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We study the interaction of a nonlinear oscillator and a coherent electromagnetic field. The 
Goldstein-Primakoff representation is used to demonstrate that such an oscillator possesses 
SU(2) symmetry if the anharmonicity parameter x is negative and SU(1,l)  symmetry if 
this parameter is positive. We derive an equation for the density matrix and for the stationary case 
find its exact quantum solution, whose explicit form depends on the sign of X. This 
dependence is caused by a new symmetry in the interaction of the nonlinear oscillator and the 
electromagnetic field for x positive. Here the familiar induced phase transition of the 
number of excitations of the nonlinear oscillator is absent [P. D. Drummond and D. F. Walls, J. 
Phys. A 13, 725 (1980)l. For negative x the nonlinear oscillator behaves like a two-level 
system with a dipole-dipole interaction between the atoms. In this situation there can be an 
induced phase transition as a function of the field strength. We compare the quantum 
solution with the semiclassical one obtained on the assumption that there are no fluctuations in 
the number of excitations. O 1996 American Institute of Physics. [S1063-7761(96)00410-61 

1. INTRODUCTION 

The interaction between a nonlinear oscillator and a co- 
herent electromagnetic wave has been investigated by many 
 researcher^.'-^ The interest in this problem is due to the pos- 
sibility of building optical logical circuits on the basis of a 
phase transition induced by light in a nonlinear medium. The 
semiclassical and quantum approaches to this problem were 
examined in Refs. 1-3 (see also the references cited therein). 
In view of the existence of divergences at infinity in the 
complex plane in the expansion of the density matrix in the 
diagonal coherent states, Drummond et a ~ . ' . ~  were forced to 
discard the Glauber-Sudarshan P-representation. The con- 
vergence of the stationary solution for the density matrix was 
obtained via the off-diagonal P-representation. As noted by 
the researchers, using this representation involves certain dif- 
ficulties of a fundamental nature (see, e.g., Ref. 2). 

Such a problem has been solved for two-level 
m e ~ l i a ~ - ~  whose atoms interact primarily via the dipole- 
dipole interaction. In such systems the square of the quasi- 
spin vector is conserved and the difficulties mentioned in 
Refs. 1 and 2 are absent. It would therefore be interesting to 
develop this method to solve the equation for the density 
matrix of a nonlinear oscillator interacting with a coherent 
laser field. 

In this paper we study the interaction of a nonlinear os- 
cillator with a coherent electromagnetic field in two cases: 
when the oscillator's anharmonicity parameter x is negative 
and when it is positive. In the first case, x<O, we propose a 
new model Hamiltonian for a nonlinear oscillator interacting 

with a coherent electromagnetic field, a Hamiltonian that al- 
lows for higher excitation levels in comparison to the tradi- 
tional Hamiltonian studied in Refs. 1 and 3. The Hamiltonian 
can be reduced to that of a two-level atomic system. The 
solutions for the stationary density matrix differ from the 
solutions given in Refs. 1 and 2; in our case the linear oscil- 
lator has a finite number of bound states and, as a result, the 
sum over the states is finite. 

For ,y>O the Hamiltonian of the nonlinear oscillator 
cannot be reduced to that of a two-level system because the 
number of bound states of the anharmonic oscillator is infi- 
nite. A characteristic feature of this case is a new spatial 
symmetry group, SU( 1,l) (see Refs. 10-14), for which we 
can introduce a conserved pseudovector by analogy with the 
angular momentum vector, as is done in the SU(2) algebra. 
We suggest a model Hamiltonian for such a system and ob- 
tain an exact solution of the equation for the density matrix 
of a nonlinear oscillator interacting with a coherent electro- 
magnetic field (in the stationary case). We show that this 
solution differs from the one with x<O, which makes it 
possible to consider the two cases together. 

