
Dynamics of the one-dimensional nucleus in a decomposing solid solution 
A. S. Mel'nikov, A. A. Fraerman, and I. A. Shereshevskii 

Institute of the Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhnii Novgorod, Russia 
(Submitted 15 February 1996) 
Zh. ~ k s ~ .  Teor. Fiz. 110, 1095- 1 104 (September 1996) 

The dynamics of the one-dimensional nucleus (layer) of the new phase in a decomposing 
solution is investigated within the Cahn-Hillard equations. An analytic approach that makes it 
possible to obtain an equation of the dynamics of the one-dimensional nucleus, which is 
nonlocal with respect to the time, is developed. It is shown that the temporal evolution of the 
layer depends sensitively on its initial thickness. 63 1996 American Institute of Physics. 
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1. INTRODUCTION 

Decomposing solid solutions are characterized by the 
fact that two phases differing with respect to the concentra- 
tions of the components coexist below the phase-separation 
temperature. Let us consider a substitutional solid solution 
consisting of atoms of two kinds ( A  and B) with a concen- 
tration of atoms of type A equal to C .  The free energy of the 
decomposing solution has the form of a Landau functional 
(see, for example, Ref. 1): 

where a, a, and y are positive coefficients. The stationary 
states of the solution are determined from the condition that 
the variational derivative SFISC be equal to zero under the 
additional condition that the total number of particles of each 
kind be conserved: 

where u is the volume of the system. The variational proce- 
dure leads to the following equation in the dimensionless 
variables r= R && 

where h is a Lagrange multiplier, which can be determined 
from the condition (2). Among the solutions of Eq. (3) there 
are solutions that correspond to the maximum of the func- 
tional F. In the two- and three-dimensional cases they are 
radially symmetric solutions, which describe the critical 
nucleus of the new The size of this nucleus is in- 
versely proportional to the constant h .  The phase boundary 
in the variables selected has a width - 1 and separates meta- 
stable and stable phases. The difference between the energies 
per particle in these phases is proportional to h ,  and, there- 
fore, h determines the degree of metastability of the solution. 
When h>O, the phase with c -  1 is metastable due to the 
supersaturation of the A phase with component B. Therefore, 
the parameter h can also be called the degree of supersatu- 
ration in the system. The critical nucleus is known to be 
unstable against small changes in its size. In Refs. 2 and 3 

the dynamics of the growth (dissolution) of the nucleus of 
the stable phase were investigated within the relaxation 
equation for the parameter c. The results obtained coincide 
with the results of the classical Zel'dovich-Volmer theory 
for the relaxation of a metastable which is based on 
the conception of a sharp phase boundary. 

In the one-dimensional case the Zel'dovich-Volmer 
theory predicts the absence of a critical nucleus (a one- 
dimensional nucleus is understood to be an artificially cre- 
ated layer of the stable phase in a decomposing solid solu- 
tion). However, the existence of the critical nucleus of the 
new phase follows from Eq. (3): the dependence of its size 
on the degree of supersaturation being a logarithmic function 
rather than a power law, as will be shown below. For this 
reason, there should be interest in the problem of the dynam- 
ics of the boundaries of the one-dimensional nucleus with 
consideration of their finite thickness. To solve it we utilize 
the Cahn-Hillard equation, which describes the dynamics of 
systems with a conserved order parameter. 

In Sec. 2 of this paper we present an analytic solution for 
the one-dimensional critical nucleus, which is valid for arbi- 
trary degrees of supersaturation of the solution. An equation 
which describes (for different initial conditions and degrees 
of supersaturation) the growth or dissolution of the layer of 
the new phase with consideration of the finite width of the 
phase boundary is derived and investigated in Sec. 3. 

