
Anomalous diffusion in a microtron and critical structure at the chaos boundary 
B. V. Chirikov 

G. I. Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia 
(Submitted 19 April 1996) 
Zh. ~ , k s ~ .  Teor. Fiz. 110, 1174-1 185 (October 1996) 

This paper describes the results of an investigation of anomalous diffusion in critical structures at 
order-chaos and chaos-chaos boundaries, involving both numerical experiments and 
theoretical analysis. In the first case the critical exponent c, , which determines the rate of 
anomalous diffusion through the expression D rn tCD, is measured yielding the result cD--113. A 
value of the correlation exponent cA-- 112 is also found which is in complete agreement 
with the predictions of the resonance theory of critical phenomena in dynamical systems. The 
most important result of the paper is a confirmation of the central assumption of this 
theory, namely that there exists a supercritical local order parameter in the vicinity of the boundary 
on the side where the motion has a chaotic component. O 1996 American Institute of 
Physics. [S 1063-7761 (96)003 10- 11 

1. INTRODUCTION 

The microtron was the first cyclic accelerator of relativ- 
istic particles invented by ~eksler . '  The dynamical behavior 
of the microtron energy is approximately given by the simple 
mapping x,p-+F, p over one period of rotation of an elec- 
tron in the magnetic field: 

p = p +  K sin x, Y=x+p. (1) 

Here x is the phase of the accelerating voltage with ampli- 
tude Vo and frequency fl; the canonically conjugate action p 
and the single parameter K of the model are related to the 
energy of an electron E and wB , the maximum Larmor fre- 
quency, by thie following expressions (in a system of units 
where e=m=:c=  1): 

2 7Tl?fl 27Tvofl 
IPI=--, K=-. 

'"6 WE 
(2) 

The dynamics of the microtron model (1) was studied in 
Refs. 1 and 2 and by many other authors (see, e.g., Ref. 3). 
In all these papers, the main focus of attention was on regular 
acceleration (for which l p l  a t holds, where t is the number of 
iterations of the mapping ( I ) ) ,  which corresponds to (neutral) 
stability of the dynamics of the phase x (i.e., nondecaying 
oscillations). This microtron acceleration regime is possible 
only for special values of the parameter K=K,-2rn,  
where n ZO ir; any whole number. The region of stability in 
xp phase space is very small, and decreases rapidly with 
n--even for the fundamental microtron regime In 1 = 1 this 
region occupies less than 1% of the phase space. What hap- 
pens for the other initial conditions? 

Strange as it may seem, many years passed before this 
question was answered, and only after the simplicity of the 
Veksler model (1) made it one of the basic models for ad- 
dressing general questions about nonlinear dynamics and 
chaos (see, e.g., Refs. 4 and 5). This model is also called the 
standard mapping, since many other physical problems re- 
duce approximately to it. 

It turns out that for K>1 the dynamics is that of un- 
bounded diffusion (Iplm&) over a considerable portion of 

the phase space; as K increases, the region of unbounded 
diffusion extends over practically the entire plane. In this 
limit, the microtron is converted to a "stochastron," a term 
introduced by Burshtein et  ~ 1 . ~  They proposed to create dif- 
fusive acceleration by feeding a noise voltage to the system. 
This goal can also be accomplished by simply changing the 
initial conditions (slightly) andlor the parameter K (over 
wide ~ imi t s ) .~  To this author's knowledge, neither of these 
assertions has been proven or even demonstrated experimen- 
tally, although in one mode of operation (without microtron 
regimes), the stellarator8 uses dynamic chaos to preheat plas- 
mas. 

The dynamics of the "simple" model (I), which turns 
out to be very rich, has been (and continues to be) studied 
intensively, both theoretically and by numerical experiments. 
These studies have revealed that the statistical properties of 
the motion, especially diffusion, can be very unusual, or 
"anomalous" (see, e.g., Ref. 9). It turns out that this behav- 
ior is associated with the phase-space boundary with chaos, 
in the neighborhood of which the motion develops a very 
complex hierarchical structure. Although this structure itself 
has been studied in great detail?"O its influence on the sta- 
tistical properties of the motion still remains unclear for the 
most part?"1 It is this problem that is the subject of the 
present paper. 