In our model of a nonlinear oscillator interacting with an 
electromagnetic field, unlike those developed in Refs. 1-5, 
the coherent laser field induces transitions between the states 
of the nonlinear oscillator. This difference manifests itself 
even in the semiclassical setting. As shown in Refs. 1-3, the 
behavior of the system in the presence of the laser field is 
bistable if the resonance detuning A satisfies the condition 
[ A [  > 6. In our model this restriction on A is absent. 

We show that for x>O the quantum fluctuations in the 
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system monotonically increase with the strength of the exter- 
nal electromixgnetic field, which raises questions about the 
validity of the semiclassical approach. 

2. THE SYSTEM HAMILTONIAN: THE SEMICLASSICAL 
APPROACH 

Let us e:xamine a one-dimensional quantum oscillator 
described by the Hamiltonian 

where K is the nonlinearity parameter of the oscillator. We 
employ the well-known procedure and introduce the follow- 
ing operators: 

with y = G a x .  In terms of the operators (2) the Hamill- 
tonian ( 1 )  in the rotating-wave approximation assumes the 
form 

where 

In deriving Ithe Hamiltonian (3) we have restricted our dis- 
cussion to the situation in which the nonlinear term K X ~  is 
small compared to mw2x2/2. In terms of the operators (2)  
this assumption is equivalent to the requirement that the av- 
erage number of excitations be small: (i+ii)< f i  w ,  l lXl .  
Then the terms i i4( t ) ,  [ i i+( t )14 ,  ( i+ ( t ) i i 3 ( t ) ,  and 
[ i i+( t )13i i ( t )  dropped in (3 )  rapidly oscillate in comparison 
with the sla~wly varying terms of the form [ i i+( t )12i i2( t )  
[for instance, the term i i ( t )+ i i 3 ( t )mexp( - i2 ( lwr  
+X6+( i l f i ) t ) ( i+63] .  Since below we study the behavior of 
the system only for times that are long large compared to 
w;' in the Hamiltonian ( 1 )  we also drop the rapidly oscil- 
lating terms. 

Using such a Harniltonian in the single-mode approxi- 
mation, we can describe many quasiparticles in a solid, say, 
the Wannier excitons at high excitation levels3 and shalblw 
impurity centers at high concentrations. 

For convenience we use new quasiangular momentum 
operators in (3),  whose explicit form and commutation rela- 
tions depend on the sign of the parameter x .  If x is negative, 
these operators can be chosen as follows: 

They satisfy the well-known commutation relations for tlhe 
S U ( 2 )  algebra (see Refs. 6-10): 

with a=IXl /? iwr .  Expressing the boson operators ii+ and 
4 in terms of the operators (4),  we arrive at the following 
expression for the total Hamiltonian of a nonlinear oscillator 
interacting with an electromagnetic field: 

H = H ~ + H ~ , ~ ,  (6) 

where 

with E = afi w,= I X I .  Here qk& is the coupling constant of 
the nonlinear oscillator, and ik and 6: are the annihilation 
and creation operators of a photon with energy hwk , polar- 
ization ex,  and momentum fik (k=  k,A). When the nonlin- 
ear term in (3 )  is small, i.e., a(ii+ii)< 1, the operators j +  
and j -  in Hint become 6'1 6 and iil 6, respectively. In 
this approximation the interaction Hamiltonian (6 )  is reduced 
to the well-known Hamiltonian of an oscillator interacting 
with an electromagnetic field:'*2 

The Hamiltonian (6 )  is similar to the Hamiltonian of a 
lumped atomic system. For this reason in the system we are 
considering here the angular momentum vector j2 is con- 
served, i.e., 

j + j -  + j - j +  
j 2 = ( j i ) 2 +  

2 
= const. 

