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A microscopic critical-state model of a hard superconductor is presented, in which the state of 
the system is described using the coordinates of individual vortices. After several model 
assumptions regarding the character of the pinning are introduced, the microscopic problem of 
the penetration of a field into a hard superconductor allows an exact solution. The 
interactions of the vortices with one another, as well as with their images, Meissner currents, and 
pinning centers, are considered. The existence of the Bean-Livingston barrier is taken into 
account. The coordinates of the vortices are calculated in both increasing and nonmonotonically 
varying external fields. The stability of the solution against small displacements of the 
vortices from their equilibrium positions is investigated. Strong pinning is investigated in detail. 
In this case, after going over to a macroscopic description in sufficiently strong fields, the 
model turns out to be completely equivalent to the phenomenological description within the 
macroscopic nonlocal critical-state model. A new effect, which is lost in the macroscopic 
description, has been detected in weak fields, viz., the formation of a macroscopic vortex-free 
region in a decreasing external magnetic field. O 1996 American Institute of Physics. 
[S 1063-776 1 (96)02009-41 

1. INTRODUCTION 

The phenomenological critical-state model (see, for ex- 
ample, Refs. 1 and 2) has been used successfully for a long 
time to describe electrodynamically hard superconductors. 
According to this model, screening currents with a density 
equal to the critical value J ,  are induced near the surface of 
a superconductor in response to any variation of the external 
field. The magnetic induction and the vortex density in re- 
gions more distant from the surface remain the same as be- 
fore the external field was varied. Such an electrodynamic 
model was based on the idea of vortex pinning. It was sug- 
gested that the vortex system relaxes to a critical state in 
which the pinning force acting on a vortex is counterbal- 
anced by the magnetic driving force. The latter force is the 
sum of the interactions of the vortices with one another, their 
images, Meissner currents, and extrinsic currents. The vortex 
system is described within this model using a continuous 
function, viz., the magnetic induction B(x), which is related 
to the vortex density n(x) by the local relation B = n a o .  
Generally speaking, this relation ceases to be valid if n(x) 
varies sharply on scales of the order of the London penetra- 
tion depth A.  A macroscopic model that takes nonlocal ef- 
fects into account was developed in Refs. 3-6. 

The purpose of the present work is to devise a simple 
microscopic critical-state model of a hard superconductor. 
Unlike the macroscopic model, in which averaging must be 
performed over spatial scales much greater than the intervor- 
tex spacing a, in the present paper we shall describe a vortex 
system using the coordinates of the individual vortices. 

On the one hand, the proposed model is a microscopic 
formulation of the nonlocal critical-state and, on 
the other hand, it makes it possible to investigate several 
effects that are lost in a macroscopic treatment. In the gen- 
eral case, this is a complicated many-particle problem, in 

which the vortices undergoing long-range interactions are 
situated in a random pinning potential. 

In our treatment we use a very simple model of the pin- 
ning of the vortex system. We do not deal with the relation- 
ship between the critical current density and the actual struc- 
ture of the pinning centers, which is the main concern of 
various versions of the collective pinning Our pur- 
pose is to investigate the distribution of the vortices in a 
superconductor, particularly when the gradients of the vortex 
density n(x) are large. 

The assumptions under which the microscopic problem 
of the penetration of a field into a hard superconductor al- 
lows an exact solution are formulated in Sec. 2. The coordi- 
nates of the vortices are calculated in Sec. 3 for the case of 
an increasing external field. The vortex distribution when the 
external field begins to decrease after achieving a maximum 
value is investigated in Sec. 4. The stability of the solution 
against small displacements of the vortices from their equi- 
librium positions is considered. It is shown that the solution 
becomes unstable as the external field H o  weakens if the 
distance from the surface to the nearest vortices is less than a 
certain finite value. In weak enough fields, this results in a 
new effect-the formation of a macroscopic vortex-free re- 
gion. We note that no macroscopic vortex-free region ap- 
pears in a soft superconductor when Ho decreases?,l0 The 
transition to the soft-superconductor limit is investigated in 
Sec. 5. The main purpose of that section is to demonstrate 
that our model reproduces the known r e su~ t s~ . ' ~  in that limit. 
Strong pinning is investigated in Sec. 6. In this case it is easy 
to go over to the continuous limit, i.e., to a description of the 
system using the vortex density. In relatively strong fields 
such a macroscopic description is completely equivalent to 
the phenomenological description within the macroscopic 
nonlocal critical-state  mode^.^-^ In weaker fields a general- 
ized nonlocal critical-state model that takes into account the 
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FIG. 1 .  Geometry of the problem. The positions of the vortices in the criti- 
cal state are shown. 

existence of a near-surface vortex-free region in a decreasing 
external field must be employed. 