2. ISLANDS OF STABILITY 

The main regions ("islands") of the phase plane where 
the acceleration predicted by model (1) is regular form 
around the fixed points (periodic solutions) p=O mod 27r, 
x =  k x o ,  where 

K sin xo=27rn, ~ ~ = s ~ + ( 2 , r m ) ~ ,  s = K  cos x0, 

The inequalities determine the region of stability of the fixed 
points. In what follows we set s = -2 (the center of stability). 
For each value of In I there are two islands per 27rX 27-r phase 
space cell. All the islands are similar in the dimensionless 
variables 
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4 - " ' ~ ~ ' ' ' ~ ' . ' . ' .  tion. The explanation for this is that the chaotic trajectories 
"get stuck" in the complicated critical structure along the 

1.0 - chaos boundary?'" This structure is entirely determined by 
the number of the rotation at the boundary 

r=rb=0.23889 ...=[ 4,5,2,1,1,1,2 ,... 1, (6) 
which is also independent of n.  The last expression (6) gives 
a representation of r in the form of a continued fraction (the 
consecutive elements of the fraction are given in the brack- 
ets). Since the rotation number r=d2n-  is the ratio of the 

FIG. 1. Universal boundary of the microtron regions in dimensionless vari- 
ables (4): n=2-20000, the duration of the motion for each n equals 3000 
iterations of the mapping (1). The region inside the boundary corresponds to 
regular motion, while outside it the motion is chaotic. Near the fixed point 
x,=p,=O the frequency of small oscillations wo=?r/2, while at the bound- 
ary ob=2?rrb (6). 

Figure 1 shows the boundaries of five islands for n =2, 20, 
200,2000, 20000. The region of regular motion lies within a 
boundary of this kind, and the relative area of an island A is 
given by the expression 

AK~-0.17. (5) 

-0.19 is It is noteworthy that the maximum area A K ~ -  
achieved for a stability parameter s-- 1.92. All the similar- 
ity relations (3)-(5) are obtained from theory>9711 but their 
numerical coefficients are empirical. The boundary of an is- 
land of stability defines a transition from chaos to order. This 
boundary is robust, i.e., it is not destroyed by small changes 
in the single model parameter K, which is also the order 
parameter. This follows, in particular, from Eq. (3). 

A peculiarity of this model is that although the dimen- 
sions of the chaos boundary and the region of regular motion 
are extremely small, they nevertheless can significantly alter 
the statistical properties of the chaotic component of the mo- 

frequency of oscillation to the perturbation frequency (2n-), 
this representation reveals the basic nonlinear resonances 
near the boundary, which also determine the critical struc- 
ture, in a most natural way. These resonances correspond to 
the convergent sequence of rationals r,=p,lq,-tr as 
m-tm. Each of the denominators q, equals the period of 
motion of a particular resonance. 

A clear picture of the critical structure, which also de- 
scribes its renormalization group, can be obtained from the 
spectrum of motion at the boundary, an example of which is 
shown in Fig. 2a. The spectrum S(v) is obtained from the 
radial oscillations p ( t )  (where p2=~:+p:) perpendicular to 
the chaos boundary. A characteristic feature of the spectrum 
is the irregularity of the fundamental peaks, which are la- 
beled by integers m. The periods of the corresponding reso- 
nances are qm=4, 17, 21, 38, 59, 97, 350, 447;.., for 
m=1,2,3,4,5,6,7,8;.. . This picture, which is typical of a 
critical structure, is described by the chaotic renormalization 
group?31' It implies that the change in the structure of the 
motion in going from one scale to the next is irregular in 
character, and must itself be described statistically (the dot- 
ted line in Fig. 2a). The odd resonances ( m =  1,3,5,7, ...) lie 
within the stable region (inside the chaos boundary), whereas 
the even resonances envelope the boundary, i.e., they are in 
the chaotic component of the motion. 

