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We derive analytic expressions for the matrix elements of the exciton-vibrational interaction of 
the Frohlich type in spherical semiconducting crystals. The selection rules that allow for 
transitions involving LO-phonons between arbitrary excitonic states are established. We show 
that because of a three-dimensional spatial limitation, the exciton-phonon scattering in 
transitions between states with the same parity loses its forbidden nature. The size dependence of 
the interaction matrix elements is studied. We demonstrate that nanocrystals constitute a 
Jahn-Teller system and for certain sizes exhibit a vibrational resonance. We estimate the 
Huang-Rees factor and find that it strongly depends on the size of the nanocrystal. On 
the basis of these results we calculate the form functions of multiphonon light absorption. The 
proposed method of calculating the exciton energy spectrum makes it possible to take 
into account the effect of a three-dimensional spatial constraint on electron-hole relative motion. 
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1. INTRODUCTION 

In recent years, extensive experimental and theoretical 
research has been done in the field of quasi-zero-size struc- 
tures. The reason for this is that as the linear dimensions of a 
semiconducting crystal diminish to a size of the order of the 
Bohr exciton radius Re,, there emerges an exceptionally in- 
teresting object which, partially retaining the properties of 
the initial material, acquires features characteristic of mol- 
ecules or impurity centers. The best studied manifestation of 
the three-dimensional spatial constraint (three-dimensional 
confinement) of semiconducting structures is the size quan- 
tization of the energy spectrum of quasiparticle: electrons 
and holes, excitons, phonons, e t ~ . ' - ~  Another important 
manifestation of three-dimensional confinement is the modi- 
fication of the interaction of the quasiparticles with each 
other4 and with external fields (see, e.g., Ref. 5). 

Depending on the ratio of the characteristic size R of the 
semiconducting nanostructure and the Bohr exciton radius, 
three cases are usually identifiable: the weak confinement, or 
excitonic, regime (R>Re,), the intermediate confinement 
regime (R-Re,), and the strong confinement regime 
(RCR,,). This paper deals with the first, for which it is still 
meaningful to speak of an exciton as a composite quasipar- 
ticle consisting of an electron and hole coupled by the Cou- 
lomb interaction. At the same time, in contrast to bulk ma- 
terial, the motion of an exciton in a quasi-zero-size structure 
is not translationally invariant, i.e., the wave-vector conser- 
vation law is not true here. More than that, because of three- 
dimensional confinement, the very concept of an exciton 
wave vector loses all meaning, and excitonic bands charac- 
teristic of the bulk material split into discrete size- 
quantization levels. The lack of translational symmetry and 
the fact that there is size quantization lead to a considerable 
modification of the exciton-phonon interaction. In particu- 
lar, in the best-studied nanostructures based on semiconduc- 
tors with relatively high ionicity (AIB7, A2B6, and A3B5) 
the exciton-vibrational interaction of the Frohlich type 

changes considerably. As a result the polar scattering of ex- 
citons by LO-phonons in transitions between excitonic states 
of the same parity (including intralevel transitions) loses its 
forbidden nature. Here the parity is related to the relative 
motion of the electron and hole. 

The fact that the diagonal (adiabatic) part of the 
exciton-phonon interaction is nonzero and that the energy 
spectrum is discrete makes the nanostructure similar in some 
respects to a molecule or impurity center and allows a de- 
scription of its optical properties that uses, after appropriate 
modifications, the models and methods developed by the 
theory of multiphonon transitions in local ~ ~ s t e m s . ~ - ~  

There have been many papers devoted to the polar inter- 
action of the electron subsystem of quasi-zero-size structures 
with LO-phonons (see, e.g., Refs. 9-1 I),  with the predomi- 
nant role of this interaction in resonant Raman and hyper- 
Raman scattering of light repeatedly confirmed in 
e~~e r imen t s . ' ~ . ' ~  Obviously, no less important is its role in 
absorption and luminescence. However, the exciton-phonon 
interaction of the Frohlich type in the weak confinement re- 
gime has not been thoroughly studied and requires further 
investigation. 