2. FORMULATION OF THE MICROSCOPIC CRITICAL-STATE 
MODEL 

In this section, we devise a microscopic critical-state 
model of a hard superconductor which allows an exact solu- 
tion, i.e., determination of the coordinates of each vortex. 
This problem can be solved exactly only under significant 
constraints affecting both the geometry of the problem and 
the character of the pinning. We now formulate these con- 
straints. We investigate the simplest geometry: a supercon- 
ducting half-space (x>O), penetrated by a magnetic field 
applied parallel to the surface (Holle,) (see Fig. 1). We as- 
sume that the pinning force p'" acting on a vortex is isotro- 
pic and can vary in the interval (-pPin,ppin), where ppin is 
the critical pinning force, which is constant throughout the 
superconductor. Here the coordinate of a vortex varies if and 
only if the electromagnetic force exerted on it by the Meiss- 
ner currents, the currents of other vortices, and their images 
exceeds pp'". We assume that a vortex can be pinned at any 
point in the superconductor. 

The assumptions made allow us to reduce the problem 
posed to a one-dimensional problem. In fact, the vortices are 
arranged in a system of rows due to the uniformity of the 
problem along the y axis. The Gibbs free energy expressed 
in terms of the coordinates of these rows x i ,  which are num- 
bered from the superconductor boundary, takes the form (see 
Ref. 11) 

where bl is the distance between vortices in a row, N is the 
total number of rows in the system, and &he function G, is 
defined by the formula 

The first sum in the expression for Gem corresponds to the 
interaction of the vortices with one another and with their 
images, and the second term corresponds to the interaction of 
the rows with the Meissner currents. The term G, corre- 
sponds to the strong nonexponential attraction of the first 
row of vortices to its image (it was not taken into account in 
Ref. 11). The term G,(xl)  is significant only when the dis- 
tance from the first row to the surface is less than b1/47r. This 
occurs, for example, when a new row enters the supercon- 
ductor. In this case the surface interaction G, makes it pos- 
sible to take into account the Bean-Livingston barrier,'* 
which prevents the entry of vortices. As will be seen, G, can 
always be neglected except when the entry of a row of vor- 
tices must be considered. 

We now derive the equation describing the balance of 
forces acting on a vortex. Let there be N rows of vortices that 
have already entered the superconductor. Below, the number 
of vortices is self-consistently defined as a function of the 
external field Ho. Equating the magnetic force - dGemldxn 
that results from the interaction of vortices with one another, 
their images, and the Meissner currents, to the pinning force 
p i n ,  we obtain 

where Ein is the pinning force on a vortex in the nth row. 
We henceforth assume that the distance bl between vortices 
in a row, when the row forms on the boundary, does not vary 
when it penetrates further into the half-space as the external 
field increases. In addition, we assume that bl is identical for 
all rows. The latter is a model assumption. 

The system (3) is a nonlinear system of a macroscopi- 
cally large number N of coupled equations. However, it has 
an exact solution. To obtain the solution we utilize the ap- 
proach proposed in Ref. 13, where the problem of the for- 
mation of the critical state in a nonuniform Josephson junc- 
tion was investigated. Despite the differing physical 
formulation, the equations obtained are identical. A solution 
of the system when all pinning forces acting on the vortices 
are known a priori and are equal to their maximum values 
was proposed in Ref. 13. Such a situation arises only during 
the initial increase in external field from zero to Ho. Only 
this case was considered by Bryksin and Dorogovtsev. The 
solution proposed in Ref. 13 can be generalized to an arbi- 
trary magnetic history and applied to the problem (3) at 
hand. 
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Following Ref. 13, we introduce the auxiliary variables 

In these variables the system (3) takes the form 

where fn=8.rrb,h2flinl@~ and ho=2AblHol@o. The force 
f, can vary over the range -p S f, S p, where 
p = 8.rrblh2p~'"l@~. We use the dimensionless notation h ev- 
erywhere below for the magnetic field. The dimensional ana- 
log H can be obtained using the relation H =  hQo/2Abl. 