For comparison, Fig. 2b shows the special case of exact 
similarity10 (the fixed point of the renormalization group), 
where the transition from scale to scale is regular. It is curi- 
ous that exact similarity includes both regular and chaotic 
components of the motion (paths). The motion in both cases 
is almost periodic (with a discrete spectrum); the finite width 

FIG. 2. Example of the spectrum of motion at the chaos boundary: the frequency is v (mod l ) ,  S(v)lS(O) is the relative magnitude of the Fourier amplitude; 
the total duration of the motions T=65536 iterations. a) Statistical similarity (chaotic renormalization group) at the robust order-chaos boundary: n =  I; 
rb=0.23713 (the peak labelled r,), which differs somewhat from the asymptotic value (6). The numbers on the curve are the labels m of the fundamental 
resonances, while the dotted line is the theory (8). b) Exact similarity (fixed point of the renormalization group) at the nonrobust chaos- chaos boundary for 
the special point rb=(3-$)/2=[2.1,1,1 ,...I and K=0.9716. 
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of the peaks Av-1/T is determined by the total duration of 
the motion T. 

3. CRITICAL STRUCTURE AND ANOMALOUS DIFFUSION 

The main level of the critical structure is determined by 
a sequence of fundamental nonlinear resonances, each of 
which consists of a comb of q, stable regions around the 
trajectory of period q, , surrounded by a rather thick chaotic 
layer (for a detailed discussion, see, e.g., Refs. 9-1 1). The 
comb runs along the chaos boundary; its transverse size p, 
and area A, are given by the estimate 

where A(K) is the total area of the island (5)  and S,= S(v,) 
is the amplitude of transverse oscillations (wiggling) of the 
chaos boundary at a frequency v,= q,lrb- r,l - l/q, . This 
implies the following global shape of the spectrum, shown in 
Fig. 2 by a dotted line: 

Of course, for the case of renormalized chaos (Fig. 2a) this 
simple dependence expresses only the average behavior of 
the structure, on which are imposed the strong fluctuations 
that are general characteristics of critical phenomena. 

The rate of diffusion is determined by the statistics of the 
"sticking" time t, at the corresponding scale m. After av- 
eraging over time or over initial conditions (ergodicity), and 
under the assumption of statistical independence of the vari- 
ous sticking events, we have 

Here N,(t) is the number of times the trajectory arrives at 
scale m within the full duration of the motion t; the last term 
describes ordinary diffusion (with an additional coefficient 
Co(K)-1 due to close correlations), which occupies the 
overwhelming portion of the time due to the smallness of the 
regular region in the problem under discussion. In turn, the 
number of arrivals is given by 

where P ,  = P(t,) is the distribution of Poincard returns, i.e., 
the distribution over time of delays during reflection (scatter- 
ing) from the chaos boundary. This statistic is characterized 
by a critical exponent c p  . From the ergodicity of the motion 
it follows that 

The function A, =A (t,) plays the role of the correlation of 
sticking events; from the last estimate above (similarity) we 
have c,= CA t 1. This implies an asymptotic average rate of 
diffusion 

where the critical exponent of the diffusion equals 

and the maximum sticking time t,, is determined from the 
condition 

At t,, C P  A 
Nm(tmax)--- 1, j T )  -zql. 

t:, 

The sum in (12) reduces approximately to the largest term 
t, = t,, , because all the quantities that describe of the criti- 
cal structure depend exponentially on the scale label m (a 
geometric progression). Of course, this is true only for 
cA<l .  In the opposite case the rate of diffusion does not 
depend on time, i.e., it is normal. 

The theory of critical exponents at the chaos boundary 
turns out to be far from trivial. In order to calculate these 
exponents, it is necessary to estimate the quantity t,(q,). At 
first glance, it is natural to assume t,-q,, i.e., that the 
(un)sticking time is the same order as the characteristic time 
for this scale.I2 However, it is immediately clear from (7) 
and (14) that this would imply cA=2, together with cp=3, 
which is completely inconsistent with the reliably measured 
value of the exponent ~,-1.5?,", '~. '~ In addition to this 
quantitative discrepancy, this assumption would imply a 
qualitatively different kind of diffusion," i.e., one that is 
normal in spite of the sticking of trajectories. 