A fact of special interest is that quasi-zero-size systems 
exhibit, as will be shown below, a Jahn-Teller effect in- 
duced by LO-phonons. Under certain conditions there is vi- 
brational resonance between the excitonic states, which 
makes possible the formation of tightly bound exciton- 
phonon ~ o m ~ l e x e s . ' ~ ~ ' ~  

2. POLAR INTERACTION OF EXCITONS WITH L O  
PHONONS IN QUANTUM DOTS 

We restrict our discussion to the polar scattering of ex- 
citons by LO-phonons in quantum dots (i.e., spherical 
nanocrystals), which serve as an object of investigation in 
most experiments.16 We assume that the potential of a quan- 
tum dot has infinitely high walls. In many cases this approxi- 
mation is justified for semiconducting nanocrystals embed- 
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ded in an insulator matrix. We also ignore surface optical 
modes and the relationship between LO-phonons and 
~ ~ - ~ h o n o n s . ' ~  Then the potential @ ( r )  of the macroscopic 
field generated by LO-phonons in a spherical nanocrystal 
can be written as follows9: 

@ ( I ) =  nlm Z f n l ( j l ( 6 n l ~ )  Y i m (  e * ( ~ ) a n i m  

where R is the quantum-dot radius, j l ( x )  and Y l m (  0 , c p )  are 
the spherical Bessel function and spherical harmonics, tni is 
the nth root of the equation j l ( t n l )  = 0 ,  a:, and anim are the 
creation and annihilation operators of an LO-phonon of the 
{n lm}  mode with frequency wf;? , 1 and m are the angular 
momentum and its projection, and the normalization factor 
fn l  is given by 

1 

*nl= t n l j l +  , ( e n [ )  
(2) 

with E ,  and so the high- and low-frequency dielectric con- 
stants of the bulk material. According to Refs. 17 and 18, the 
exciton potential energy is 

where re and rh are the radius vectors of the electron and 
hole, and hence the exciton-phonon interaction operator has 
the form 

.ex-..= v1 c v2 c nim ( ~ n l m ( : : ) a n l m  

Here b: and b, are the exciton creation and annihilation 
operators in state v ,  and the label vi  with i= 1 ,  2 stands for 
the set of quantum number of an excitonic state, 
{n j  , l j  ,m,! ;ni  ,li ,mi} ,  where the primed quantities charac- 
terize the motion of the exciton as a whole, and the 
unprimed, the relative motion of the electron and hole. 

We assume that the exciton wave function is the product 
of the wave functions of relative and translational motions: 

each of which in turn separates into radial and angular parts, 
with the latter being simply a spherical harmonic, in view of 
the symmetry of the problem. In (7) the quantities me and 
mh are the effective electron and hole masses. 

Under fairly general conditions, the matrix elements of 
the exciton-phonon interaction can easily be calculated if we 
go from the coordinates re and rh to the coordinates x and X: 

Here cf;",, ;4 ,m2 are Clebsch-Gordan coefficients19 with the 
phases defined in accordance with Ref. 20. Combinations of 
Clebsch-Gordan coefficients completely determine the se- 
lection rules for exciton-exciton transitions involving 
LO-phonons in a quantum dot. The quantities symmetric in 
pairs of lower indices, 

(9) 

are independent of R and are related to the radial part of the 
exciton wave functions of translational motion, which ac- 
cording to Refs. 1, 2, and 4 is proportional to 
j l ! ( t n l l ! X I R ) ,  The quantities 

I I 1  

with 

are determined by the radial part F n i l i ( x )  of the wave func- 
tions of electron-hole relative motion. Equation (10) shows 
that the J:::; are nonzero for even values of s only due 
to the difference between me and mh . But according to the 
properties of the Clebsch-Gordan coefficient c$..,~ in (8), 

even values of s correspond to transitions between excitonic 
states whose angular momenta related to the relative motion 
of the electron and hole have the same parity, i.e., 
I ,  + 12=  2t,  where t is a nonnegative integer. This implies, in 
particular, that the diagonal part of the exciton-phonon in- 
teraction is nonzero only when me # mh , i.e., when the ex- 
tent to which the electron in the exciton is localized in space 
differs from the extent to the which the hole is localized. 

The uncertainty in the upper limit of integration in (10) 
characterized by the parameter 7 of (1 1 )  has profound physi- 
cal meaning. The problem is that the problem of an electron 
and a hole coupled by the Coulomb potential and moving in 
the quantum well 
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cannot be solved exactly, since it is actually a three-body 
problem2' in which the well acts as the third particle. When 
expressed in terms of coordinates x  and X ,  the quantum-well 
potential has an extremely complicated form 
U ( X + x p h  , X - x p , ) ,  which cannot be expressed solely in 
terms of R  and does not allow for separation of variables. 

