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By employing the nonlinear Klein-Gordon equations with small nonlocal corrections we develop 
a self-consistent description of one-dimensional soliton-like wave signals in smoothly 
inhomogeneous nonstationary nonlinear media. For the quasisoliton velocity and the field's 
integral characteristics we develop a closed system of ordinary differential equations written in a 
form common in relativistic mechanics. We study the interaction, accompanied by frequency 
conversion, of quasisolitons with the waves of the medium parameters; in particular, the laws that 
govern the penetration of these waves into the bulk of an advancing dense-plasma barrier 
and their reflection from the barrier. Finally, we demonstrate the possibility of the signal frequency 
growing considerably without temporal-spectrum broadening by employing the example of 
relativistic quasisolitons propagating in an initially homogeneous and stationary plasma with small 
additional ionization in the medium. O 1996 American Institute of Physics. [S1063- 
776 1 (96)028609-01 

1. INTRODUCTION 

Lately there has been an upsurge of interest in studies of 
electromagnetic propagation in inhomogeneous nonstation- 
ary dispersive media. In the three decades of active work in 
this field, the emphasis has shifted from purely linear 

to nonlinear.6-" Presently of great interest are 
frequency self-conversion and the structure of quasimono- 
chromatic pulsed signals in media with a nonlocal nonlinear- 
ity due, in particular, to electric breakdown or additional 
ionization6-* and excitation of low-frequency (electronic and 
acoustic) wake waves?*1° 

Two main approaches (often inconsistent) are employed 
to solve these problems: the truncated parabolic equation 
method, which allows for diffraction of the wave fields but 
makes it possible to describe only relatively small variations 
of the angular and frequency spectra of these fields?1° and 
the space-time geometrical optics approximation, which ig- 
nores diffraction completely but makes it possible, within its 
range of applicability, to study cases in which the frequency 
of the wave signal is converted significantly.476 

Below we examine the dynamics of one-dimensional 
soliton-like pulses ("quasisolitons") in inhomogeneous non- 
stationary media. Neither the truncated parabolic equation 
method1) nor the nonlinear space-time geometrical optics 
approximation can be used to solve this problem. Nonlinear- 
ity in quasisolitons almost perfectly balances diffraction 
stemming from the medium's dispersion, and the frequency 
can be converted over a wide range. In studying quasisoliton 
behavior one must almost always remain within the frame- 
work of a nonlinear wave equation, and here we take a non- 
linear Klein-Gordon equation, often used in various areas of 
physics, which contains small nonlocal terms in addition to a 
local nonlinearity. 

The plan of the paper is as follows. Section 2 deals with 
the asymptotic procedure that makes it possible to derive a 
closed system of ordinary differential equations for the qua- 

sisoliton velocity and the field's integral characteristics, and 
to express the signal's frequency and duration in terms of its 
"energy" and "dynamic" parameters. In Sec. 3 we analyze 
the case of smoothly inhomogeneous nonstationary media 
with a purely local nonlinearity and, in particular, study the 
laws governing the interaction of quasisolitons with medium 
parameter waves. In Sec. 4 we examine the effect of a non- 
local nonlinearity on the propagation of soliton-like signals 
in initially homogeneous and stationary media. Finally, Sec. 
5 summarizes the main results of the work. 

2. BASIC EQUATIONS AND APPROXIMATIONS 

We examine the propagation of one-dimensional pulsed 
signals in an inhomogeneous nonstationary nonlinear me- 
dium by using a wave equation of the form 

with A a complex-valued wave field, and f(x,t,lA 12) an 
integrodifferential operator whose parameters depend on po- 
sition x, time t, and intensity I E ~ '  (the relationship between 
these parameters and ]A[' is not necessarily local). 