This qualitative effect is particularly important for evalu- 
ating the elaborations of the work of Ref. 12 presented in 
Ref. 15. In this approach, attention is focused primarily on 
the interior of the chaos boundary, which also has a hierar- 
chical structure ("resonances around resonances;" see also 
Refs. 16 and 17). A value of the critical exponent c, can be 
successfully obtained using this method that is very close to 
the empirical value cp=2;I5 this value still excludes anoma- 
lous diffusion. Meanwhile, it was shown in Ref. 9 that for 
c,<2 the contribution of the interior of the chaos boundary 
generally has no effect on the critical exponents. 

Nevertheless, it should be noted that the scale t,-q, 
has a definite physical meaning, not only dynamically (the 
period of the fundamental resonance) but also statistically, in 
that it determines the rate of local diffusion ~ , - q , ~ / ~ ,  
=q,5 perpendicular to the chaos boundary.I8 'This type of 
diffusion has actually been observed recently;16 however, it 
is bounded and leads only to establishment of local statistical 
equilibrium without any movement to neighboring scales. 

In order to resolve this contradiction, the authors of Ref. 
11 advanced the hypothesis that at the critical point we have 
t,=w, i.e., all scales of the critical structure are dynamically 
isolated and separated by their chaotic boundaries, which are 
invariant curves. In view of the hierarchical nature of the 
critical structure, the latter form an everywhere-dense set. 
According to this hypothesis, finite values of r, are ex- 
plained by the departure of the local order parameter near the 
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FIG. 3. Anomalous diffusion for model (1) in the microtron regime (3): the 
broken curves are numerical data for n= 1 ,  2, 5 and a control count with 
K=27r (see text); the horizontal lines show (constant) rates of normal dif- 
fusion. The oblique line is the function (19) with the theoretical value 
c,= 113 and empirical value b= 11 (for n =  1, M=40). 

chaos boundary from its critical value at the boundary itself. 
In this case, from one side of the boundary the structure 
becomes subcritical, which ensures regular motion for the 
majority of initial conditions, whereas from the opposite side 
supercritical structure arises with a finite sticking time. Un- 
der the assumption that the local order parameter depends 
linearly on the distance to the chaos boundary, we obtain the 
estimate 

Depending on the details of the critical structure, c,=7 (Ref. 
11) or c,=4 (Ref. 9), and accordingly c,=2/7 or c,=1/2. 
The latter value is considered to be more precise (see the 
discussion in Ref. 9). 

In both cases we have cA<1. which leads to anomalous 
(accelerated) diffusion (cD>O). In point of fact, the first nu- 
merical experiments" have already confirmed the existence 
of anomalous diffusion at the chaos boundary, and conse- 
quently disprove both the initial assertion c,= 1 of Ref. 12 
and its further elaboration in Ref. 15. This type of diffusion 
has been investigated in many subsequent papers (see, e.g., 
Refs. 17, 19, and 20). 

Note that while there are many general studies of 
anomalous diffusion, both accelerated (cD>O) and retarded 
(cD<O), that predate the present paper (see, e.g., Ref. 21), 
the topic of interest here is diffusion connected with the spe- 
cific critical structure at the chaos boundary. 

4. NUMERICAL EXPERIMENTS 

A fundamental problem with the empirical study of 
anomalous diffusion in this model arises from large fluctua- 
tions. The latter are, in turn, explained by the fact that the 
main contribution to the diffusion (for a given segment of 
time) comes from the single sticking event with tm=t,, . 
For this reason, fluctuations grow with time (Fig. 3). In order 
to suppress them a doubled average is used: first average 
D(t) over M =40 independent trajectories, and then average 
the critical exponent cD(t) over four groups of trajectories, 
also independent. 

The basic results of the numerical experiments are 
shown in Fig. 3 for n = 1, K =6.5938--a, D ~ =  ~ ~ ~ ~ 1 2 -  39; 

n=2, K2=12.72-.., Do--121; and n=5, K5=31.47... . 
Do--644. For comparison the case of normal diffusion with 
Ko=27r is also shown. In this case the stable region is coni- 
pletely disrupted (see (3)), and despite the insignificant 
change in K (KllKo- 1-0.05), the diffusion remains normal 
for all choices tS5.10' of the number of iterations of the 
mapping (1). 