Thus, the eigenfunctions of the problem of an exciton in 
a quantum dot cannot generally be represented by the prod- 
uct (5). One way to avoid this difficulty in the weak confine- 
ment regime is to use a "pseudopotential" instead of 
U ( X +  xph , X -  xp , ) ,  and choose it according to consider- 
ations of physical reason and maximum simplicity. This 
leads to uncertainty in the upper limit of integration in (10). 

Indeed, while the inequality 1 x 1 ~ ~  can serve as the 
natural (but somewhat overly restrictive) boundary condition 
on the position of the center of mass, for the distance be- 
tween the electron and hole we can specify only the region 
where the boundary is located, R  S 1 xl 2 R .  The lower limit 
in this double inequality corresponds to the case in which 
one of the particles comprising the exciton is at the center of 
the quantum dot, while the upper limit is attained when the 
electron and hole are located at opposite ends of the diameter 
of the quantum dot. 

The pseudopotential U ( X )  (see Ref. 1) is still used in 
describing the excitonic regime. It allows for confinement 
only in translational exciton motion, and its sole (but ex- 
tremely important) advantage is its exceptional simplicity. 

The problem of an exciton moving in the pseudopoten- 
tial U ( X )  can be solved exactly, and its eigenfunction are 
given by (5). Here the wave functions 9 n ! I ! m ; ( X )  corre- 

I I 

spond to the size quantization levels that emerge as a result 
of the splitting of excitonic  band^,'.^'^ and the wave functions 
~ n l l l m i ( ~ )  are the hydrogenlike wave functions of the Wan- 
nier e ~ c i t o n . ~ ~  This approach is physically meaningful if 

and if the region of localization of these wave functions, 
niR,, is much smaller than 7 R .  

All this significantly limits the applicability of the ap- 
proach, particularly in describing multiquantum processes, 
where one must allow for a large number of intermediate 
states. 

The energy spectrum of an exciton in the pseudopoten- 
tial U ( X )  can be written as follows: 

where d = R I R , , ,  p = m e m h l M ,  ~ ~ = p e ~ / 2 ~ ~ f i ~  is the ex- 
citon rydberg, and E ,  is the band gap of the bulk semicon- 
ductor. Bearing in mind that d =  RIR,,% 1 and that the wave 
functions of relative motion have the form (14), we can re- 
place the upper limit of the integral in (10) with @J. The 

result is a set of simple relationships for the matrix elements 
of the exciton-phonon interaction, which can be used for 
doing order-of-magnitude estimates and illustrating the 
qualitative aspects of this interaction. 

Before we begin to analyze the matrix elements (8) of 
the exciton-phonon interaction, let us briefly examine the 
quantum-dot pseudopotential 

which, we believe, provides a better description of the exci- 
ton energy spectrum in the weak confinement regime, since 
the second term in (16) allows for the effect of the spatial 
constraint on relative electron-hole motion. 

The eigenvalue problem for an exciton in the pseudopo- 
tential (16) can be solved exactly. As before, the wave func- 
tions have the form (5), with the 9 n ! l ! , ! ( X )  coinciding with 

I 1  I 

the wave functions for translational motion in the pseudopo- 
tential U ( X ) ,  while the radial part ICr,ilimi(x) is now given by 

where M ( a n l +  1 + 1,21+ 2,cnlxlR) is the Kummer function 
that is regular at zero, Anl  is a normalization constant, and 
for the sake of simplicity the subscript i on the quantum 
numbers n  and 1 of relative motion is dropped. 

The boundary condition Fnl(  7 R )  = 0 is actually an ei- 
genvalue equation. Negative and positive eigenvalues must 
be considered separately. In the first case, the energy of 
electron-hole relative motion is 

with a n l =  - N n l ( d )  and c n l = 2 d l N n l ( d ) ,  and N n l ( d )  being 
the nth root of the equation 

In the second case, 

where k n l ( d )  is the corresponding root of the equation 

i.e., a n l = i l k n l ( d )  and c n l = i 2 d k n l ( d ) .  Thus, the total en- 
ergy of an exciton in the pseudopotential (16) can be written 
as 
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We have thus obtained the entire energy spectrum for 
both positive and negative values of Znjli(d). Let us list its 
main features related to the effect of confinement on relative 
electron-hole motion. 

