture 
of a strong low-frequency field inducing a quantum ioniza- 
tion transition that is not smeared out over multiple harmon- 
ics turns out, as it does in a circular field? to be analogous to 
that of Landau-Zener transitions between time-dependent 
electron terms. Secondly, the calculations can be consider- 
ably simplified, in particular by avoiding the appearance of 
generalized Bessel functions and obtaining a closed expres- 
sion in terms of elementary functions for the momentum 
distribution of the photoelectrons for arbitrary values of the 
ellipticity. A preliminary qualitative analysis of this distribu- 
tion reveals the nontrivial character of the evolution of the 
angular distribution between the circular and linear 
polarizations.1' 

In the next section we discuss our formulation of the 
problem; in Sec. 3 we derive the momentum distribution of 
photoelectrons. Then integration yields the angular distribu- 
tion (Sec. 4), the energy spectrum (Sec. 5), and the ionization 
rate (Sec. 6). The last section consists of summarizing com- 
ments. 
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2. STARTING EQUATIONS 

A laser field with constant amplitude F ,  frequency 60, 

and ellipticity 5 is specified by the vector potential 

which corresponds to an electric field 

According to the KFR model, the ionization is treated as 
a quantum transition from a bound state $i with ionization 
potential I to a state of the continuum, which is approxi- 
mated by the: nonrelativistic solution of Volkov cCP(r). The 
ionization rate is defined by the relation 

with a transi1:ion amplitude per period equal to 

Here ep(t) =mv2(t)/2 and v(t)=p+A(t)lc are respectively 
the time-dependent kinetic energy and velocity of a classical 
electron with canonical momentum p in the field (I), while 
U = ( 1 + 5 2 ) ~ 2 / 4 0 2  is the average vibrational energy in this 
field; $,(p) iis the wave function of the initial state in the 
momentum representation. Atomic units e=h=m = 1 are 
used, and the electron charge equals - 1. 

In short optical pulses, where the acceleration due to the 
transverse gradient force is negligible, the canonical momen- 
tum is a constant of the motion, so that an electron is de- 
tected outsidle the field with momentum p and energy p2/2 
(provided the energy satisfies one of the conservation laws in 
(3)). 

In the optical tunneling regime, the characteristic ener- 
gies of the problem satisfy the condition 

The left-hand inequality implies that the field is low- 
frequency, while the right-hand is equivalent to the assertion 
that the field is strong and the Keldysh parameter is less than 
unity: y = w m F  < 1.  We will also assume 

i.e., the field. is weaker than the atomic field. 

3. MOMENTUM DISTRIBUTION 

An integration of (3) over energy, taking into account 
the &functions, would convert it into a sum of angular dis- 
tributions belonging to individual above-threshold peaks. In 
the tunneling regime the terms of this sum depend smoothly 
on the index of the above-threshold peak, and the sum over n 
can be replaced by an integral. With this fact in mind, let us 
immediately replace the sum in (3) by an integral and carry 
out the integration over the continuous variable n with the 
help of the i%functions. This allows us to obtain the momen- 

tum distribution of photoelectrons (the ionization rate within 
an element of momentum space d3p) in the form 

The dependence on the energy e=p2/2 in (7) corresponds to 
the envelope of the above-threshold peaks, while the ratio 
d e l o  gives the number of above-threshold peaks in the inte- 
gration energy interval d e .  

The next step is to calculate the amplitude B(p). Under 
tunneling-regime conditions (5) the exponential in the inte- 
gral (4) oscillates rapidly. For a large portion of an optical 
period, the instantaneous frequency cp(t) + I of the oscilla- 
tion is a quantity of order U>I,o.  The oscillations are 
slowed in the vicinity of the point (or points) to where the 
kinetic energy is a minimum, i.e., i: (t )=O. Neighborhoods 

p. O 
of these points give the main contribution to the integral. 
Near such a minimum we expand ep(t) in a series, retaining 
contributions quadratic in t- to, and carry out the trivial in- 
tegration in the exponential. After extending the limits cf 
integration to +m, the outer integral in (4) can be expressed 
in terms of an Airy function, which by virtue of condition (6) 
can be replaced by its asymptotic representation for large 
values of the argument. Replacement of the Airy function by 
its asymptotic form is equivalent to using the method of 
steepest descent in the time integral. The momentum distri- 
bution finally takes the form 