We assume that the medium is weakly absorbing and 
that its properties vary smoothly in space (x) and time (t) 
over the pulse length A* and the period of oscillations r*. 
We also assume that nonlocal nonlinear effects are small 
compared to local effects. All these restrictions can formally 
be allowed for by including a small parameter p in the ex- 
pression for f :  

Here ~(px,pt,]A1') is a purely real function of the three 
variables px ,  p t ,  and IAl2, and p i ( p X , p t , l ~ 1 ~ )  is the op- 
erator responsible for small losses and small nonlocal non- 
linear effects. We are interested in the solutions of Eq. (1) 
that are asymptotic in the small parameter p. 
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Equation (2) shows that in the limit p=O, which corre- 
sponds to a homogeneous stationary medium with purely 
local nonlinearity, Eq. (1) becomes the nonlocal Klein- 
Gordon equation of the type 

Suppose that Eq. (3) has solutions that are localized and 
at rest in space: 

where @o is a real function that satisfies the ordinary differ- 
ential equation 

Then, in view of its Lorentz invariance, Eq. (3) (along with 
Eq. (4)) also defines a complete set of traveling solitons, 

whose velocity v is lower than c (v<c). In the solution (6), 
oo is the frequency of field oscillations in the soliton's 
"proper" reference frame ( t r  = (t - vxlc2)l JW2' and 
x r  = (x- v t ) / J G 7 % ?  are the soliton's LLproper99 time and 
position); w= oolJ=', k= wvlc2, and vf= c2/v are 
the frequency, wave number, and phase velocity of the soli- 
ton in the laboratory reference frame; and cpo is an arbitrary 
constant phase shift. 

By way of an example we take a medium with cubic 
nonlinearity 

characterized by two parameters, w; and a (for a plasma 
wi is the square of the plasma frequency, and a is deter- 
mined by the type of nonlinearity). Here q O ( x r )  has the 
simple analytic form 

where the frequency of oscillations in the "proper" refer- 
ence frame, wo , can vary between 0 and op (0 < &< w;) . 

We now return to the original equation (1) with the op- 
erator defined by (2). 

If the soliton solutions (6) exist with the potential 
V= V(pxo= const,pto= c0nst,l'P1~), it is natural to assume 
that in a smoothly inhomogeneous medium with slowly 
varying parameters ( p - + O ) ,  certain pulsed signals that are 
close to (6) in structure can propagate, at least along finite 
propagation paths. Reasoning from this assumption, we solve 
Eqs. (1) and (2) in the form of a series that is asymptotic in 
P: 

Here the field's phase cp, which allows for linear corrections 
of the phase wavefront of the signal, is described by the 
following expression: 

where cpo= const; v= x - xo(t) is measured from the signal's 
center xo(t), whose propagation velocity is v = dxo ldt; 
o ( p t )  and k(pt) are the frequency and wave number 
(dcpld~l,,~= k); and pw,  and pk l  are small corrections to 
the frequency and wave number. 

We plug (9) into (1) and (2). Then in zeroth-order per- 
turbation theory in the small parameter p, we have 

which implies 

where q0 is the soliton solution of Eq. (5) with 
V= v(Wo(t),pt,*;). 

Actually, the expressions (1 1) reflect the expected qua- 
sisoliton structure of the pulsed signals that at time t are at 
the point with coordinate xo(t). Zeroth-order perturbation 
theory provides no insight into propagation of the signal (1 1) 
and the variation of the "proper" frequency wo(pt). Hence 
we write the inhomogeneous equation for A ,('l;l,pt) ob- 
tained via first-order perturbation theory in p after plugging 
(9) into (1) and (2): 

The right-hand side of Eq. (12) is determined by the 
derivatives of the soliton parameters (1 1) with respect to the 
"slow" time f= p t  and the "slow" coordinate F= px,  and 
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the left-hand side is the result of linearizing (10). The homo- 
geneous equation that follows from (12) if we set F1 and 
F2 to zero has two solutions localized in 7: 

For the inhomogeneous equation (12) to have a solution 
localized in r), the functions F l (q ,p t )  and F2(r),,ut), ac- 
cording to the Fredholm alternative theorem,I5 must be "or- 
thogonal" to Al1)(r),,ut) and ~ I ~ ) ( ? ~ , p t ) ,  respectively: 