For x>O the operators j + and j -  introduced above 
cease to be conjugate [ ( j + ) + # j - 1 .  This leads to a non- 
Hermitian Hamiltonian. For this reason we introduce new 
conjugate operators 

with the following commutation relations: 

In the given case the system Hamiltonian acquires the form 

H=,i+i- + x  f i w k i : i k + x  fi&(pk(i+6k+i-ik). 
k k 

( 1 1 )  

Note that this Hamiltonian cannot be reduced to the Hamil- 
tonian of a two level system. Hence, as we show below, it 
describes a system with a different symmetry, which obeys 
the SU(1 , l )  algebra, and a different "spatial quantization" 
of the new conserved pseudovector, 

i + i -  + i - i +  
j2,(jz)2- 

2  
= const. 
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In examining the interaction with the electromagnetic field 
we assume that one mode of the field is in a coherent state 
and the rest are in the vacuum state. Let ~ ( t )  be an operator 
of the nonlinear oscillator in the Heisenberg representation. 
Then the Heisenberg equation for this operator averaged over 
the initial state of the system has the form 

where 

We remove the boson operators of the electromagnetic field 
from Eq. (13) by a well-known procedure.15-'7 To this end 
we write the solution of the Heisenberg equation for the op- 
erators i k ( t )  and i : ( t )  in the form 

and plug it into (13). After a cyclic permutation under the 
trace sign (see Ref. 8) we arrive at the following equation for 
the density matrix: 

where wo is the frequency of the external coherent laser 
field, a= J;fqkna is the Rabi quasifrequency, Ial2 is the 
average number of photons in the coherent mode, and 
g= a y; y= ~ ~ . r r ~ ~ G ( w , -  w k )  is the linewidth of spontane- 
ous emission of a photon by the nonlinear oscillator. 

Using (16), we arrive at the equation of motion for the 
operators 0' and 6': 

x ( G + ( t ) o z ( t ) ) - 2 i f i  sgn X ( O ~ ( ~ ) ) ,  

( 174 

-2g sgn X ( 6 + ( t ) 6 - ( t ) ) .  (17b) 

Allowing for conservation of the pseudovectors (12) and 
(14), we can represent the correlators ( 0 + ( t ) 6 - ( t ) )  in the 
form 

with j= 1 1 2 ~ .  Here we have allowed for the fact that 
z2 = j( j- 1 ) and J~ = j( j+ 1 ), which follows from the con- 
dition that initially (at t= 0 )  we have (;+&) = 0 .  Note that 
the fact that the norms of eigen-ket-vectors are positive (see 
Ref. 18) implies that the parameter j is either an integer or a 
half-integer. If 2 j= l / a  is not an integer, we can slightly 
modify the Hamiltonian H o  in this situation by replacing the 
number l l a =  hw, l (x l  with its integral part hGr / l x I .  The 
fractional remainder fi(w,- multiplied by 4'; can 
be represented in terms of jz or jz [see Eqs. (8)  or (9)]. Thus, 
the model Hamiltonian Ho generally has the form 

Here and in Eqs. (8)  and (9)  the parameters E ,  u, and w, are 
redefined in the following manner: 

with F ' an integer. This modification somewhat renormal- 
izes the parameter wo in Eq. (6) by replacing it with 
Co = wo + A w, , where A w,+ wo. Since the above procedure 
of redefining the parameters E ,  a, and or does not change 
the form of Eq. (16) for the density matrix but only changes 
the resonance detuning, below we drop the tilde above these 
parameters. 

The chain of Eqs. (17) can be closed in the semiclassical 
approximation by ignoring the fluctuations of the operator 
OZ, namely 