In addition to the transformations mentioned above, we have 
substituted in (8) the explicit form of the wave function for a 
potential of zero radius, 1 cCi(p)(p2/2 + I )  1 = a, and have 
replaced the second derivative according to the equation 
Ep(to) = F2(to). An explanation of these replacements will 
be given below. 

Since we now know the value of the second derivative, 
we can estimate the width ( t -  to),, of the effective region in 
the integral (4). This time is naturally interpreted as the time 
for a quantum transition to the continuum. It is determined 
by the condition that the quadratic term in the expansion of 
the kinetic energy F2(to)(t- to)tr12 becomes the same order 
of magnitude as the ionization potential. The time for a tran- 
sition is found to be exactly equal to the tunneling time 
( t  - to),r = &IF through the potential barrier introduced by 
~ e l d ~ s h , ' ~  and the quantity y= w(t- to),, coincides with the 
adiabaticity parameter. In the tunneling regime, the transition 
time constitutes a small fraction of the optical period. 

When the laser field is weaker than the atomic field, the 
properties of the distribution (8) are determined primarily by 
the exponential. Finding the maximum of the distribution 
reduces to investigating the extrema of the exponential. From 
its structure, however, it is quite obvious that the maximum 
of the distribution occurs at those momenta p for which at 
the time of the transition to= to(p) the kinetic energy equals 
zero and the field is a maximum. Thus, the semiclassical 
model of corkum13 can be extended to a field with arbitrary 
elliptical polarization. 
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If the kinetic energy ep(t) has two minima separated in 
time during one period, as will take place for polarizations 
close to linear, then the transition amplitude takes the form 

where So,  is the phase difference of the function under the 
integral sign at the stationary points. Under conditions (5)  
this difference is large, and the contributions of the two 
points do not interfere, so that the probability equals the sum 
of the probabilities calculated at each of the points using (8). 

In the exposition that follows, it is convenient to intro- 
duce the field mom en tun^ into the discussion: 

In the course of an optical period the vector pF(t) describes 
an ellipse in momentum space that lies in the plane of polar- 
ization of the laser field. We will refer to this as the field 
ellipse (do not confuse this with the ellipse described by the 
electric field vector (2)). The kinetic energy takes the form 

An absolute minimum of the kinetic energy equal to zero 
is achieved only when the momentum p lies on the field 
ellipse. In this case we have p,=O, and the transverse com- 
ponent of the velocity reduces to zero at the instant of time 
when the field ellipse is antiparallel to p, i.e., 

From this we find the relation between the phase of the field 
wto and q5 for vectors p lying in the field ellipse, where 4 is 
the azimuthal angle of the vector: 

cot(ot,) = 5 cot +, (12) 

and also the field at the transition time: 

For momenta p that do not lie on the field ellipse, the 
kinetic energy at the transition time &,(to) is nonzero, which 
in fields below the atomic value leads to a sharp decrease in 
the distribution (8). Thus, the momentum distribution is con- 
centrated in a thin tube around the field ellipse. In general, 
the distribution along the tube axis is nonuniform due to the 
momentum dependence of the field at the transition time. 
The small transverse size of the effective region allows us to 
simplify Eq. (8) considerably. First of all, for momenta that 
do not lie on the field ellipse but are sufficiently close to it 
we can use Eqs. (12) and (13). By direct calculation it is easy 
to verify that if v,(to)=O holds, then we have 
i , ( t , )  = ~ ~ ( t , ) ,  which we already used in (8). Secondly, we 
can expand the exponential in small deviations around its 
minimum value, and neglect the quantity ep(t0) in the preex- 
ponential factor along with the ionization potential. It still 
remains to obtain the explicit dependence of &,(to) on mo- 
mentum. For this, we begin by using the equation 