If these conditions are not met, the additional term 
A,(r),pt) builds up in a resonant manner in the process of 
the quasisoliton's motion, which rather rapidly leads to a 
breakdown of the representation (9) with Ao(r),pt) in the 
form (1 1). We therefore require that the conditions (14) be 
met and substitute the specific expressions for F ,  and F2. 
After integrating by parts several times with allowance for 
(1 1) and substituting r)= (d l  - v2(pr)/cZ, i = p t ,  and 
F = p x  we arrive at the following expressions for the or- 
thogonality conditions (14): 

where we have introduced new notation for the integral char- 
acteristics of the field and medium: 

In what follows we call N the "number of quanta," 
mo the "rest mass," and ~~~r(F.7 ,  ,fi the "effective poten- 
tial energy" of the soliton-like signal (9). The quasisoliton's 
integral parameters N and mo and the "proper" frequency 
are expressed in terms of one another at any fixed values of 

the arguments F=Fo(ij and T of the potential v(F,~,*:). 
Both the number of quanta N and the rest mass mo are inde- 
pendent of the quasisoliton velocity, and they are completely 
determined by the proper frequency oo and the properties of 
the medium at the field l~cation.~) 

The variation of N is related to the operator 2, which 
takes weak dissipative and nonlocal nonlinear processes into 
account. However, if this operator acts on the soliton 
qOei'+' and does not change the phase cp of the field, x in Eq. 
(15) vanishes ( p O )  and N is conserved in the course of the 
quasisoliton's motion (N= const). 

The left-hand side of Eq. (16) is written in a form com- 
mon in relativistic dynamics (mo is the rest mass, 
m =mo l d m 2 '  is the mass in the laboratory reference 
frame, and p = m v is the momentum). Extending the analogy 
between the quasisoliton (9) and a particle, we can call the 
right-hand side of Eq. (16) a force. The first term in the force 
is expressed in terms of the F-derivative of Wef,(Y,Cfi at 
point F= pxo(ij, which suggests interpreting Weff as the ef- 
fective potential energy of the signal. Equation (19). which at c =idefines Weft(.f,i,fi, is obtained as a result of averaging 
the soliton's "potential energy density" 

over the coordinate 5 at time iand  at point F= pxO(fi. The 
fact that, according to (19), Weft(F,G ,fi formally depends on 
two independent times 7, and twill be needed in deriving the 
equation for the relativistic mass m =mot d m i  that 
follows from Eqs. (15) and (16) (see below). 

We now return to our discussion of the right-hand side 
of Eq. (16). The second term is related to the variation in the 
number of quanta (dNldt). If we put the quantum mass 
equal to wlc2 and the rate at which the quanta disappear 
equal to dNldt, then ( o c 2 d ~ l d t ) v  is the variation in the 
signal's momentum due to this disappearance. Finally, the 
last term in the relativistic force, C, emerges only because 
the response of the medium to the soliton field, $(Poei'+'), 
has an additional term that is asymmetric with respect to this 
term. In particular, this term is finite if we allow for nonlocal 
nonlinear effects leading to "self-acceleration" or "self- 
retardation" of quasisolitons. 

Note that the soliton mass m =mot d m  is not 
simply the product of the number of quanta N and their 
energy o/c2, which corresponds only to the last (second) 
term in the integral representation (18). 

Equations (15) and (16) are sufficient, in principle, to 
describe the dynamics of the quasisoliton signal (9). By solv- 
ing them we can find the trajectory xo(t) and the proper 
frequency oo(pt) .  However, for a more complete analogy 
with relativistic mechanics, in addition to Eqs. (15) and (16) 
we also write an equation for the quasisoliton mass m. Such 
an equation can be obtained by direct differentiation of 
m ( f i = m o / d m 2 ,  using Eqs. (15), (16), (lo), and ( I  1). 
We will not perform this straightforward but cumbersome 
calculation here. Instead we give the final result: 
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- 1 a 
m0 - - -(- wefdY,& ,i) 

d - 2c2 at, I x = * , ( t ) . t , = t  - -  

The right-hand side of Eq. (22) contains the partial de- 
rivative of Wen(Y,& ,?j with respect to &, which vanishes in 
stationary media (v ( , ux , , u~ ,~E~~)  = v( ,ux , IE~~) ) .  The sec- 
ond term gives the variation of the quasisoliton mass due to 
creation or annihilation of quanta with energy wlc2. The last 
term, which affects the mass of the signal, is proportional to 
the work done by the force Z per unit time, or v z .  