First, for any fixed value of d, the number of levels with 
a negative Znili(d) is finite, progressively decreasing as d 
decreases, and there exists a critical value d, at which levels 
of this type completely disappear. The pattern of disappear- 
ance is such that as d decreases, negative energies tend to 
zero and then change sign, i.e., the levels are pushed out of 
the Coulomb potential well, with the process initiated by 
confinement. Second, confinement lifts the degeneracy in the 
orbital quantum momentum li of relative motion, a process 
inherent in the pure Coulomb problem (15). 

A more detailed discussion of the exciton motion in the 
pseudopotential (16) is beyond the scope of the present pa- 
per. We note, however, that the features of such motion 
listed above agree with the results of Ref. 3 obtained by 
direct numerical calculation of the energy spectrum of the 
electron-hole pair in the initial potential (12) of a quantum 
dot. 

We now discuss in more detail the matrix elements (8) 
of the exciton-phonon interaction for several low-energy ex- 
citonic states, which under optical excitation exhibit the fea- 
tures induced by confinement in the experimental spectra of 
systems with quantum dots most vividly. To analyze these 
matrix elements we use the exciton wave functions related to 
the pseudopotential U(X). Of special interest are the exci- 
tonic states with 1; =li=O, whose excitation is possible in 
one-photon dipole-allowed transitions. 

If we introduce the notation va(n; ,ni) 
={nf,O,O;ni,O,O}, from (8) we easily find that 

where 

with Si(x) the sine integral, and the coefficients J:$~,,~ for 
ni = 1, 2 have the form 

Equation (23) implies that the matrix elements between 
states of type va(nl ,ni) are nonzero only if completely sym- 

FIG. 1 .  The matrix elements for the interaction of an exciton with com- 
pletely symmetric phonons of the {loo} mode as functions of  the relative 
quantum-dot radius: (a) (the diagonal part of the interaction) the solid curve 
corresponds to v~,(:::::~), and the dashed curve to v,,(:::::;); and (b) 
(the off-diagonal part of  the interaction) the solid curve corresponds to 

v (12) VI,(;(,:,,), and the dashed curve to v,,(:::::;). The parameters of the 
material are those of CuBr. 

metric phonons (i.e., with l = m  =0)  participate in the tran- 
sition. Equations (25)-(27) show that these matrix elements 
are proportional to the effective mass difference, m e - m h ,  
i.e., the part of the exciton-phonon interaction defined by 
(23) is related to the difference in the extent of spatial local- 
ization of the electron and hole in the exciton. 

Since the magnitude of the exciton-phonon interaction 
strongly depends on the specific parameters of the quantum 
dot material, all further estimates and illustrative diagrams 
deal with CuBr: me= 0.28nz0, nzh= 1.4nzo (the effective 
mass of heavy holes), Re,= 1.25 nm, c0= 8.6, E ,  = 4.6, and 
oLo= 21.5 meV. The reason why we chose this semiconduc- 
tor is that secondary multiphonon emission in the two- 
photon resonant stationary excitation in the Z1,2 band of an 
exciton was first discovered in a system of quantum dots 
with an average radius Ro=3.2 nm manufactured from this 
material. l5 

Figure la  depicts the size dependence of the absolute 
value of the diagonal matrix elements ~,d::':;::) and 

v,( 1.2) V,oo(vo(l,2,), which determine the scattering by a completely 

symmetric phonon (100). These quantities and similar ones 
(for phonons {n,O,O} with n > 1 ) comprise the Huang-Rees 
factor,23 which plays an important role in multiphonon ab- 
sorption, luminescence, and resonant Raman and hyper- r am an scattering of light. A similar dependence for the off- 
diagonal matrix elements V,d:'::::) and VIOO(:$;:) 's 

depicted in Fig. Ib. Such quantities determine the lifetime of 
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FIG. 2. The matrix elements of the interaction of an exciton with completely 
symmetric phonons as functions of the phonon quantum number n for a 
quantum dot of radius R = 2.56R,, : (a) (the diagonal part of the interaction) 
A corresponds to v,,~(::::!:).  0 to ~ ~ ~ ( 2 : : : : : ) .  and + to v,,~(;:::!{); 
and (b) (the off-diagonal part of the interaction) A corresponds to 
v,,~(:'':::;), and 0 to v,,,(::::::). The parameters of the material are those 
of CuBr. 

excitonic levels and contribute to resonant Raman and hyper- 
Raman scattering of light. 