which determines the position of the kinetic energy mini- 
mum. We then eliminate from (9) the term that contains the 
momentum projection p,; then, taking (12) into account, we 
eliminate the field phase wt,. We find 

where 

Here and in what follows, we will use the notations 
p L  = p sin 8, p, = p  cos 0, and p,=p sin 8 cos 4. The angle 
8 is measured from the z axis, while the azimuthal angle 4 is 
measured from the large axis of the polarization ellipse. An 
immediate result of these transformations is the first term in 
the momentum distribution: 

The second term in (17) comes from taking into account the 
second minimum according to (9) as a function of ~ , ( t ) .  In a 
linearly polarized field (5=0), two symmetric minima occur 
when p,+pF cos(wto)=O (it is assumed that Ip,l<pF). As 
the ellipticity increases from zero, the symmetry of the 
minima is destroyed; one of them becomes the principal 
minimum (i.e., the value of ep(t) is smaller there), while the 
second (additional) minimum is lifted upward and rapidly 
disappears, after which there is only one minimum per pe- 
riod. For a given momentum p = ( ~ ,  ,py ,p,), at the time 
where the additional minimum occurs the kinetic energy of 
an electron with momentum (p,, -py ,p,) has a value that 
coincides with the principal minimum (and conversely). In 
the kinetic energy (lo), a change in sign of p, is equivalent 
to a change in the sign of & this is also taken into account in 
writing the second term in (17). 

The momentum distribution (17) possesses symmetries 
that are natural in the presence of an elliptically polarized 
field: it is unchanged by reflecting the momentum vector 
relative to the axes of the polarization ellipse and relative to 
the plane of the polarization. 

The effective region of the distribution (17) consists of a 
thin tube around a certain portion of the field ellipse that 
depends on e. The transverse width of the tube in 
momentum-space, d m ,  is small compared to an atomic 
momentum and does not depend on the ellipticity. In a cir- 
cularly polarized field the effective region contains the entire 
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circle of radius p,. For [<t4= 1 -FIFO the only vectors 
contained in the effective region are those with 

i.e., the portions of the field ellipse around the ends of the 
large axis are eliminated. As [ decreases, the width (p,),, 
decreases. The transverse components of the momenta in the 
effective regions are quantities of order ( ~ , ) , ~ ~ = t p ~ .  For am 
ellipticity t3 = a the widths (P , ) ,~~ and (py)eff are th~e 
same ((p ),ff>(pl)eff for 5>&). Finally, for an ellipticity 

- y F I F  the small axis of the field ellipse becomes corn- ' 5 -  J"; 
parable to the: radius of the tube, i.e., the effective region is 
converted into a cylinder of length p F m .  

In the region 5 4  1 the distribution (17) can be simplified. 
Expanding (15) and (16) in powers of [ everywhere except 
for the narrow intervals of azimuthal angles ($(<[41 and 
IT-$~S[G~., we find X = l  and 

As will be clear in what follows, the range of $ that is 
important to the distribution is much wider than the intervals 
we have discarded. The leading term of the expansion equals 

The discarded contributions in the exponential are small 
compared with unity for 5 s  y and [ G m. These bounds 
are the conditions of applicability of Eq. (18). The restored 
ellipticity enters into (18) in the form of the ratio which 
in this region of applicability can be both larger and smaller 
than unity. Since Eq. (18) is symmetric, we can omit the 
absolute value notation. 

If we set [=O in (17) and (la) ,  we obtain the momentum 
distribution in a linearly polarized 

which possesses axial symmetry relative to the direction of 
polarization: its maximum is at the point p=O. 