For a medium with the cubic nonlinearity (7) and 
a=const, w;=w;(~,ij, the number of quanta N, the rest 
mass mo , and the effective potential energy of a quasisoliton 
are 

where 6~=w~(Z=pxo(T),Tj ,  is the square of plasma fre- 
quency at the location of the quasisoliton. If the duration of 
such a signal, 

is much larger than the period of oscillations (2?r/w), i.e., 
the quasimonochl-"maticity condition ~ w 9 2 7 r  is met, the 
expressions (23), (24), and (25) for N, mo, and Weff sim- 
plify, and we can write, for v-c and u p /  wo-+ 1, the follow- 
ing approximate expressions: 

In a medium with cubic nonlinearity, a single value of 
N corresponds to two different values of the proper fre- 
quency wF'  and the rest mass m F )  . From (23) and (24) we 
can easily obtain 

where 

Here the number of quanta N cannot exceed the maximum 
permissible value N,,= 2c l a  (O<NS N,,), which im- 
plies equality of the proper frequencies mi') and of the rest 
masses mf)  : 

When N4Nm,, the two proper frequencies of)  and the 
two rest masses mf )  differ considerably: 

The "light" quasisoliton with rest mass m l  satisfies the 
quasimonochromaticity condition (70% 2 7r) , while the 
"heavy" quasisoliton with rest mass m i  does not. 

3. INHOMOGENEOUS NONSTATIONARY MEMUM WITH 
LOCAL NONLINEARITY 

Let the operator 5 in (2) be identically zero ( &o) or, in 
other words, let the medium be locally nonlinear and nonab- 
sorbing. This means that the number of quanta N is con- 
s e r v e d ( ~ =  const) and that Eqs. (16) and (22) describing the 
dynamics of a quasisoliton signal assume the following 
form: 

We see that here the two simplest limiting cases are an in- 
homogeneous stationary medium (in which case 
dWeff(F,i, ,?jld& =0)  and a homogeneous nonstationary 
medium (in which case dWen(Z,& ,fild.T=O), whereupon 
the quasisoliton's mass m =mot J- or momentum 
p = urn = vmol Jw2 is conserved, respectively. 

In a stationary situation (m=const) the medium "does 
not perform work on the quasisoliton," and the medium's 
inhomogeneity only changes the velocity v, which for media 
with cubic nonlinearity is equivalent to preservation of the 
frequency o (w = const) and alteration of the wave number 

Here the turning point (point of reflection) of such quasisoli- 
tons can be found from the condition k=O (or v = 0). Its 
location depends not on the number of quanta N but on the 
rest mass mo. If NaN,, , then as (29) clearly shows, the 
"light" quasimonochromatic signals are reflected from the 
point x* where wp(x*)=w, while the "heavy" ones are 
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0'00 

FIG. 1. The dependence of Bloo on o/oo at u2/cZ=0.5. 

reflected from the layers where up = 2N,,wlNP w .  When 
N=N,,,, the condition for reflection has the form 
w, = W /  fi, which corresponds to a supercritical plasma with 
concentration twice the critical value. 

In a homogeneous nonstationary medium the quasisoli- 
ton's "momentum" p = mv is conserved (p = const) but the 
mass m changes. For media with cubic nonlinearity this 
means that the wave vector k= wvlc2  remains constant 
(k=const); however, there is a change in frequency w de- 
scribed by w2= w: + c2k2, where wo(f i  is the proper qua- 
sisoliton frequency proportional to (5, [the proportionality 
factor A ( , )  depends on the number of quanta N and the 
"heaviness" of the quasisoliton, which is determined by the 
choice of sign, plus or minus, in Eqs. (27)l. 

One more example considered here is the interaction of a 
quasisoliton signal with a wave in the parameters of the me- 
dium, traveling with constant velocity.3) For the sake of defi- 
niteness we restrict our study to media with cubic nonlinear- 
ity, for which 

Allowing for (31) and (23)-(25), we can easily integrate 
Eqs. (30) and obtain the following relationship linking the 
quasisoliton velocity v and the quasisoliton coordinate Yo: 

1  + vu lc2  
wp(F+ u i )  = const. 