Figure 1 shows that the size dependence of the exciton- 
phonon interaction possesses a structure determined by the 
factor J : $ ! ~ , , ~ ,  which is related to the hydrogenlike wave 
functions. However, there is no real sense in discussing this 
structure because it is situated in the range of quantum-dot 
sizes where the spatial constraint on the relative electron- 
hole motion must be taken into account. Theoretically, this 
can be done if in calculating the matrix elements we use the 
system of wave functions (17) .  A fact that can be considered 
firmly established is that as the quantum-dot size decreases 
and reaches the intermediate confinement region, the ampli- 
tudes of the transition matrix elements between excitonic 
states of type v , (n j  ,ni) increase. Moreover, as R - t m ,  
which means passing to the case of a bulk semiconductor, 
the matrix elements under discussion vanish like R-'I2, as 
expected. 

Figure 2 illustrates the magnitude of the interaction of an 
exciton with completely symmetric phonons as a function of 
the phonon quantum number n .  We see that as n  grows, the 
amplitude of the corresponding matrix elements sharply de- 
creases, since its asymptotic behavior has the form of n - 8 .  

Using these results, we can answer the long-debated 
question about the size dependence of the Huang-Rees fac- 
tor (see, e.g., Ref. 9). Let us estimate the Huang-Rees factor 

FIG. 3. The upper and lower bounds on the Huang-Rees factor as functions 
of the quantum-dot radius. The parameters of the material are those of CuBr: 
the solid curve corresponds to s""", and the dashed curve to Smx. 

restricting our discussion, for the sake of definiteness, to the 
ground state v a ( l , l )  of an exciton in a quantum dot. To 
calculate 

exactly, we must know the mode composition of the natural 
vibrations of the spherical nanocrystal as a function of R ,  
i.e., find the frequencies and the number N o ( R )  of dis- 
tinct completely symmetric modes. 

Such a calculation constitutes a problem in its own right. 
Hence we estimate the upper (Sm") and lower ( smi")  bounds 
on (29), replacing of;oO by an average frequency oLo deter- 
mined, say, from experiments in resonant Raman scattering 
of light. The bound smi", obviously, corresponds to the case 
in which there is only one completely symmetric vibration 
with n =  1 :  

and Sm" can be obtained if we assume that all LO vibrations 
of the quantum dot are completely symmetric. 

As is known, the number NLO of LO-modes in a di- 
atomic crystal is equal to the number of unit cells in the 
crystal's volume. This immediately suggests that for a quan- 
tum dot NL0(R)  = ~ T R ~ I ~ v , ,  where V, is the unit cell vol- 
ume. Then the upper bound on (29) can be obtained by put- 
ting N o ( R )  = N L 0 ( R ) .  

Figure 3 depicts the upper and lower bounds on the 
Huang-Rees factor (29) as functions of the quantum-dot ra- 
dius. The calculation was done for the parameters of CuBr: 
Vc=0.183 nm3. We see that as R  increases, so does the 
difference between Sm" and Sm'", but even for dz5 .0  this 
difference does not exceed 30%, although in calculating 
Sm" we allowed for 5580 terms in (29). Note that allowing 
for the first two terms in (29), i.e., taking into account only 
two completely symmetric modes, diminishes the difference 
between Sua( I,1, and Sm" at d =  5.0 to 0.3%. 

Thus, we conclude that the Huang-Rees factor strongly 
depends on the size of the nanocrystal and, over the range of 

614 JETP 83 (3), September 1996 A. V. Fedorov and A. V. Baranov 614 



sizes most interesting from the experimenter's viewpoint, 
can be approximated to high accuracy by several terms in 
(29). For order-of-magnitude estimates Eq. (30) is sufficient. 
Obviously, these features of the Huang-Rees factor are re- 
lated to the aforementioned asymptotic behavior of the diag- 
onal matrix element of the exciton-phonon interaction as 
functions of the quantum-dot radius R and the phonon quan- 
tum number n.  