In the limit ( 4 0  the terms in curly brackets in (18) and 
(1 7) are equal to one another, which corresponds to symmet- 
ric minima for cp(t) in a linearly polarized field. When the 
ellipticity is not too small, i.e., for Pt,, the first term 
reaches its maximum value of unity on the field ellipse, 
while the second remains exponentially small for any mo- 
menta. Strictly speaking, the second term should always be 
absent when [ exceeds that 5, for which the second mini- 
mum cp(t) disappears. In order to avoid complicating the 
form of the expressions, we prefer to use (17) for all values 
of the ellipticity, since the exponentially small correction that 
we retain makes practically no difference in the momentum 
distribution. 

The momentum distribution for small ellipticity can be 
obtained by another method that differs from the one given 
above. Solving Eq. (14) by iteration on the small parameter 6 
and substituting 

into (8), (9) as a zeroth-order approximation, after expanding 
in ( p x / p F ) 2 ~ 1  we once more are led to (18). 

The photoelectron momentum distribution in an ellipti- 
cally polarized field is obtained from Ref. 6 if we double the 
overall coefficient in (17), and use Eq. (18) for the sum in 
curly brackets, in which we must discard the second term 
and delete the absolute value on p, in the first term. Without 
the absolute value sign, the distribution becomes asymmetric 
with respect to the interchange p,--, -py  . 

For [= 1 Eq. (17) becomes the well-known expression 
for a circularly polarized 

This distribution is axially symmetric with respect to the 
direction of propagation of the field. Its maximum occurs at 
a momentum p, =p,, pZ=O, at which the electron energy 
equals the average vibrational energy ~ ' 1 2 ~ ~ .  The effective 
region consists of a circular torus of radius p, with a trans- 
verse tube width that is small not only compared to 
p, but also compared to the atomic momentum. 

A simplified form of the expression that describes the 
approach of the momentum distribution to the form (20) is 
obtained by expanding (17) in the parameter 
(1 -t2)cos2 $6 1. This parameter is small in two cases: first, 
when the polarization is close to circular, i.e., due to the 
factor 1 -t2; the angle $ in this case can be arbitrary, and 
secondly, for azimuthal angles $ around d 2 ,  where the co- 
sine is small. As is clear from (17), it is at these angles where 
the maximum occurs in the &dependence, as long as the 
factor 1 -t2 is of order unity, i.e., the polarization is not too 
close to circular. The region of applicability of this approxi- 
mation is determined by the condition [36[s1 and encom- 
passes a rather wide range of ellipticities. In all of this region 
the exponentially small terms in (17) can be discarded. We 
finally obtain 

where 

It is clear from (21) and (22) that as long as 
1 - 5 < y m  holds the distribution remains close to (20); 
in this case, the field ellipse differs from a circle p, =p,  by 
less than the width of the distribution over the entire perim- 
eter. As [departs further from unity the position of the maxi- 
mum of the distribution with respect to the variable p, de- 
pends on 4, which begins to affect the dependence of the 
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first exponential in (21) on azimuthal angle. This latter effect 
remains weak provided that $<tG 1 holds. Further increas- 
ing the deviation 1-5 until the ellipticity lies in the interval 
i5<5<t4 introduces a large factor ~ 2 ~ , l ~ = 5 2 / & % 1  in the 
exponential, and a maximum in the distribution with respect 
to azimuthal angle around d 2 .  The width of the maximum is 
a quantity of order 

The dependence of the momentum distribution on azi- 
muthal angle is radically simplified if we neglect the small 
second term in (22), which gives 

For 5 in the interval t3<5<t4 this simplification of the ex- 
ponential is possible when < y5. In order for the in- 
terval of ellipticities that satisfy this requirement to be truly 
significant, the strong inequality 4 y must hold, 
which is equivalent to y+(o/21)"~ or F I F , ~  (w/21)~'~, i.e., 
the field cannot be too strong. Let us recall that the value of 
the field is bounded from below by the assumption y<l. 
Transforming the last factor in (24) to the form 

shows that due to the large factor F,IIF in the distribution 
we can set p =  5pF everywhere except where the deviation 
p - 5pF is very small. Similar considerations allow us to ex- 
pand 1 -sin 8 in a series, and in other places set sin 8= 1. As 
a result we obtain a distribution that is factored in the spheri- 
cal variables: 

In the next sections we discuss the angular distribution, 
the energy spectrum, and the total ionization rate calculated 
by integrating the distribution (17) and its approximate 
forms. 