( l - v 2/  c 2 )  

Bearing in mind that v21c2=1-w:/w2 and 
wo- w,(Yo+ u f i ,  we are able to transform (32) into 

, 

where B is a constant, and the t signs indicate the direction 
of motion of the soliton and the wave in the parameters of 
the medium (the + sign corresponds to motion in opposite 
directions, with uv>O, and motion in the same direction to 
the - sign, when uv <O) .  

Figure 1 depicts the dependence of Blwo  on 
w/wO= ( 1 - v 2 / c 2 ) -  ' I2 .  Note that w is the quasisoliton's fre- 
quency in the laboratory reference frame, and wo is the qua- 
sisoliton's proper frequency, proportional to w, . The upper 
part of the diagram describes the quasisoliton's motion op- 
posite the motion of the parameter wave (uv>O) ;  the lower 
part applies when the two are moving in the same direction 

(uv<O) .  Asymptotically both curves become straight lines 
with slopes 1 + u lc  and 1 - ulc ,  respectively. If initially the 
quasisoliton was moving toward the wave of medium param- 
eters, o,(T+ u g  , away from an extremely transparent 
plasma, where both w, and oo are much lower than 
w =  o, , it will slow down as o, increases and its frequency 
w will increase monotonically (see Fig. 1). At 
w = B = w , ( 1 + u l c )  the quasisoliton velocity v vanishes, 
with w= wo. After passing the turning point the quasisoliton 
begins to move in the same direction as the wave 
wp(x7-uf i ,  but its velocity is still lower than u .  In the pro- 
cess it penetrates layers of the plasma with ever increasing 
density. 

The greatest depth of plasma penetration of the qua- 
sisoliton can be found from the condition 
w o = B l ( l  - u ~ / c ~ ) " ~ =  ~ ~ ( ( 1  + u I c ) I ( l -  U I C ) ) ~ ' ~ .  Then the 
quasisoliton overtakes the wave of medium parameters and, 
"sliding" off it into the region of tenuous plasma, finally 
acquires the frequency w2= w , (  I +  u lc ) l (  1  - u l c )  corre- 
sponding to the ordinary Doppler shift. 

The above suggests that the quasisoliton behaves like a 
linear signal described by spacetime geometrical optics (see 
Ref. 4), the only difference being that the plasma frequency 
w, must be replaced by the proper frequency w o ,  which is 
related to o, by Eq. (27) and can assume two distinct values 
(both lower than w,) for each value of N. The layers of the 
plasma that the quasisoliton penetrates are denser than those 
penetrated by the corresponding ray of linear spacetime geo- 
metrical optics. 

In principle, the wave w,(Y+ uf i  can move with a ve- 
locity u>c.  The quasisoliton, and for that matter any other 
signal, is not reflected by such a wave (at all frequencies the 
quasisoliton velocity is lower than c ) .  If the wave 
w,(F+ ufi is a plasma concentration barrier with a jump in 
w, from w r )  to w r )  , where for the sake of definiteness we 
assume that w r )  is much higher than both o:) and w ,  (here 
w l  is the initial quasisoliton frequency, and u > c ) ,  then after 
interacting with such a wave the quasisoliton frequency will 
be close to w2= w i2 ' / ( l  - c ~ / u ~ ) ~ / ~ ,  where 
o b ; ? ) = ~ ( , ) w f ) ,  and will be independent of the initial value 
0 1 .  

4. CONVERSION OF QUASISOLITON FREQUENCY 
INITIATED BY NONLOCAL NONLINEAR PROCESSES 

We analyze the self-action of quasisoliton signals in ini- 
tially stationary homogeneous media, 

which simultaneously exhibit both local and nonlocal nonlin- 
ear properties (S # 0 ) .  By way of example, we examine the 
propagation of relativistic quasisolitons16 in a plasma in the 
presence of weak additional ionization. It is convenient to 
express the electric field E, the magnetic field H, and the 
velocity v, of ordered electron motion in this problem 
in terms of the vector potential A ( x , t )  
=A , (x , t ) yo+A , (x , t ) z~ :  
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where me and e are the electron mass and charge. 
We ignore bulk electron losses during the passage of the 