The existence of anomalous diffusion is not in doubt. 
With regard to measurement of the critical exponent cD ,  
matters are more complicated due to the strong fluctuations 
mentioned above. Figure 3 clearly shows the "Levy 
jumps" 21 associated with sticking of the trajectories at the 
chaos boundary. It is interesting that the steepness of these 
jumps is distinctly asymmetric-a peculiarity whose mecha- 
nism is not fully clear. The asymptotic regime of anomalous 
diffusion is reached after a certain time that increases with 
the size of the islands. Plots of the asymptotic function D(t) 
(t>t,) on a log-log scale can be fitted by the linear expres- 
sion (see (12)): 

As a result, the following values are obtained: 

The minimum value t ,  used in the fit is determined by pass- 
ing to the asymptotic regime, while the maximum is bounded 
by the large jumps in D(t) (see Fig. 3). Although anomalous 
diffusion is clearly evident even for n =5, practical counting 
times turn out to be insufficient to reach the asymptotic re- 
gime, at least for an accurate measurement of cD . The values 
of cD obtained for n = 1,2 in (17) are in good agreement with 
each other and with the theoretical value cD= 113, which is 
used to plot the straight line shown in Fig. 3. According to 
(12), the second fitting parameter B can be represented in the 
form 

where A, now denotes the total area of the two islands of 
stability for a given n, and b,f are certain constants. The 
dependence on the number of trajectories M arises from the 
fact that for anomalous diffusion it is sufficient that any one 
of the trajectories stick, provided that the last inequality (18) 
holds. In the opposite case, we have tm- t and c,--c,- 112. 
In this case, it is t that enters into the inequality and not Mt, 
since the trajectories are independent. The last expression for 
B, in (18) was obtained by taking (5) into account and using 
the value cD= 113. For M=40 the values (17) imply b-1 1 
(n= l ,  B-2.8) and b-10 (n=2, B--1.5). The final expres- 
sion for the coefficient of anomalous diffusion is the follow- 
ing: 

which is plotted in Fig. 3 (the oblique straight line) for n = 1. 
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Let us now compare these results with known data. First 
of all, the rather large theoretical value cD= 112 given in Ref. 
22 is explained by the simplifying assumption t,,-t (com- 
pare (14)) adopted in Ref. 22 and taken from Refs. 9 and I 1. 
This assumption is valid only when inequality (18) is vio- 
lated, in particular, for very large M and small t (see below). 

Anomalous diffusion at a chaos boundary was probably 
first observed in the numerical experiments of Ref. 23 for 
exactly this model with n = 1. However, the rate of diffusion 
was given only for the maximum counting time t= 10'. For 
some reason, the authors of Ref. 23 were unable to observe 
anomalous diffusion for n =2, although for t =  10' its rate is 
the same as for n = l ,  which is still much larger than the 
normal rate: DIDo-7.3 (see (19) for M = 6 4  and Fig. 3). For 
n = 1 ,  the ratio DIDo-27 found in Ref. 23 is in satisfactory 
agreement with the average DID0-36 of (19), taking into 
account the large fluctuations also noted in Ref. 23. 

In Ref. 20 data were presented on anomalous diffusion 
for the same model, but over a very short time interval 
t s2000  and for a somewhat different value of K=6.9115, 
for which the area of the stable region is decreased by a 
factor of 5. The critical exponent was taken to equal cD= 113; 
however, the accuracy of this value is unknown, primarily 
due to the smallness of t. For the maximum counting time 
we have 0-160, whereas the theoretical value (19), taking 
into account the small area of the islands (see (18)) is D-60. 
The difference is probably related not so much to fluctua- 
tions as to the change in the shape of the islands of stability, 
and accordingly the rotation number at the boundary with 
chaos. It is interesting to note that an enormous number of 
trajectories M = 10' was used in this paper to calculate the 
distribution function for anomalous diffusion (see also Ref. 
17). Therefore, these results also provide indirect confirma- 
tion of the dependence of the average rate of diffusion on M 
(19), which at first glance is strange. Without this factor, the 
rate would fall by almost a factor of 50! More detailed analy- 
sis of the data of Ref. 20, which was verified by additional 
numerical experiments, shows that for t-100 a transition 
occurs from cD-0.5 to cD-0.3, most likely related to vio- 
lation of the inequality (18). From this follows the estimate 
f-0.05. 