It is convenient to use the following equation, which was 
obtained by summing the equations of the system (7) num- 
bered from k to i (see Appendix A): 

known, but the coordinates of the vortices are not specified a 
priori. Conversely, in the subcritical region, the coordinates 
of the vortices are known, but the value of the pinning force 
is adjusted self-consistently to counterbalance the variation 
of the magnetic force. 

We now formulate these conditions mathematically for 
the variables introduced here Gi , a ; ,  and Ki . Let the bound- 
ary between the critical and subcritical regions pass between 
rows io- 1 and io. The pinning force on the rows of vortices 
from the first to the (io- 1)th row is known a priori, and is 
equal to +p.  In the subcritical region, the coordinates of the 
vortices do not vary with the field, i.e., the values of 
xiO+ -xiO, x ~ ~ + ~ - x ~ ~ +  ,. . . , XN-XN- are conserved. 
Now using (4) and (6), we conclude that aiO+, ,...,aN and 
Gio+ ,.. . ,GN remain unchanged as the external field varies. 
Finally, the last condition which must be added for an un- 
equivocal formulation of the problem follows from the con- 
stancy of the position of the ioth row 
(xi0=xio-x i o - l + x i o - l - x i o - 2 + . . . + x 2 - x I  +XI): 

The main advantage of this equation is that if the pinning 
forces f m  are known for k =S m < i ,  we can specify all the 
Gk , except G I ,  as functions of the single quantity Gi+,  . To 
determine G I  we must use Eq. (7) with n= 1. Taking into 
account that K, = 0 and that a ,  = G, /( 1 + G2), we obtain 

Combining Eqs. (8) and (9), we obtain the relation for deter- 
mining the variable GI:  

1 

C fm=G~(ho-G~)-Gi+~(Gi+l+fi+ 1). 
m= 1 

(10) 

In Ref. 13 the summation in the system of equations (7) 
was carried out from k to the last row N. In this case the last 
term drops out of (8). The solution method proposed in Ref, 
13 was restricted to the case in which all the pinning forces 
are known. The system of equations (8) and (10) generalizes 
Eq. (12) in Ref. 13 and makes it possible to consider an 
arbitrary critical state appearing during nonmonotonic varia- 
tion of the external field. The algorithm for taking the history 
into account is similar to that used in the nonlocal macro- 
scopic  mode^.^-^ 

As the external field varies, the superconductor separates 
into critical and subcritical regions. In the former, the coor- 
dinates of the vortices vary with the field, and the absolute 
value of the pinning force is equal to the maximum permis- 
sible value. In the subcritical region, which is located beyond 
the critical region, the coordinates of the vortices remain the 
same as before the external field was varied, and the absolute 
value of the pinning force is less than pp'". Thus, in the 
critical region, the pinning forces acting on the vortices are 

where the tilde over each a; indicates that the respective 
quantity was calculated before the external field was varied. 

In the next sections, the proposed approach is imple- 
mented to calculate the coordinates of rows of vortices in 
systems with a specified magnetic history. 

3. DISTRIBUTION OF THE COORDINATES OF ROWS OF 
VORTICES IN AN INCREASING EXTERNAL FIELD 

Let us now solve an actual problem. Consider the critical 
state formed during an initial increase in the external field 
from zero to ho. In this case only a critical region bordering 
the space free of vortices appears. The pinning force of 
maximum absolute value acts on all the vortices; therefore, 
we must set i =  N in Eqs. (8) and (10). Utilizing the fact that 
GN+,=O, we have 

(N-k+ l )p=( l  + ~ ~ t ~ ) ( ~ ~ ! ~ + p ) ,  (12) 

N ~ =  c',"C(ho- cine I 1 3  (13) 

where the superscript means that the solutions refer to the 
initial increase in the external field. Solving the last two qua- 
dratic equations, we obtain 

G;;~= - (p+  1)/2+ j,"r, ISkSN, (14) 