4. ANGULAR DISTRIBUTION 

The quadratic dependence of the exponential on the 
magnitude of the momentum in (17) allows us to carry out 
the integration over this variable analytically and obtain an 
angular distribution in the form" 

dW( 834) h 2 

dS1 = D  - 3 ~  g e X P [ - ( i )  f]. 

Here D is a constant, while f,g, and h are functions of the 
spherical angles defined as follows: 

After a preliminary qualitative analysis and discussion of 
limiting cases, we turn to the results of direct tabulation 
based on Eq. (26). As a function of the angle 8 the distribu- 
tion is concentrated near the polarization plane, i.e., near 
8= 4 2 .  In Fig. 1, we give a series of curves listed in order of 
decreasing ellipticity that clearly portray the complicated 
evolution of the angular distribution in the plane of polariza- 
tion as the ellipticity changes. In accordance with the char- 
acter of these curves, we can identify four stages. 

1) The distribution is isotropic in + for 5= 1 (the corre- 
sponding horizontal line is not shown on the figure) and is 
close to isotropic in the narrow interval of ellipticities 
t4<5S 1 (curves 1 in Fig. la). 

2) The distribution is extended along the small axis of 
the polarization ellipse, i.e., photoelectrons are emitted pri- 
marily in the direction perpendicular to the field maximum 
(curves 2 and 3 in Fig. la). The maximum around 4 = d 2  
forms rapidly for small changes in 6 in the neighborhood of 
t4 and is retained over a wide interval of ellipticities 
53<5<54. 

3) There is a transition region for t2 
= y ( F / F , ) ' / ~ < ~ < ~ ~ .  Decreasing 5 in the vicinity of t3 
qualitatively changes the form of the angular distribution: 
around +=0 (and also around +=T), i.e., in the direction of 
the major axis of the polarization ellipse, a second maximum 
appears that is at first weaker but which grows rapidly. At the 
same time the height of the first maximum decreases, and its 
position shifts from 7712 towards +=O (curves 4-7 in Fig. 
lb,c). The trace of the first maximum disappears completely 
for ( = Q .  Curve 8 shows a situation close to this (Fig. lc). 
The value of 5, is found by investigating the derivative of 
(26). 

4)For 5<c2 the distribution with a single maximum is 
extended along the large axis of a strongly oblate polariza- 
tion ellipse (curve 9 in Fig. lc). Eowever, it strongly re- 
sembles the distribution in a linearly polarized field only for 
very small 5 < t1 = ym. 

Over a wide range of ellipticities t3<5< 1 the exponen- 
tial in (26) contains a large factor (t1&,)~=([/'/5~ y)2, and so for 
8= d 2 ,  q5= 1~12 even a quite small deviation of the nonnega- 
tive function f from zero leads to a rapid decrease in the 
distribution. Expanding in (I-f)cos2 &I ,  retaining the 
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1 dw -- 
W a n  

I dw -- 
W a n  

FIG. 1 .  Distribution with respect to azimuthal angle in the plane of polar- 
ization 8=?rl2 calculated using (26). In view of the symmetry only the first 
quadrant is shown. The distribution is normalized to unit area. The values of 
the parameters were as follows: w=0.1 eV, I =  13.6 eV, F=2.9.108 Vlcm. 
In this case we have y=0.074, FIF,=0.056,~,=0.017, 4,=0.028,(,=0.22, 
t4=0.95. The curves are labeled in order of decreasing ellipticity: 1-6 
=0.95, 2 4 . 7 0 ,  3 4 . 5 0 ,  44 .40 ,  5 4 . 3 0 ,  6 0 . 2 0 ,  7 4 . 1 0 ,  W . 0 3 0 ,  
9 4 . 0  15. 

first term, and taking into account that the angle 0 is close to 
d 2 ,  we find X= 1, g = 1, h = fi(y(1)2, and the angular dis- 
tribution takes the form 

It is clear from (27) that the effective deviation from the 
plane of polarization equals (7~/2-0),~~= y~$~/t .  It increases 
with decreasing ellipticity, but in the interval t3<5<1 it re- 
mains small compared to unity. 