Then in the stationary case we arrive at the following system 
of algebraic equations: 

i p u ' f  2 i (q+i  sgn x ) U + ~ - 2 i Z f  sgn x=O, 

i f ( U ' - U - ) - 2 ( ~ ~ -  I ) = o ,  (20) 

where 

In deriving the system (20) it was assumed that j S  1 .  Elimi- 
nating U +  and U -  from the system (20) yields the following 
equation: 
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which describes the nonlinear behavior of the average num- 
ber of oscillator excitations, ( n )  = ( Z -  sgn x ) j ,  as a functioin 
of the amplitude of the applied coherent laser field, 

where V is the quantization volume. 
Let us investigate how the possibility of the function f 

being bistable depends on the value of the argument Z anld 
the sign of the resonance detuning A =  ( w o -  w,) l  y (or 
A = p / 2 -  q ) .  Solving the equation d ( f 2 ) l d z =  0  for q%= 1 ,  
which corresponds to w , S  y, we obtain the following critical 
points of the f  vs Z curve: 

Analyzing the behavior of f ( Z ) ,  we see that the possibility of 
bistability existing in the system depends on the signs of the 
resonance detuning A and the nonlinearity parameter X .  A.s 
Eq. (21)  implies, for x>O bistability is possible only if 
A>O. In the given situation the critical values of the func- 
tion of the ulpper and lower branches of the hysteresis loop 
(see Fig. la) assume the following values: 

When we hsve x>O and A<O, there is no bistability in the 
system. For ;y SO and A <O there is again the possibility of 
bistability with the following critical values of the function 
f :  

When A>O holds, there is no bistability. 
A similar behavior of the Wannier-exciton number den- 

sity as a function of the external field strength was obtaine:d 
by ~ o ~ z a w a ~ '  (see also Refs. 1 and 2). Expressing Z in terms 
of the exciton number density n,, , we find that 

where /3= vlw, , ,  n , ,= (n ) lw ,  v = x w l h ,  hue ,=  h w ,  is the 
exciton energy, and w is the volume of the region where the 
light interacts with the excitons. The initial equation for the 
bistable behavior of the exciton number density as a function 
of the amplit.ude of the laser field, 

can be obtained from (21) in the limit n , ,P4  1 and A 4  I .  
Without going into mathematical details, we note that the 

expressions for f  and Z at critical points [see Eqs. (22)-(24)] 
coincide with similar expressions obtained in Refs. 1-3 for 
I A1 B q  and I A1 S fi. From Eq. (21a) and from the results of 
Refs. 1 and 3 it follows that bistability is absent for 
)A1 6 fi. This result contradicts Eqs. (22) ,  which show that 
when A and x have the same sign, bistability is possible for 
arbitrary values of the resonance detuning A .  

The lower limit in A is absent because the Hamiltonians 
(6) and (7) of the interaction with an electromagnetic field 
differ. Note that while the Hamiltonian (6) describes transi- 
tions between states of a nonlinear oscillator, the Hamil- 
tonian (7) describes the interaction of an electromagnetic 
field with a linear oscillator. 

Below we use the quantum approach to studying the 
problem and establish the effect of critical fluctuations on the 
average values of the excitation number density near the 
critical points. 

3. QUANTUM TREATMENT 

In closing the chain of Eqs. (17) in Sec. 2 we ignored the 
* 

fluctuations of the operator OZ. However, as noted by several 
authors (see, e.g., Refs. 1-9), these fluctuations become sig- 
nificant at the critical points of a hysteresis loop. To establish 
the role that these fluctuations play and hence the behavior of 
the system at the critical points of the hysteresis loop, below 
we give an exact solution of the equation for the density 
matrix in the stationary case and introduce the basis of eigen- 
functions of the new operators of the nonlinear oscillator in 
the poorly studied case where x>O.  