G$C= h0/2- y F ,  (15) 

where y? and y F  are defined by 

y?= 1 ) ~ + 4 ( ~ - k ) p ,  (16) 

inc- I J2_ 
Yo - 7  ho 4Np. (17) 

The minus sign preceding y F  in (15) was chosen in order 
that the solution be stable against small perturbations: the 
solution with the opposite sign is unstable (see Appendix B). 
Using the expressions obtained for G k ,  we find 
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To complete the solution of the problem, the total num- 
ber of rows N that have entered the system must be deter- 
mined. Consider the successive entry of rows. As we have 
already noted above, this requires consideration of the strong 
nonexponential attraction between vortices formed on the 
surface and their own images: - dC, lax ( x  = 0). This sur- 
face force prevents the entry of a newly formed row into the 
superconductor until it has been cancelled by the magnetic 
force created by other rows of vortices, their images, and the 
Meissner currents. At a certain external field, the surface 
force is cancelled by the magnetic force and the current row 
of vortices enters the superconductor. As a result, we have 
the following equation for the field h:: for the entry of row 
N+ 1: 

where hs= 2blAH, l a O ,  and H,= @o/4.rr[A is the thermody- 
namic field. In Eq. (20), G$C(N)  is given by 

Solving (20), we find the field 

N + I =  d m .  h inc 

This expression can be written in the dimensional form 

HE:' = J ~ ~ + 8 1 r N @ o ~ ~ l b ~ c ,  (22) 

where we have introduced the notation J ,=  ~ p P ' " l @ ~ .  Over 
the range of external fields h;c<ho<hz:l, the number of 
rows in the system equals N. Now it is easy to obtain the 
relation for the number of rows for a given external field 
ho: 

where the integer part of the expression enclosed in square 
brackets is taken. If the external field ho<h, ,  there are no 
vortices in the superconductor. 

Equations (16)-(19) and (23) completely define the co- 
ordinates of all rows of vortices in the superconductor during 
the initial increase in the field. For arbitrary p, the expres- 
sions are very cumbersome and difficult to analyze analyti- 
cally. Therefore, we present here only numerically calculated 
plots of the dependence of the row density, defined as 

on the distance xi to the superconductor surface for different 
values of the pinning force (Fig. 2). To construct these plots 
we use the exact expression for the vortex row density 

which follows directly from the solution that we obtained. 
The following features of the distribution of n t  can be 

seen in the figure. Near the surface there is a vortex-free 
region, whose thickness is considerably greater than the dis- 
tance between rows. The vortex density vanishes abruptly at 
the vortex front. The position dependence of the density is 
almost always nearly linear. 

The case of an initial increase in the external field con- 
sidered in this section is very simple. All pinning forces are 
known a priori, their absolute values being equal to the 
maximum values. More interesting is the case in which the 
field begins to decrease after the initial increase. A subcriti- 
cal region in which the pinning forces are not known a pri- 
ori, then appears. The next section is devoted to an investi- 
gation of this case. 

4. DECREASING EXTERNAL FIELD 

We now consider the critical state formed when the field 
varies nonmonotonically. We assume that the external field 
begins to decrease after reaching h,,. The vortex coordi- 
nates do not vary until the change in the magnetic force 
becomes sufficient for depinning of the first row. 

Thus, there is a range of external fields, in which under 
any nonmonotonic variation of ho the coordinates of the 
rows are found as before from Eqs. (16)-(19) with 
ho= h,, and the G k  maintain the values corresponding to 
the maximum field h,,, : Gk= C?(h,,). This state is main- 
tained down to a certain value of the external field hi::, at 
which the absolute value of the pinning force on the first row 
reaches its maximum value (the subscript "dec" in hi:: in- 
dicates that the external field is decreasing, and the super- 
script 1 shows that depinning of the first row is being con- 
sidered). According to (9), in the external field ho= h , ,  we 
have 

p= - G$C(h,,) + a p [ h m , -  C',"c(h,,)]. 