2. ONE-DIMENSIONAL CRITICAL NUCLEUS 

Here we present an analytic solution of Eq. (3), which 
describes the one-dimensional critical nucleus and is needed 
for the ensuing treatment. We assume that the concentration 
in the solution depends on one variable z .  Then, Eq. (3) has 
the integral 

which is analogous to conservation of the energy when a 
classical particle moves in the potential U(c). The concen- 
tration distribution for the critical nucleus of the new phase 
is described by the solution of Eq. (4) corresponding to two 
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coupled kinks (see Ref. 6), which has the asymptote 
c(z)+co as z-+ + w and, therefore, satisfies Eq. (2). Inte- 
grating (4) with consideration of the equality I= U(c0), we 
obtain 

1 
c=co+ -d(co-cl)(co-c2) tanh - 

2 [ 

where co>cl > c2 are roots of the equation U(c) = U(co). 
At small degrees of supersaturation h e  1 we have 

Thus, a one-dimensional critical nucleus exists in the super- 
saturated solution. The existence of the critical nucleus is 
due to the exponentially weak [-exp(-4a)l interaction of 
the phase boundaries, which leads to a logarithmic depen- 
dence of its size on the degree of supersaturation. We note 
that the existence of the nucleus in the two- and three- 
dimensional case is associated with different dependences of 
the bulk and surface energies on its size and that at small 
degrees of supersaturation it scarcely depends on the width 
of the phase 

We next consider the problem of the growth (dissolu- 
tion) of the layer of the new phase with consideration of the 
finite width of the phase boundary. 

3. DYNAMICS OF THE GROWTH (DISSOLUTION) OF THE 
LAYER OF THE NEW PHASE 

The relaxational dynamics in systems with a conserved 
order parameter are described by the Cahn-Hillard 
equation.' In dimensionless variables it has the form 

Consider the evolution of the initial distribution correspond- 
ing to the layer of the new phase with a concentration 
c--1: 

where the initial thickness of the layer 2z0(0) can be either 
greater or less than the critical value. The boundary condi- 
tions to Eq. (7) are the conditions that there be no diffusive 
fluxes at infinity: 

The second pair of boundary conditions has the form 

Thus, the mean concentration in the solution is equal to the 
concentration of the phase existing when 121 +w. The ana- 
lytic solution of the problem is based on the assumption that 
the phase fronts are weakly distorted as they move. We seek 
the solution of Eq. (7) in the form 

Assuming that the velocity of the boundaries V =  dzo ldt and 
the correction u(z,t) are small, we have 

where 

It follows from the conservation condition of the parameter 
c that 

i.e., the variation of the concentration as the phase bound- 
aries move must be "compensated" by the variation of the 
integral value of the correction u. It also follows from Eq. 
(12) that far from the phase boundaries the equation for u 
takes the form of an ordinary diffusion equation. Therefore, 
it is convenient to seek the solution of Eq. (12) in the form of 
the sum of the diffusion field $, which originates from the 
moving phase boundaries, and the correction to the station- 
ary form of the phase boundary cp: 

The functions + and cp satisfy the equations 

Thus, both the interaction of the phase boundaries (f) and 
the diffusion field (@) ate driving forces of the variation of 
the thickness of the layer. We expand the function cp in the 
eigenfunctions cp, of the operator L: 

The boundary conditions for the functions cp, have the form 
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Multiplying (17) by the functions x,, which are defined by 
the relations 

d2xn 
V n = z  9 \IaXnv,,,dz=~ for n + m  (19) 

(see Ref. I), and integrating over the entire z axis, we obtain 

On the basis of the assumption that the correction u is small, 
it must be required that 

for all the eigenfunctions corresponding to the negative or 
6 

zero eigenvalues A n .  The spectrum of the operator L con- 
tains "dangerous" (in the sense indicated) values close to 
zero. In fact, if there is no interaction between the phase 
boundaries ( z ~ ~ c Q ) ,  the eigenfunctions [ c o ~ h ~ ( z ? ~ ) ] - '  
correspond to A =O. At large, but finite distances between 
the kinks the doubly degenerate zeroth eigenvalue A splits. 
The eigenfunction that is odd with respect to z 

corresponds, as before, to X a = O .  As is shown in the appen- 
dix, the eigenfunction that is even with respect to z corre- 
sponds to the negative value A,- -exp(-8%) and has the 
form 

Here the function q(z) has the asymptote 
q-A exp(-J-?;lz(/2) as z-+?w, where A- - a. It 
can be shown (see the appendix) that in our case A, is a 
unique negative eigenvalue, and, therefore, we must still re- 
quire that the condition (21) hold only for the eigenfunctions 
cpo and cps . 