For t= 1 there is no dependence on the azimuthal angle 
in (27). For t+ 1 the distribution has a maximum at 4 = d 2  
and a minimum at 4=O. As long as the difference between 5 
and unity is small enough that 1 -12 cancels the large factor 
(y51)2, the distribution is smooth and does not differ much 
from isotropic, i.e., its values at the maximum and minimum 
are comparable in magnitude (curve I in Fig. la). Near an 
ellipticity t4= 1 -FIF, there is a reconstruction of the distri- 
bution, due to the fact that for (<e4 the coefficient in front of 
cos2 4 in (21) becomes large: a maximum forms in the di- 
rection of the small axis of the polarization ellipse (curves 2 
and 3 in Fig. la). The width of this maximum is given by Eq. 
(23). It decreases as ( decreases until e2= 112. As the ellip- 
ticity decreases further towards t2<1/2, the width begins to 
increase, approaching a value of order unity as 5 approaches 
&-el (curve 4 in Fig. lb). This considerable increase in 
width, which in fact makes the distribution isotropic in azi- 
muthal angle in the neighborhood of t3 ,  is an intermediate 
stage in the process of converting a distribution which is 
extended along the small axis of the polarization ellipse into 
a distribution extended along its large axis, which is appro- 
priate for a linearly polarized field. 

A limiting form of (27) can be obtained by integrating 
the momentum distribution (24) directly. Note that in order 
for (26) to become (27) it is enough to ensure t3<5<1, 
whereas (24) was obtained under more rigorous assumptions. 

Although characteristic values of the ellipticity are small 
compared with unity in the transition region, Eq. (25) cannot 
be significantly simplified. As long as tl<( holds, the angu- 
lar distribution forms as a result of the combined influences 
of three factors: the functions h ,  g, and the exponentials. 
Only for very small ellipticities is the distribution de- 
termined by the single factor g-312, and thus coincides with 
the distribution in a linearly polarized field up to corrections 
of order (&.$,)'4 1 : 

In (28) the function g is written in terms of the spherical 
angles a,/?, which are natural for the case of linear polariza- 
tion along the x axis (here, a is the angle with the x axis and 
/? is the angle of rotation around the x axis). These angles are 
related to the angles 0,4 by the expressions sin 0cos C#J 

=cos a, sin 0 sin 4= sin a cos /3 and cos 0= sin a sin /?. For 
this way of writing the expressions the axial symmetry of the 
angular distribution around the direction of polarization be- 
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is a modified Bessel function. The product exp(-z)Io(z) is a 
monotonic function with simple asymptotic forms: 

FIG. 2. Distribution of photoelectrons with respect to the magnitude of the 
momentum obtained by numerical integration of (17). Normalization to unit 
area. The values of the field parameters are the same as in Fig. 1. The curves 
are given for three values of 6: 1 4 . 9 5 ,  2-0.50,3-0.10. 

comes obvious. Since y<l holds, the angular distribution 
has sharp maxima at a = O  and at a= T, around which we can 
limit ourselves to the first term in a Taylor series for the 
expressions in curly brackets of (28). By retaining the trigo- 
nometric functions we can describe both maxima in a unified 
way. However, if the expansion is used, the area under each 
maximum equals half the total probability. 

5. ENERGY SPECTRUM 

In contrast to the angular distribution, we were unable to 
obtain a single expression for the energy spectrum that can 
be used for arbitrary ellipticities. Figure 2 shows the results 
of a numerical integration of the momentum distribution (17) 
over angles. Actually, we are now discussing the distribution 
with respect to the magnitude p = 6 of the momentum. 
The plots shown illustrate the general features of the evolu- 
tion of the spectrum as the ellipticity varies from one to zero. 
At first the narrow maximum in the distribution shifts with 
decreasing in toward lower energies, preserving its width 
almost unchanged as it does so. Starting with a certain value 
of the ellipticity, the peak becomes asymmetric because the 
width increases from the high-energy side, but the maximum 
continues its motion towards low energies. 