In the field ho=hiL: the pinning force on the first row 
reaches a critical value of opposite sign, but the coordinate of 
this row still does not vary. Thus, we have 

Subtracting the last two equalities from one another, we ob- 
tain 

When the field decreases below hi::, initially the first 
and then the second and ensuing rows of vortices are de- 
pinned and move toward the surface. We first examine a 
range of fields in which no row has yet exited the supercon- 
ductor. It is fairly easy to find the coordinates of the vortices 
at discrete values of the external field hy,"r), at which the 
pinning force acting on row io has already achieved its criti- 
cal value, but the coordinate of that row has not yet varied. 
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We now calculate the coordinates of the vortex rows in 
the fields hy:). The problem can be conveniently solved in 
the following manner: we first determine the coordinates of 
the vortices for a given value of io, utilizing the fact that they 
remain unchanged for i a io and the pinning forces are equal 
to the critical values for i s io. We note that the two condi- 
tions hold simultaneously for i = io: the coordinate of the row 
is unchanged, and the pinning force is equal to the critical 
value. This makes it possible to calculate the coordinates of 
all rows and then to find the external field at which such a 
distribution of the vortices is realized. 

Since the coordinates of the vortices in the ioth row and 
thereafter remain the same in the field h 2  as they were in 
h,, , it is obvious that 

&C (j0) - G i ~ ( h  ) Gk - k m, 9 k>io. (27) 

The values of the variables Gtm(h!:)) for 2 G k S io can be 
found from Eq. (8) by setting i =  io: 

dec h(iO))][Gde~ h(iO)) -p] - ( i ~ - k + l ) ~ = [ l + G k + , (  dec k + l (  dec 

(28) 

Solving (28), we find 

-p  dm (io) GR~(~!:))= - -+yk 2 (h,), lGk<i0 ,  (29) 

where 

The sign preceding y P ( h 2 ) )  in (29) was chosen in order We now know all the values of the variables cP(h!:)), ir . ,  
that the solution be stable (for further details see Appendix the coordinates of all the vortex rows in a certain field 
B). Since in the discrete field under consideration the can-  h!;). we now determine the svength of the field h!;) in 
dinates of the ioth row are still the same as when the external which the respective state is realized. Using (9), we have 
field increased to h,, , the condition (1 1) holds. This condi- 
tion enables us to obtain the value of the last undetermined 
variable Gtm(hy:)): 

Equations (27) and (29)-(31) specify the coordinates of the 
vortex rows in the discrete set of external fields (32). 

The problem becomes considerably more complicated in 
the intermediate fields ho + h 2 )  . The investigation of this 
case has not yielded any new results, and we shall therefore 
not present it. 

We are next interested in the following problem: when is 
the solution (27) and (29)-(32) constructed with a certain 
fixed value of N stable? It bears on the conditions under 
which vortices exit the superconductor, and in turn helps one 
formulate specific boundary conditions on the superconduc- 
tor surface in going over to a macroscopic description (see 
Sec. 6). 

As shown in Appendix B, the stable solutions corre- 
spond to a specific choice of the root of the quadratic equa- 

tion (9) when G l is defined as a function of the external field 
ho: 

where 

Conversely, in the solution (27)-(32) constructed above we 
determine the field ho from the known value of GI.  Here it is 
unclear whether the solution constructed corresponds to the 
stable case (the minus sign in (33)) or the unstable case (the 
plus sign). In fact, the same formula (32) is obtained for 
hd,(Gfm,Gd,er) in both cases of GY. 
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n*l,= nl\** * * * * * *  *; n l * * * *  * * * * * *  :* 
** FIG. 2. Vortex mw density n* for various val- 

ues of the pinning force: a) p = 100, b) p= I ,  c) 
p=O.Ol. 

x X X 

Thus, the investigation of the conditions for the exit of 
vortices from the superconductor reduces to determining the 
external field at which the stable solution is replaced by the 
unstable solution. Figure 3 graphically illustrates just how 
the transition from the stable solution to the unstable solution 
occurs. The parabola depicted in this figure corresponds to 
the entire set of solutions of G,(ho). The left-hand branch of 
the parabola corresponds to the stable solutions, and the 
right-hand branch corresponds to the unstable solution. If a 
stable solution (GI ,ho) (the filled point in Fig. 3) is realized 
in a certain external field for a certain fixed total number of 
rows in the superconductor, the point (GI  ,ho) will move 
downward along the parabola as ho is subsequently reduced. 
In a certain external field the point (GI  ,ho) reaches the 
minimum. In weaker fields no stable solution exists for the 
respective value of N, and the row nearest the surface exits 
the superconductor. The number of vortex rows in the super- 
conductor then changes, and the point (GI ,ho) abruptly 
moves over to a site on the stable branch of the parabola. 