Because of the symmetry of the problem, the condition 
(21) with the antisymmetric function cpa is satisfied automati- 
cally. After taking the integrals, the orthogonality condition 
for cp, takes the form 

[the corrections that are proportional to q and have a higher 
order of smallness with respect to exp(-q) are neglected 
here]. In fact, Eq. (24) implicitly specifies the velocity of the 
layer. We find the dependence of the value of the diffusion 
field t,b at the point where the phase boundary is located. This 
requires solving the diffusion problem (15). Taking into ac- 
count only the terms that are linear with respect to the ve- 

locity of the kinks, we assume that the coordinates of the 
phase boundaries are not time-dependent. After some ordi- 
nary manipulations, we obtain 

Equation (25) was obtained under the condition t ~ z i ,  which 
corresponds to the establishment of a steady-state distribu- 
tion of the diffusion field t,b within the layer. The equation of 
motion of the layer is significantly nonlocal, since the varia- 
tion of the diffusive flux to the phase boundary is far more 
rapid than the variation of the coordinates of the boundaries. 
The interaction of the phase boundaries results in dissolution 
of the layer even at positive degrees of supersaturation. 
When the thickness of the layer is equal to the critical value 
[zo=a = (1/4)ln(16/h)], the velocity of the phase boundaries 
equals zero. If the initial thickness zo(0) of the layer is 
greater than the critical value, the thickness increases. Going 
over in (25) to the new variables 

we obtain 

where $= dtlds. The value H  = 1 corresponds to the critical 
thickness of the layer. Multiplying (29) by 11- and in- 
tegrating over 6 from zero to y, we obtain 

Y H - exp( - 5) 
dB. 

It follows from (30) that the thickness of the layer increases 
when H >  1 and that 

In the case of H a  1,  the size of the nucleus varies according 
to the known square-root law.' Figure 1 presents the results 
of the numerical solution of Eq. (29). When H <  1, the 
nucleus dissolves. The formal solution of Eq. (30) has the 
property that 5 goes to - 03 during the finite times y *. We 
seek the solution of Eq. (30) near y * in the form 

In order for the integral on the right-hand side of (3) to 
diverge, we must have 020.5. Since the left-hand side of 
(30) undergoes logarithmic divergence when y -+ y * , to ob- 
tain logarithmic divergence on the right-hand side we must 
have w=0.5. Restricting ourselves to the first term in the 
sum in (32), we obtain 
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FIG. 1. Results of the numerical solution of Eq. (29). 

These arguments are confirmed by the results of the nu- 
merical solution of Eq. (29) for H <  1 (see Fig. 1). Of course, 
the solution has physical meaning only for (>-4z0 
(6- - 4zo corresponds to complete dissolution of the 
nucleus). However, when zo%- 1, the dissolution time T of 
the nucleus can be evaluated using the expression 

The dissolution time is, thus, exponentially dependent on the 
initial thickness of the layer. 

Thus, in this work we have investigated the nonlinear 
dynamics of the growth (dissolution) i f  the layer of the 
stable phase in a decomposing solution. The results are valid 
for layers whose thickness is significantly greater than the 
thickness of the phase boundary and small degrees of super- 
saturation in the solution. The analytic solution of the Cahn- 
Hillard equation is based on the assumption that the distor- 
tion of the phase boundaries as they move is small. The 
consistency of this approach is evidenced by the small mag- 
nitude of the correction u(z,t), which takes into account the 
height and width of the kinks. We note that our previous 
comparison of a numerical solution with a soliton-like de- 
scription of the dynamics of kinks in restricted multilayered 
structuress also points to the accuracy of the analytic method 
considered here for solving this class of problems. 