Fairly simple analytic expressions for the spectrum are 
obtained in the limiting cases of large and small values of t. 
Integrating the factorized distribution (25), we find 

where z= ( ~ , 1 6 1 ~ ) 5 ~ (  I - t 2 )  and 

For &= 1 we obtain from (29) and (30) the well-known spec- 
trum in a circularly polarized field.Iv4 When the deviation 
from circular polarization is large enough, we have 

The position of the maximum and the width of the spectrum 
determined by Eq. (29) agree over a wide interval t3< t<1  
with the results of numerical integration of the momentum 
distribution (17), although the approximate form (25) has a 
narrower range of applicability. 

For small ellipticities, the spectrum is obtained by inte- 
grating (18). Taking into account both terms in curly brack- 
ets of (18), we have 

dW 
- = 4 7 r ~ p ~  exp 
dP 

where the function of two variables R(p , t )  is defined as 

The distribution (32) has two considerably different scales, 
po = J m a n d p ,  = p F ~ , w h o s e r a t i o p o / p , = ~ l .  

Let us first consider the case of linear polarization E=O. 
Since R(0,0)=2, as p+O the spectrum reduces to zero due to 
the statistical weight p2. As p increases, starting in the vi- 
cinity of the smaller scale po  the function R decreases as p-2 

and the product p 2 ~ ( p l p o , ~ )  remains constant. After this 
point, the spectrum is determined by the exponential factor 
with the large scale p,. In short, the energy spectrum has a 
markedly asymmetric maximum at a low energy 
s o = p ~ / 2 = 1 ~ 1 ~ ,  . It falls to zero over a narrow interval 
O<s<eO and decreases exponentially, but over the large 
scale E ~ = ~ ~ / ~ = ( F / F , ) ~ ~ / ~  it falls off in the direction of 
higher energies. If the narrow dip is ignored, then we can say 
that the spectrum has a maximum at E=O. The width of the 
spectrum is determined by the large scale, i.e., E , ~ F ~ .  This 
form of the spectrum is preserved as long as 

For 5>tI the behavior of R (and accordingly the spec- 
trum) is the same as for t = 0  when p > ( ~ / ~ l ) p o = & p F .  For 
p < t p F  the function R is proportional to 
exp[-(p - tpF)2/pi]. This property is easily derived by re- 
placing the function I. in the integral (33) by its asymptotic 
form for large arguments according to (30). In addition to the 
statistical weight, yet another factor appears to suppress the 
spectrum in the region of small p .  The dip around the coor- 
dinate origin widens and extends out to an energy 
(&pF)2/2>&o, which now marks the maximum in the spec- 
trum. The existence of a maximum at these energies and its 
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asymmetric shape were noted in Ref. 14. This situation is 
preserved as long as [<E3 holds. Thus, it turns out that for all 
except the very smallest [ the position of the maximum in 
the energy spectrum is still determined by the same ratio 
prnaxZ[pF. 

6. TOTAL PROBABILITY 

Integrating (29) gives the ionization rate for &=-t3 in the 
form 

Taking into account the asymptotic form (30), for [=1 we 
obtain the well-known result for circular polarization: 

while for a sufficiently large deviation of 5 from unity, i.e., in 
the interval c3<5<54, Eq. (34) becomes 

The ionization rate for small 5 is found by integrating the 
momentum distribution (18). These results coincide with 
(36), although the regions of applicability of the functions 
(29) and (18) under the integral sign do not even overlap. 