Let us find the point at which the stable solution van- 
ishes. If the solution is stable, substituting hd, , (Gy,GP) 
from (32) into (33) with a minus sign should obviously yield 
an identity. After performing this substitution, we have 

The latter expression becomes the identity G?= Gtw, if 

This can be brought to the form 

Thus, we conclude that states with apGaF" '  cannot be 
realized, since they will be unstable. Thus, as the external 
field is reduced, a vortex-free region appears near the sur- 
face: 

In strong fields its thickness coincides in order of magnitude 
with the distance between vortices. However, in weak 
enough fields (see Sec. 6) this region becomes comparable to 
A, and it must be taken into account in the macroscopic 
nonlocal critical-state model. 

After any number of vortex rows have exited the super- 
conductor, the calculation algorithm described above must, 
generally speaking, be repeated with the new number of vor- 
tex rows N. 

It is difficult to analyze the formulas obtained in the 
preceding sections for arbitrary values of p. Therefore, be- 
low we shall examine the two limiting values p-10 and 
p S l .  

5. SOFT-SUPERCONDUCTOR LIMIT 

Stable 
branch 

Unstable 
branch 

Let us examine the formal transition to the soft- 
superconductor limit, p-0. We prove that in this limit the 
solutions obtained reproduce all known results?.1° 

We first investigate the case of an increasing external 
field. Using Eq. (23), we find that the number of rows in a 
superconductor in fields ho>h, tends to infinity: 
N(ho> h, ,p--+O)-+m. However, the product Np is then fi- 
nite and proportional to the magnetic induction 
Bo= @olabl ,  where a is the distance between rows. Letting 
p tend to zero in (18) and (19) and taking into account that 
the product Np is finite, we obtain 

FIG. 3. Stable and unstable branches of the solution of the problem. The X? ho- J- 
arrow shows the evolution of the stable solution as the external field de- ex p( - --)= 

creases. 1+Jm' 
(37) 
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where x p  is the distance from the first row to the boundary. 
It is clear from (37) that the distance between rows becomes 
much smaller than A when 1. In this case, expanding 
exp(-dA) into a series and neglecting unity in comparison 
with N p ,  from Eq. (37) we obtain 

Eliminating N p  from the last expression and transforming to 
dimensional variables, we obtain the known results (see 
Refs. 9 and 10) 

inc 
Ho cash(+) = -. 
B 0 

When the external field increases, it follows from these equa- 
tions that a near-surface vortex-free region O<x<x;"r exists 
in a soft superconductor, and that the magnetic induction 
Bo does not coincide with the external field Ho. 

When the external field decreases and p  tends to zero, 
the boundary between the critical and subcritical regions 
goes to infinity, and all G?:, become equal. To determine 
the thickness of the vortex-free region xpef, we write the 
chain of consequences 

This relation implies that 

Clearly, a macroscopic vortex-free region does not appear in 
a decreasing field. The lack of this region leads to the fact 
(see, for example, Ref. 10) that the magnetic induction 
within a soft superconductor in the macroscopic approxima- 
tion simply coincides with the external field at the surface. 

Thus, in the soft-superconductor limit ( p  = 0), our model 
reduces to the model of Ref. 10. Here we shall not investi- 
gate the case of weak pinning in detail, since it was studied 
in Ref. 13. 

6. STRONG-PINNING LIMIT 

In this section we are interested in the case p a  1. The 
treatment is simplified considerably in this case, since the 
transition to the continuous limit is fairly easy. In the con- 
tinuous limit, the system of vortices is described using the 
continuous vortex density n, rather than the coordinates of 
the individual vortices. The transition to a macroscopic de- 
scription is thus accomplished, and the model presented 
above should transform into a critical-state model. In this 
process we do not average over spatial scales greater than the 
London penetration depth A.  Therefore, the microscopic 
model should transform into the nonlocal critical-state 
mode1,3-~ rather than the local Bean model.' 