Note that according to Ref. 9 ,  the Huang-Rees factor is 
independent of R. We believe, however, that this assumption 
is invalid and that the reason for such an erroneous conclu- 
sion lies in the fact that Klein et al? chose a model exciton 
with an infinitely heavy hole and a fixed position of the 
center of mass, a model proposed by Merlin et al.24 for de- 
scribing multiphonon processes in bulk materials and unsuit- 
able for quantum dots. 

Another important class of matrix elements of the 
exciton-phonon interaction describes transitions between ex- 
citonic states of the type v,(nf ,ni)  and states that cannot be 
excited in one-photon dipole-allowed transitions. For the 
sake of definiteness, we take the matrix elements that link the 
ground excitonic state v a ( l , l )  and states of type 
vb(nj ,I; ,mf )={n j  ,I,! ,mf ; l,O,O}: 

where we have dropped the subscript i for the sake of sim- 
plicity. We see that the phonons participating in the given 
transitions are those whose angular momentum I and its pro- 
jection m  coincide with the corresponding quantum numbers 
of the final excitonic states. 

The matrix elements (31) are interesting because they 
describe two important effects associated with vibrational 
resonance of the initial and final excitonic states. Indeed, if 
the quantum dot has a radius R such that the energy gap 
between the levels vb(n l l 'm' )  and ~ ~ ( 1 . 1 )  is close to the 
phonon energy hof;?. or 

the exciton-vibrational interaction is resonant, and even for 
a moderate value of the matrix element leads to renormaliza- 
tion of the vibrational frequency and formation of an 
exciton-phonon complex, as happens in bulk materia~s.~' 

The same resonance allows for the possibility of double 
optical-vibrational resonance occurring in one-photon tran- 
sitions when the photon energy fio is close to the energy 
necessary for producing an exciton in the ground state. 

Figure 4a depicts the size dependence of the absolute 
value of the matrix elements 

for n  = 1 ,  2, which describe transitions involving threefold 
degenerate phonons { 1 l m )  and {21n1}. We see that over the 
important range of quantum-dot sizes, 

FIG. 4. (a) The size dependence of the exciton-phonon interaction matrix 

elements v,,,,(~~:,~~"), which determine a possible vibrational resonance 
with a { I  lm} phonon mode (solid curve) and a {21m} phonon mode (dashed 
curve); (b) the size dependence of the reduced matrix elements of the Jahn- 

vb(llm;) - 
Teller interaction, V,,2n(vA( lm: ,)I W,,, , with a phonon of mode { 12m) (solid 

curve) and a phonon of  i o d e  122m) (dashed curve). The parameters of the 
material are those of CuBr. 

vb( l  l m ' )  
v n l m (  va( 1, l)  ) 

is comparable in order of magnitude to 

and depends on the phonon quantum number n  in a similar 
way. The latter is due to the fact that asymptotically the 
matrix elements considered here behave like nW7.  

In conclusion we examine the exciton-phonon interac- 
tion of the Frohlich type (Eq. (8))  from the viewpoint of the 
Jahn-Teller effect. This effect occurs only if the excitonic 
state is degenerate. For the sake of simplicity we restrict our 
discussion to the threefold degenerate state vb( l  l m i ) .  Other 
cases can be treated by reasoning along similar lines. Then, 
according to (8) ,  the properties of the Clebsch-Gordan co- 
efficients suggest that an exciton in the given state can inter- 
act with completely symmetric phonons {nOO) and with five- 
fold degenerate phonons (n2m).  In the first case the matrix 
elements (8) are diagonal and proportional to the identity 

1.4 . m  X f i t1  matrix formed from  if o , o ~ l n ;  ;o,o . 

615 JETP 83 (3). September 1996 A. V. Fedorov and A. V. Baranov 615 



Thus, as expected, completely symmetric phonon modes are 
inactive in the Jahn-Teller effect. The situation is drarnati- 
cally different for the interaction with (n2m) phonons, 

where the matrices W, have the following form: 

FIG. 5. The dependence of the form functions of multiphonon light absorp- 
tion on the frequency detuning for two quantum-dot sizes (CuBr). The lu- 
minescence spectrum can be obtained via mirror reflection of the corre- 
sponding picket fence about the phononless line (the line with the lowest 
frequency): corresponds to d=2.0, and 0 to d=3.0. 

lo0 f 0 GI 

The rows ml and columns nt ; in (35) are numbered 1,0, and 
- 1. 