Similar results are also obtained from the different 
(continuous-time) model of Ref. 17, with M=3600 and a 
maximum t -  10' (in comparable units). In particular, the 
critical exponent cD=0.38=113 remains roughly the same 
despite the completely different global structure of the mo- 
tion. This provides additional confirmation of the universal- 
ity of the crit~cal structure at the chaos boundary. Note that 
in this model the decrease of cD at counting times around 
t-lo4 is even more obvious (see Fig. 7 in Ref. 20) and 
corresponds to roughly the same value o f f  for A - 1. 

Thus, the existence of anomalous diffusion due to the 
critical structure at the chaos boundary can be regarded as 
firmly established. However, at this time both the demonstra- 
tion of existence of anomalous diffusion itself (i.e., cD>O) 
and the approximate computation of the critical exponents 
are possible only within the resonance theory of critical 
structure of chaos, with the additional hypothesis of the dy- 
namic separation of scales?." This important hypothesis can 

FIG. 4. Phase portrait of model (1) for the critical value K=0.9716 ... . The 
arrows show the two chaos-chaos boundaries that separate the chaotic com- 
ponents. Motion in each of these regions is represented by a single trajectory 
using i =  10' iterations with step size Ar=2000 and 5000. 

be verified further, at least qualitatively, by using a different 
model with a chaos-chaos boundary. 

5. STATISTICAL PROPERTIES OF MOTION AT A 
CHAOS-CHAOSBOUNDARY 

In contrast to the better-known and more robust order- 
chaos boundary, which is preserved over a relatively wide 
range of variation of the order parameter (K in our model), 
the chaos-chaos boundary is not robust, i.e., it is destroyed 
by any deviation from the critical value K =0.97 16..-.'0 Fig- 
ure 4 shows a phase portrait of the model (1) for this case. 
The critical invariant curves shown by arrows are absolute 
barriers to the motion; however, chaotic trajectories can ap- 
proach arbitrarily closely to them from both sides. Because 
the local order parameter is now supercritical on both sides 
of the boundary, its decrease as the boundary is approached 
becomes at least quadratic; of course, the supercriticality rap- 
idly decreases while the sticking time grows rapidly. This in 
turn leads to a decrease in the critical correlation exponent 
c A j O ,  and causes the exponent for anomalous diffusion to 
increase to its limiting value: c D j l .  The first confirmation 
of this structure at the chaos-chaos boundary was obtained in 
Ref. 11 by measuring the statistics of Poincard returns (10): 
The critical exponent c p =  1 + cA-0.975k 0.013 actually 
turns out to be very close to its limiting value. 

Figure 5 shows the results of measurements of anoma- 
lous diffusion in this case. The average rate of diffusion 
along x  is defined as 

Here the resonance value of the momentum p r = p ,  = 0 dur- 
ing diffusion for an integer resonance (below the lower 
boundary in Fig. 4) and p r = p 2 =  rr for diffusion at a half- 
integer resonance (between the two boundaries). 

In this case the mapping (1) corresponds to a different 
physical model-the motion of particles in a multiwave field. 
The variables x , p  are now Cartesian, with unbounded varia- 
tion of the coordinate x .  This is the type of model investi- 
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FIG. 5. Anomalous diffusion at a chaos-chaos boundary: model (1) with 
critical value K=0.9716..., averaging over M =  100 independent trajecto- 
ries. The heavy curves correspond to diffusion with the limiting rate D ( r ) a  t 
(steep lines) for integer (1) and half-integer resonance (2). For comparison, 
diffusion for the subcritical value K=0.9 is also shown (light curve); the 
dotted line corresponds to c ,  = 113 for diffusion at the chaos-order bound- 
ary. 

gated in Ref. 17 for the two-wave case. Although this case is 
the simplest from a physical point of view, it turns out to be 
considerably more complicated from the standpoint of nu- 
merical experiments and theoretical analysis. 