In discussing the reason for this agreement, it is conve- 
nient to deal with the dimensionless transition probability per 
optical period, w = 2 r W l  w. Neglecting numerical coeffi- 
cients, this can be written in the form 

The first factor here is the transition probability per period to 
a quantum state corresponding to the maximum of the distri- 
bution (17). This probability naturally does not depend on 
the field frequency, since the transition takes place within a 
small fraction of the period. The second factor is the number 
of quantum states in the phase volume where the transition 
can occur efficiently. According to the discussion of Sec. 2, 
this volume equals the product of the cross-sectional area of 
the effective: tube and the effective length of arc of the field 
ellipse: 

For all 5 except those very close to unity we have 
L e F  (~x)eff ,  where 

- 

So  (35)-(37) are equivalent to Eq. (34). The agreement of 
the expressions for the total probability for different 5 is not 
an accident, but rather is related to the fact that (pJeff is 
determined by the same Eq. (39) over the entire interval 
O<t<$. For [ close to unity we have Leff=2.rrpF, and (37) 
and (38) are equivalent to (35). 

An ionization rate closely resembling (34) and (36) in 
structure was obtained via the adiabatic approach of Ref. 15. 

7. CONCLUSION 

The photoelectron distributions given in this paper apply 
to ionization of an s-state in a potential with zero radius. 
Introduction of a factor C$ (see Ref. 15) into the corre- 
sponding expressions extends these results to the case of a 
short-range potential. 

In the strong-field approximation (SFA) it is assumed5 
that if we use an atomic wave function as the initial state, the 
transition amplitude (4) describes ionization in a Coulomb 
field. Recently it was shown16 that inclusion of the Coulomb 
correction to the phase of the final (Volkov) state in fact 
converts a matrix element involving the wave function of the 
hydrogen atom ground state into a matrix element for the 
potential of zero radius (up to a factor). Then our distribu- 
tions and probabilities describe ionization from the ground 
state of hydrogen after multiplying by 2 ( 2 ~ , l ~ ) ~  (see Ref. 
16). 

Our derivation of the momentum distribution shows that 
the assertion of the semiclassical model'3 that the ionization 
takes place at a time when the field is a maximum and the 
instantaneous kinetic energy of an electron equals zero also 
holds for an elliptically polarized field. It is this need to 
simultaneously satisfy both conditions that leads to an angu- 
lar distribution extended along the major axis of the polar- 
ization ellipse in the direction perpendicular to the maximum 
field for intermediate values of the ellipticity. 

In the physical picture that follows from our calculations 
(see also (9)), in which ionization by a strong low-frequency 
field is viewed as a Landau-Zener transition, increasing the 
field amplitude does not lead to qualitative changes such as 
conversion of the tunneling regime to an above-barrier re- 
gime. Like the numerical calculations of Refs. 17 and 18, the 
changes in the probability and distributions are quantitative 
in character. As the field intensity approaches atomic levels, 
the overall tendency is one of significant increase in the 
width of the distribution. In particular, at e= 112 the width of 
the distribution with respect to azimuthal angle is 
(.rr/2-g5)eff=300 even for FIF,=0.1. 

Note that our expressions give the dependence on 5 for 
fixed values of the field F, and thus for varying light inten- 
sities. In order to obtain expressions that apply to a fixed 
intensity I, = ( c / ~ T ) F ~ , ,  it is necessary to replace F every- 
where by ~ , ( l + 5 ~ ) - ' / ~ .  This replacement does not signifi- 
cantly change the results, since the additional factor that de- 
pends on ellipticity is of order unity. 

A region of considerable interest is the narrow interval 
of ellipticities in which the angular and energy distributions 
retain the form characteristic of a linearly polarized field. 
This interval is bounded from above by the product of two 
small parameters of the theory: 8 < ym. For values 
I= 1.34 eV, w=0.1 eV, y=0.074, FIFa=0.05 this condition 
gives t< 1.5%. 

An experimental investigation of this dramatic evolution 
of the differential photoelectron distribution as the polariza- 
tion changes from circular to linear could be a critical test of 
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the postulated mechanism for ionization by a strong low- 
frequency field. In contrast to the differential distribution, the 
total ionization rate varies smoothly with ellipticity over a 
wide range; the comparatively abrupt change takes place 
only near circular polarization. 
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