From (34) and (35) we see that the (n2m) phonons are 
active in the Jahn-Teller effect and that the emerging prob- 
lem can be reduced to the so-called T@d-problem, known 
from the theory of vibronic interactions in molecular and 
impurity systems.26 Without going into details, we merely 
note that as a result of the dynamic Jahn-Teller effect there 
emerges an exciton-phonon complex with a many-sheeted 
and multiminimum vibrational adiabatic potential, and that 
the initial threefold degenerate excitonic state splits. 

Figure 4b depicts the size dependence of the absolute 
values of the exciton-phonon interaction matrix elements 
(34) (the factors of the matrices W-) describing the interac- 
tion with (l2m) and (22m) phonons. We see that the ampli- 
tude of these Jahn-Teller matrix elements and the ampli- 
tudes of (23) and (31) are of the same order of magnitude at 
equal values of the phonon quantum number n (see Figs. l a  
and 4a). 

At first glance it might seem that it is difficult to spot in 
experiments the Jahn-Teller effect considered here, since 
one-photon transitions into the excitonic states vb( 1 lnil) are 
forbidden in the dipole approximation. However, these states 
are accessible in two-photon excitation, and furthermore, 
when the excitonic ground state is in the aforementioned 
resonance with vb(l lm;), the Jahn-Teller effect is also ex- 
hibited by the one-photon spectra of quantum dots. 

1 6 '  . 

1 o - ~  . 

3. MULTIPHONON ABSORPTION OF LIGHT IN QUANTUM 
DOTS 

We illustrate the above results with multiphonon light 
absorption involving one-photon excitation of the excitons. 
As noted earlier, in the weak confinement regime the diago- 
nal part of the exciton-LO-phonon interaction is nonzero. Its 
contribution to multiphonon absorption or luminescence can 
be estimated by employing the form functions of the corre- 
sponding spectra. 

lil 

In our model and in the dipole approximation, only ex- 
citonic states with 1; = 1, =0  can be excited in one-photon 
transitions. When an exciton interacts with a single vibra- 
tional mode, the form function of the absorption spectrunl 
has the form 

0 

where 

P 

o is the frequency of the light, p= h o L 0 / 2 ~ ,  T is the tem- 
perature in energy units, I,(x) is the modified Bessel func- 

tion, and E:!: is defined in (15). 

. . . . .Q , . , ? 

The fact that the single-mode approximation can be used 
follows from the dependence of the diagonal matrix elements 
of the interaction on the phonon quantum number n dis- 
cussed earlier. Thus, we can assume that wLo= 04;. 

A similar expression can easily be written for the form 
function of the equilibrium luminescence spectrum. Equation 
(36) shows that owing to the presence of the factor 
(n ;)-'(n the main contribution to F(  A) is provided by 
the first excitonic level with n ; = n , = 1. Below we restrict 
our discussion to this part of the absorption form function. 
We also assume that there is no vibrational resonance be- 
tween the ground and excited exciton states. 

The dependence of the absorption form function at liquid 
helium temperatures and CuBr parameters on the frequency 
detuning A is depicted in Fig. 5. As expected, F(A) is a 
picket fence with a period equal to the optical phonon en- 
ergy. In real situations, however, there are reasons why the 
lines in the picket fence broaden. One of the most important 
reasons for homogeneous broadening is related to the finite 
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4. CONCLUSION 

FIG. 6. The form-function spectra of multiphonon light absorption with 
allowance for the finite width y of the excitonic level: (a) for a quantum dot 
of radius R =  2.OR,, , and (b) for an ensemble of quantum dots with the 
Lifshits-Slezov size distribution function (the average radius R0=2.OR,,). 
The parameters of the material are those of CuBr, the solid curves corre- 
spond to y=0 .50L0 ,  the dashed curves to y= l .0wL0, and the dotted 
curves to y= 2.00L0. 

lifetime of exciton-vibrational states, which can easily be 
taken into account in (36) by replacing the delta function 
6(x) with its representation in terms of a Lorentzian with a 
phenomenological width yl oLo: 

Figure 6a depicts the A-dependence of a homogeneously 
broadened absorption form function for three values of the 
parameter yloL0.  At moderate values of y the phononless 
line and its one-phonon replica are clearly visible. 