It is clear from Fig. 5 that the diffusion exponent cD-1 
actually increases rapidly and is close to its limiting value. If 
the trajectories were to get stuck near the chaos boundary for 
the entire duration of the motion t, then the coefficient in 
(20) would be ~ , = ( 2 . r r r , ) ~ ,  where r,=(3- 6)/2=0.382 is 
the number of rotations at the lower chaos boundary, while 
r ,=O.F r ,  . From this we have B,-5.8 and B2=0.55. In 
fact, from the data shown in Fig. 5 it follows that B ,=0.35, 
B,--0.023, i.e., it is approximately 20 times smaller. This 
is most likely connected with the relatively small size of the 
intrinsically critical structure (A-0.1; compare the parameter 
f of the same order in inequality (18)). On the other hand, 
this area is still considerably larger than in the microtron 
model, which is probably the main reason for the consider- 
able decrease in fluctuations (compare Figs. 3 and 5). In any 
case, the small value of the coefficient B shows that it is 
diffusion that occurs, and not regular motion along x, al- 
though both mechanisms give XE t. This is also confirmed 
directly by observation outside the trajectories. In particular, 
this quasiregular motion along x takes place on both sides! 
For c,=I and cA=O, inequality (18) is already violated for 
M 2 l/f - 10, and the rate of diffusion does not depend on M. 
In both cases cD-(1 -cA)/( l  +cA)- 1 -cA=l.  

Thus, the diffusion limit at a chaos-chaos boundary ac- 
tually confirms the hypothesis of supercriticality, which is 
very important for further development of the theory of criti- 
cal phenomena in dynamic systems. However, the nature of 
the stable (i.e., independent of initial conditions for the tra- 
jectories) anomaly for large ts106, demonstrated by curve I 
in Fig. 5 with particular force, remains completely unclear. 
Traces of this anomaly were already noted in Ref. 1 1, based 
on the more rapid decay of the distribution function of Poin- 
car6 returns P ( t )  when t?lo5. This anomaly also turns out 

to be stable and is not connected with small statistics, as 
proposed in Ref. 1 1. 

Outwardly, the anomaly in Fig. 5 appears to indicate that 
the value of the parameter K=0.9716 is still subcritical 
(compare the case K=0.9), or that for some reason the stick- 
ing takes place away from the fundamental chaos-chaos 
boundary at one of the interior chaos-order boundaries. On 
the other hand, no anomalies are seen in the spectrum of 
motion at the chaos-chaos boundary (Fig. 2). On the whole, 
this question requires a separate investigation of its own. 

6. CONCLUSION 

An extensive series of numerical experiments has been 
conducted in order to study critical structures at a chaos- 
order boundary (Fig. 1) for the simple dynamic system (1). 
The study is based on observing the very distinctive anoma- 
lous diffusion (Fig. 3) caused by this structure. In particular, 
accurate measurements have been made of the value of the 
critical exponent cD-113 appearing in the expression (12) 
for anomalous diffusion that is predicted by the resonance 
theory of critical The investigations were 
made in the special (microtron) regime (3) of model (I), at 
which the chaos boundary has a very small size (Fig. 1). 
Despite this, the statistical properties of all the chaotic com- 
ponents of the motion were fully determined by using a suf- 
ficiently large time interval. This work emphasizes the im- 
portance of critical phenomena in dynamics, especially with 
regard to the robustness (structural stability) of the chaos- 
order boundary. 

One of the main goals of this study was to confirm the 
underlying hypothesis of the theory regarding the supercriti- 
cal nature of the local order parameter with respect to the 
chaotic component in the vicinity of the boundary. The em- 
pirical value of c, and the value of the critical correlation 
exponent at the chaos boundary cA-112 (see (13)) obtained 
from it completely confirm this hypothesis. In view of its 
importance for the theory as a whole, an additional verifica- 
tion was undertaken using a different (critical) value of the 
order parameter K=0.9716-.-, at which a (nonrobust) chaos- 
chaos boundary appears in the system with a qualitatively 
different structure (Figs. 1, 2, and 4). The rapid increase in 
cD+l and decrease in cA+O predicted by the theory are 
actually confirmed (Fig. 5). Nevertheless, a stable anomaly 
was observed (also noted in Ref. 11) which is under study at 
this time. It is interesting to note that in this case the rate of 
(homogeneous) diffusion reaches its limiting value I Ax1 t, 

i.e., the motion is similar to that of a free particle, but that it 
takes place at a lower rate, and from both sides of the bound- 
ary! 
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