We assume that there is a ket vector 1 1 , ~ )  that is an 
eigen-ket-vector of the operators i2 and ?, i.e., 

Using this ket vector, we construct new ket vectors of the 
operators in such a way that i'l l , p )  = I + ), where I + ) and 
[-) are obtained after the action of the operators it and 
I - ,  respectively. We now employ the commutation relations 
(9) and find that the new ket vectors I +) and I - )  satisfy the 
equations 

The positivity of the norms of the ket vectors I +) and 

I - ) ,  

( + l + ) = p ( p +  1 ) - 1 2 2 0 ,  ( - 1 - ) = p ( p -  1 ) - 1 2 2 0 ,  
(27) 

implies that either p a  $+ ( I 2 +  + ) ' I 2  or p G  - 1- ( I 2 +  i) 'I2. 
But the definition of the operator ?= j + ~ + i  suggests that 
p cannot be negative, i.e., p a  $+ (12 + i) 'I2. On the other 
hand, the lowering of the eigenvalue o f ?  must terminate at 
pmin= j ,  which corresponds to the absence of excitation in 
the system ( ( i f  i ) = ~ ) .  If for the given value pmin= j  we 
require that the norm of the ket vector I - )" l in=i - l I , j )  be 
zero, the (27)  yield I2 = j( j -  1 ) .  Hence it is convenient to 
denote the ket vector of the ground state as follows: 
I I ,  j ) =  I j ,  j ) .  Let us find the ket vectors of the other (excited) 
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Here F(;-)  and F + ( i + )  are functions of i- and i+ defined 
in the following manner: 

states of the nonlinear oscillator. To this end we successively 
apply the operator j+ to the ground-state ket vector ( j ,  j ) .  
Thus, the ket vector of the state 1 j ,p)  can be obtained from 
that of the ground state by applying the vector f +  p  - j  times, 
i.e., 

I j ,p)= cjP(i+)~-jl j , j ) .  (28) 

Requiring that the ket vectors I j , j )  and I j ,p )  have unit 
norms and using 

where the C, are the coefficients of the expansion of the 
C-number function F ( x )  in a Taylor series. Using the com- 
mutation relations ( l o ) ,  we can show that 

we find 
where, according to (3  l ) ,  

where p = j ,  j+1,  j+?,. . . , j+n ,  .. . . The result of the 
operators i f ,  i-, and I Z  acting on the ket vector I j ,p )  is 
determined by the following relationships: 

Allowing for (32), we can write Eq. (25) in the form 

where 

Since for x<O the square of angular momentum is an inte- 
gral of motion [Eq. (12)] and the commutation relations (5 )  
coincide with those for the angular momentum components 
j z ,  j + ,  and j - ,  the normalized ket vectors of this operator 
have the following form:'' 

Equation (33) implies that i [ j + , G ( j - )  J F  + (?) is a Hermit- 
ian operator. This is true if i+ commutes with ~ ( i - )  or 
i [ j + , G ( i - ) I =  ~ ( i - )  holds to within a real factor, which in 
view of the commutation relations ( 9 )  cannot be true. Hence 
the operator ~ ( k )  must commute with i+ to within a con- 
stant factor found from the normalization condition 

The result of the operators j f  , j - ,  and jz acting on the ket 
vector (30) is determined by the r e l a t i ~ n s h i ~ s ' ~  

Differentiating (35) with respect to j- and solving the result- 
ing equation, we find that 

Note that for x<O the requirement that the parameter 
j  be a half-integer implies that the bound-state spectrum of 
the nonlinear oscillator is bounded, i.e., ( m ( <  j ,  and coin- 
cides with the angular-momentum spectrum. But for x>O 
the spectrum is not bounded above, i.e., P A W .  The station- 
ary equation for the density matrix [see Eq. (16)] for x>O 
has the following form: 

where 

i  u i vo 
d=-- t= - 

I + iq '  l + i q '  

Then the stationary density matrix is 

b; = l C ) 2 ( i - -  id)-(l+t)(j++id*)-(l+t*) 

+ g { [ i - ~ s  , j+] + [ i - , ~ j ~ i + ] )  = 0.  