Note that Eq. (36) describes absorption by a system of 
equivalent quantum dots under identical conditions, which 
means that inhomogeneous broadening in not taken into ac- 
count. However, the objects used in real experiments are 
characterized by absorption spectra with large inhomoge- 
neous broadening related to variance in the quantum-dot 
sizes. The size distribution function of nanocrystals is deter- 
mined by the way in which the specimen is manufactured; 
here the most readily available systems are those in which 
the quantum-dot radii are distributed according to the 
Lifshits-Slezov function27 characterized by a single param- 
eter R o ,  the average radius. Figure 6b depicts the 
A-dependence of the absorption form function in which both 
homogeneous and inhomogeneous broadening are taken into 
account. Clearly, the large asymmetry of the Lifshits-Slezov 
function leads to a long-wave shift in the absorption spec- 
trum. 

In calculating the matrix elements of the exciton- 
phonon interaction we assumed that the potential of a quan- 
tum dot has infinitely high walls, and ignored the relation- 
ship between excitons and surface vibrational modes. But 
even without these restrictions the structure of (8) is the 
same. As before, the matrix elements are linear combinations 
of products of six Clebsch-Gordan coefficients determining 
the selection rules in spherically shaped nanocrystals. 

At the same time, the analytic expressions for the weight 
factors, which specify the magnitude of the exciton-phonon 
interaction, differ considerably from (9) and (10). Therefore, 
it would be interesting to generalize the results of the present 
paper to these cases. In particular, allowing for surface 
modes could prove to be important in problems of vibra- 
tional and double optical-vibrational resonance and in the 
Jahn-Teller effect. 

Another promising area in studies of the exciton- 
phonon interaction is the use of the pseudopotential (16), 
which takes confinement into account in the relative 
electron-hole motion. The system of the exciton wave func- 
tions in such a potential makes it possible to study the non- 
trivial size dependence of the exciton-phonon interaction 
mentioned in Sec. 2 in greater detail (Fig. I). Preliminary 
estimates have revealed that the effect of confinement on the 
relative motion enhances the role that excited excitonic states 
play in the formation of the optical spectra of quantum dots. 
For instance, the contributions of the excitonic states with 
the principal quantum number n, of relative motion to the 
multiphonon absorption form function (36) are no longer 
proportional to (n ,) - 3 .  

Below we list the results of our work. 
a) We have derived analytic expressions for the exciton- 

vibrational interaction of the Frohlich type in quantum dots 
in the weak confinement regime, and have established the 
selection rules for transitions between any excitonic levels. It 
has been found that because of three-dimensional confine- 
ment, the exciton-phonon interaction in transitions between 
states with the same parity (related to the relative electron- 
hole motion) loses its forbidden nature. 

b) We have studied the size dependence of the exciton- 
phonon interaction matrix elements that describe the transi- 
tions between the lowest exciton levels. It has been estab- 
lished that the amplitude of the matrix elements sharply 
decreases with increasing phonon quantum number n. This 
makes it possible to use only a small number of vibrational 
modes, for example, in studying the cross sections and exci- 
tation profiles of resonant Raman and hyper-Raman scatter- 
ing and in interpreting the corresponding experimental data. 

c) We have estimated the Huang-Rees factor, which 
plays an important role in various multiphonon processes. It 
has been established that this factor strongly depends on the 
quantum-dot radius. On the basis of these results we have 
calculated the form function of the multiphonon absorption 
of light by a system of quantum dots with allowance for both 
homogeneous and inhomogeneous broadening. 

d) We have shown that essentially quantum dots consti- 
tute a Jahn-Teller system. Moreover, under certain condi- 
tions, vibrational resonance between excitonic states can oc- 
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cur in a quantum dot. Both of these circumstances are known 
to lead to the formation of exciton-phonon complexes, 
which can be observed experimentally by employing the 
methods used in two-photon spectroscopy or optical- 
vibrational resonance spectroscopy. 

e) We have proposed a new method for calculating the 
energy spectrum of an exciton in a quantum dot. It allows for 
the effect of confinement on the relative electron-hole mo- 
tion and provides a complete set of excitonic states, which is 
extremely important in describing multiquantum processes. 
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