The existence of a one-dimensional critical nucleus re- 
sults from the finite width of the phase boundary. One con- 
sequence of this is the logarithmic dependence of the size of 
the nucleus on the degree of supersaturation (6). An equation 
for the velocity of the phase boundaries (25), which is sig- 
nificantly nonlocal with respect to the time, has been ob- 
tained. The physical reason for this nonlocality is the 
diffusion-controlled supply of the excess component to the 
phase boundary. An analysis of the equation of motion for 
the phase fronts makes it possible both to obtain the known 
expression for the growth rate of the layer of the new phase 
(3 1) and to evaluate the dissolution time of the layer. Be- 
cause of the weakness of this interaction, the dissolution time 
increases exponentially as the initial thickness of the layer 
increases [see (34)l. We note that the laws governing the 

behavior of the one-dimensional nucleus described here are 
characteristic of the unrestricted problem. If, for example, 
the conditions for the absence of diffusive fluxes (9) are as- 
signed at distances - L  from the phase boundaries, the dy- 
namics of the layer change. A stationary distribution of the 
diffusion field is established within a time t > ~ ~ ,  and the 
thickness of the layer ceases to vary. In real systems the 
development of "transverse" instability of the planar phase 
boundaries is also possible. We believe that the approach 
developed here to describe the motion of phase boundaries in 
systems with a conserved order parameter can be generalized 
to the multidimensional case. 
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One of us (A.S.M.) thanks the International Center for Fun- 
damental Physics in Moscow (ICFPM) for its financial sup- 
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APPENDIX A: 

Let us consider the problem of finding the eigenvalue 
A, and the corresponding eigenfunction cp, of the operator 
i that is symmetric with respect to z for the case in which 
the value of A, is small. Integrating Eq. (17) over the entire 
z axis and using the boundary conditions, we find that for 
A,+ 0 the eigenfunction should satisfy the condition 

Therefore, cp,(z) cannot be a simple sum of the functions 
[ c ~ s h ~ ( z ~ ~ ) ] - ' ,  which are solutions of the problem in the 
absence of an interaction between the phase boundaries 
(zo-+w). However, at sufficiently large zo% 1 it is natural to 
seek cp,(z) in the form 

where q is small and vanishes when z o 4 w  (the validity of 
this assumption is confirmed below). For the fulfillment of 
the condition (Al) we should require that 

In the region z-zol> 1 we obtain an equation for q(z) 

To satisfy the boundary conditions, we select the solution 
that decreases exponentially as z+ + w: 

Here we introduce the assumption that A<O, which is con- 
firmed below. To obtain the solution in the range 
O<z<(- A)- ' I2  we substitute (A2) into (l7), and neglecting 
the small terms Aq and ~ / c o s h ~ ( z + ~ ) ,  we obtain 
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The overall solution of this equation has the form 

Matching the solutions (A5) and (A7) and utilizing the even 
character of q ( z ) ,  we can find the constants A,  B 
and A. We present the expressions for A and A: 

We note that these results confirm the assumptions made 
above regarding the smallness of q and A and the negative 
value of A. 

We now show that there are no other negative eigenval- 
ues in the spectrum of the operator i in our case. To prove 
this assertion we assume the opposite: let there be two nega- 
tive eigenvalues A ,  and A 2  and two corresponding eigen- 
functions cpl and cp2. We define the functions conjugate to 
them x1 and x2 in accordance with (19). We now introduce 
the linear combinations cp= c 40 + c2q2 and 
x = c l x ,  +c2x2. It is not difficult to see that the quantity 

is positive in this case. On the other hand, 

where 

and, therefore, Jrpficpdz<0. If E l  < O  and t+bl(z) are now 
the smallest eigenvalue and the corresponding eigenfunction 
of the Schriidinger operator H ,  we can select (by adjusting 
the coefficients c l  and c2) a function @ such that it is or- 
thogonal to Since the value of the energy functional 

calculated for $= is negative, there is one more negative 
eigenvalue for H. It is known, however, that in our case all 
the energy levels, except E l ,  are positive for the operator 
(A1 1). Thus, we arrive at a contradiction, and, therefore, our 
original assumption that there is another negative value of 
A is incorrect. 
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