Employing the methods developed in Refs. 6-9 to solve 
such equations, we seek the exact solution on the assumption 
that the stationary density matrix is can be written as8 

where D l  is a normalization factor such that T r ( j S ) =  1 ,  
T(z) is the ordinary gamma function, and 
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The number of excitations no of the nonlinear oscillator is 
restricted by the condition that the number of discarded 
terms in the  expression for the oscillator potential energy be 
small, i.e., (h'+i)<ho, l lXI  [see Eq. (3)] .  But because of the 
rapid convergence of the series (37) as a function of the 
applied external laser field [see Eqs. (42) and (43) belowr], 
formally the sum can be extended to infinity. Indeed, here vre 
are interested in the system's behavior in the range of critical 
points corrc:sponding to fairly low excitation levels 
( n ) i  = {Z i  - sgn x}< h o ,  11x1, with i = 1,2 [see Eqs. (22)l. 

For x<O the equation for the stationary density matrix 
acquires the form 

Applying the above method and the corresponding commu- 
tation relations (5), we arrive at the following expression for 
Ps : 

where the normalization factor D2 is specified by the follow- 
ing expression: 

2 j  
r ( t ) r ( t * )  ( 2 j + l +  l ) !  

D 2 = Z  I=o IdJ2'r(t- i ) r ( t * - i )  (2 j -1 ) ! (21+  i ) !  . 

Let us c:alculate the average value ( n )  of the number of 
excitations. For x>O the definition of 3 [see (9)]  impl~ies 
that ( n )  = ~1-( i i?) - j .  Using the expression (37) for the den- 
sity matrix imd the derived system of functions, we get 

no r ( i  + t + i ) r ( i  + ( * + I )  
( n ) =  lim DF'C 

nn+m 1=0 r ( l + t ) r ( l + t * )  
@ l + l *  

where 

with k =  1,2,3, . . . . To examine the role that quantum fluc- 
tuations pl?y at critical points we must calculate the average 
value of the: square of the number of excitations in the s;ys- 
tem, ( n ) 2 = ( ( ? -  j ) 2 ) .  We can easily see that 

Using the expressions (43) and (42) for ( n 2 )  and ( n ) ,  we can 
calculate the square of the fluctuations of the number of ex- 
citations, a2 = ( n 2 )  - ( n ) 2 .  

For x<O the expressions for the average number of ex- 
citations, ( n ) ,  and for ( n 2 ) ,  respectively, are 

2 j -  1 
r ( t ) r ( t * )  ( l +  1 ) (2 j+1+  I ) !  

( n )  =D;' 2 d - 2 1  
I = O  r ( 6 - l ) r ( t * - 1 ) ( 2 j - 1 -  1 ) ! ( 2 1 + 2 ) !  ' 

( m + 2 ) ( m +  1 ) ( 2 j + m +  l ) !  
X 

( 2 j - m - 2 ) ! ( 2 m + 3 ) !  + ( n > .  (45) 

Figures l a  and b depict the dependence of the number of 
excitations of the oscillator and the second-order coherence 
function g ( 2 f  = ( ~ ~ + ( n ) ~ ) l ( n ) ~  on the strength of the ap- 
plied coherent electromagnetic field when x < O .  Clearly, in- 
stead of the bistability obtained in the semiclassical approxi- 
mation, we have a quantum jump in the number of 
excitations of the oscillator as the strength of the coherent 
electromagnetic field increases (Fig. la, the solid curve), and 
the coherence function g ( 2 )  reaches its maximum value in the 
vicinity of the jump (and so does ti2; see Fig. lb) .  For a 
detailed explanation of this jump, we represent (44) in the 
form of a polynomial in powers of the strength of the applied 
field. To this end we multiply (44) and (41) by d4j and per- 
form the change of variables nz = 2  j  - 1 in these sums. Then 
(44) and (41) become 

( 2 j - m +  1 ) ( 4 j - m +  l ) !  
X 

(ni -  1 ) ! ( 4 j - 2 m + 2 ) !  ' 

( 4 j - m +  l ) !  
X 

m ! ( 4 j - 2 m + l ) !  ' 

Using the definition of the function T ( x ) ,  we obtain 

Going back to the definition t= i  vo I (  1 + i q ) ,  we find that 
for a 9 9  1 whose value corresponds to or> y we have 
Re t= vo lq ,  with the result that 
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FIG. 1 .  (a) The dependence of the number of excitations in the system on the normalized external field strength f for x<O at j =  12, P =  1500, and 
q =  1000 in the classical (the dashed curve) and quantum (solid curve) settings. (b) The dependence of the second-order correlation function g( ' )  on the 
normalized extemal field strength f for x<O at j=  12, P =  1500, and q =  1000. 