pulse and describe the relative perturbation of plasma con- 
centration due to additional ionization, Z= Anln,  where n is 
the plasma concentration, with the following model 
equation: l7 

di i  ( E ) ~  
-= dt v o 2 ,  

E i 

where vo is a coefficient with dimensions of frequency, and 
E,  is the characteristic field, which governs the intensity of 
additional ionization. By assuming that the relative perturba- 
tion of the electron mass caused by relativistic motion, 
Z= v?/2c2, is much larger than iT(G%nl), which means that 
nonlinear relativistic effects are much stronger than ioniza- 
tion effects, we can easily derive the following equation for 
A(x,t): 

where 

is the current of the electrons produced with zero 
and wp = 4 rre2Nlme is the plasma frequency. 

For a circularly polarized wave, in which A, = IA 1 cos cp 
and A, = \A 1 sin cp, instead of a vector equation for A we can 
write an equivalent equation for the complex-valued ampli- 
tude A=A,+iA,= IAlexp(icp): 

where 

According to Eqs. (37) and (15)-(21), when relativistic 
quasisolitons propagate in a plasma, additional weak polar- 
ization results in a simultaneous decrease in the number of 
quanta N and conversion of the central frequency w of the 
signal, since x # 0 and C # 0. If Eqs. (15), (16), and (22) are 
applied in the quasimonochromatic limit ( ~ 7 %  1, with T the 
duration of the signal)>) we easily obtain the following equa- 
tions for N and w: 

where 

The solution of the system (38) with initial conditions 
N(r = 0) = N(0) and o ( t  = 0) = w(0) is 

We see that additional ionization can considerably in- 
crease the frequency of a soliton-like signal whose field 
structure is preserved by relativistic nonlinearity. The signal 
remains quasimonochromatic, and as the central frequency 
of the signal increases, the signal's temporal spectrum nar- 
rows and its duration increases accordingly. Significant con- 
version of the signal frequency without broadening the tem- 
poral spectrum sets the problem considered here apart from 
that studied in Ref. 17, where ionization nonlinearity domi- 
nates and no quasisolitons can exist. 

5. CONCLUSION 

The self-consistent description of one-dimensional 
soliton-like signals in smoothly homogeneous and nonsta- 
tionary nonlinear media developed in this work reduces the 
wave problem to the solution of a closed system of ordinary 
differential equations for the quasisoliton velocity and the 
integral characteristics of the wave field. It has proved pos- 
sible to write this system of equations in a familiar relativis- 
tic form, and to interpret the quasisoliton as a set of coupled 
quanta to which an integral parameter, acting as the effective 
mass, can be assigned. The number of quanta, the effective 
mass, and the quasisoliton velocity uniquely determine the 
field's frequency. The theory makes it possible to examine 
specific problems, such as the possibility of conversion of 
the carrier frequency of pulsed wave signals without broad- 
ening their temporal spectra in media with combined local 
and nonlocal nonlinearities, and the interaction of quasisoli- 
tons with waves in the parameters of the medium. 
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 ere are we are dealing with the "traditional" quasioptics method, in 
which the carrier frequency and the field's "central" wave vector are 
fixed. The ideas of generalizing the quasioptical approximation to arbitrary 
smoothly inhomogeneous stationary media proposed in Refs. 13 and 14 are 
close to the situation analyzed in the present work. 

Z)~ultiplying the real and imaginary parts of Eq. (12) by A o ( v , p t )  and 
JAo(77,pr)lJg and integrating the result with respect to 7 from - m  to 
+m, we arrive at relationships determining the small corrections to the 
frequency o,  and the wave number k ,  in terns of the integral perturbation 
characteristics ~ - ' Q & ( A , ~ ' Q )  and p A I  . If the conditions (15) and (16) are 
met, there is no buildup of these corrections in the course of quasisoliton's 
motion. 

')ln the linear limit these aspects are examined in Refs. 1-3. 
')The expression for pSA in (37) simplifies for a quasimonochromatic sig- 

nal. After integrating by parts twice we find that 
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where O ( w 2 2 )  stands for terms that are second order in WT.  
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