For x>O varying the strength of the applied electromag- 
(47) netic field leads to no jump in the number of excitations. 

As Eqs. (47) and (46) imply, when the resonance detuning is 
negative, or ARe5-2j<0, the power series in (46) can be- 
come truncated; the same is true of (44a) and (41a) at 
m* = - (Re 5- 2j)  (if Re .$- 2 j is an integer). In this situ- 
ation, with the field strength increasing, the last nonzero term 
in the expansion in powers of the field strength, i.e., the 
(m*- 1)st term, begins to dominate. Hence, the expression 
(44) tends to a finite number determined by the ratio of the 
coefficients of d2(m*-') in (44a) and (41a), is., 
(n)=m*- 1 =const, which is confirmed by numerical cal- 
culations (see Fig. la). 

This is due to the absence of truncation of the series analo- 
gous to (46) for any resonance detuning in (42) and (43). 
Clearly, under the previous assumptions, the real part of the 
argument contains the sum 2 joo l or + 1, with the result that 
not a single resonance detuning at a difference analogous to 
(47) can exist. More than that, numerical calculations show 
(see Figs. 2a and b) that the square of the relative fluctua- 
tions of the number of excitations, ~ ~ / ( n ) ~ ,  remains much 
larger than unity for low excitation numbers and high 
strengths of the external electromagnetic field. This suggests 
that in an external coherent field the oscillator becomes 

FIG. 2. (a) The dependence of the square of the relative fluctuations, ( S l ( r ~ ) ) ~ ,  on the normalized external field strength f for x>O at j = 9 ,  no= 12, 
P=2500,  and q =  1000. (b) The dependence of the second-order correlation function g( ' )  on the normalized external field strength f for x>O at j = 9 ,  
no= 12, P=2500, and q =  1000. 

659 JETP 83 (4). October 1996 Bardetskii et a/. 659 



weakly excited and that the fluctuations of the number of 
excitations remain much larger than unity, so that they can- 
not be ignored in the decoupling of Eqs. (17). As a result, the 
classical approach becomes invalid. 

4. CONCLUSION 

We see that the behavior of an anharmonic oscillator in a 
coherent electromagnetic field differs considerably for posi- 
tive and negative values of the nonlinearity parameter X. The 
difference is caused by the presence of a new symmetry in 
the interaction between the nonlinear oscillator and the elec- 
tromagnetic field. As a result, there is no phase transition 
when x>O. This case was neither examined or identified in 
Ref. 1. 

When the anharmonicity is negative, as we move away 
from the phase transition point the "classical" behavior of 
the number of excitations of the oscillator as a function of 
the applied electromagnetic field almost coincided with the 
"quantum" behavior, and the quantum fluctuations of this 
quantity play an important role near the phase transition 
point. Such a description of the anharmonicity oscillator be- 
comes invallid when the nonlinearity parameter becomes 
positive. In this situation the absolute fluctuations start to 
grow from the very beginning and do not reach a maximum 
for any value of the strength of the external field. Thus, the 
semiclassical decoupling of the comelators is invalid for any 
laser field strength. 

Such nonlinear interactions can be detected in nonlinear 
media. When the excitation of the exciton subsystem is 

high: a nonlinear excitonic mode with a positive or negative 
nonlinearity parameter x can be realized in media with pre- 
dominant repulsion or attraction between the excitons. 
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