The main difference between the nonlocal model and the 
local model is that, generally speaking, the relationship be- 
tween the magnetic induction and the vortex density 
B = n a o  does not hold in the former. These quantities are 
related by 

The following features of the vortex density distribution 
were obtained within the macroscopic nonlocal critical-state 
 mode^.^-^ It has discontinuities at the boundary between the 
critical and subcritical regions, as well as at the front of the 
vortex distribution. There is a range of external fields over 
which variation of the field does not lead to variation of the 
vortex density. When the Bean-Livingston surface barrier is 
taken into account, a near-surface vortex-free region appears. 

The purpose of this section is to demonstrate that all the 
features just indicated are obtained from the exact micro- 
scopic solution, as well as to investigate the boundary con- 
ditions for a decreasing external field, which cannot be ob- 
tained via the macroscopic approach. 

We introduce the row density n* (24) and the vortex 
density n = n*lbl. (Everywhere below we present the final 
formulas in two forms: for n* and for n.) In the general case, 
these are functions of the discrete variable xk ; however, in 
the limit under consideration it is possible to replace the 
discrete function by a continuous function and determine its 
derivative. 

The distribution of the coordinates of the vortices during 
an increase in the field from zero to ho> h,  can be described 
by Eqs. (16)-(19) and (23). We then obtain the relation for 
the row density: 

Since according to (16) the inequality 2 y p  2 p% 1 always 
holds, we can go to the strong-pinning limit by expanding 
this expression in the small parameter l lyk.  We ultimately 
obtain 

for all k. At the fromt of the vortex distribution XN, the 
density is given by 

where the critical current density J ,  is defined in (22). 
We now consider the variation of the row density from 

row to row, and show that it is small everywhere in compari- 
son with nz . In fact, we have 

The following condition clearly holds up to the front itself: 
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Thus, a continuous function of the vortex row density can be 
introduced over the interval ( x I  , x N ) .  In addition, since 
n i % A n ; ( ; ,  the density jumps to zero at the vortex front. The 
magnitude of this jump is specified by Eq. (44). 

We now obtain a differential equation for the vortex row 
density. Having defined the derivative of the row density 
with respect to the coordinate x  as 

dn* An: 
-= =n:An: 
d x  X k - X k -  1 

and using (43) and (49,  we obtrain 

dn* p -=- d n  477 
d x  5' Q o - = -  - J , .  

d x  c 

The latter equation describes a linear decrease in the vortex 
density with increasing depth in the superconductor with the 
coefficient 4.rrJ,lcQo. Thus, the previously introduced 
quantity J ,  becomes the critical current density of the super- 
conductor in the macroscopic critical-state modeL3 

Let us now consider the near-surface vortex-free region. 
We must determine the thickness of the vortex-free region 
x$r and the value of the vortex density at its boundary 
n ( x p ) .  We investigate the situation in which the number of 
vortex rows in the system is large, N P  1. Neglecting unity in 
comparison with N, we find 4 ~ ~ = h i - h : .  Using this 
equality and (43), we obtain 

From (18) we find the thickness of the vortex-free region: 

Let us now consider the case of a decreasing external 
field. Equation (26) for the range of fields over which all 
vortices remain pinned as Ho varies takes the following form 
in dimensional quantities: 

This expression coincides with the corresponding relation 
obtained via the macroscopic nonlocal critical-state modeL6 

When the field decreases further, a critical region ap- 
pears near the surface. The coordinates of the vortices in it 
deviate from the values for h,, , and the absolute value of 
the pinning force takes its maximum value. As P A W ,  the 
interval between the discrete fields hy:' at which depinning 
of the vortex rows occurs tends to zero. For this reason we 
analyze only the solutions corresponding to hy:). 

We first obtain the differential equation specifying 
n ( x )  in the critical region. Using (29), we can write 

Comparing the expressions for yieC and y?!, (see (20)), we 
obtain 

We assume that as before, the condition xi -xi- 4 A holds 
everywhere and that yieC-p. We shall see below that these 
requirements remain valid even in weak fields; therefore, this 
assumption does not impose any additional constraints on 
ho, except for the one requirement that ho 3 0 .  All subse- 
quent mathematical manipulations are completely analogous 
to those in an increasing field. Performing them, we obtain 

The last equation specifies the vortex density distribution 
in the critical region. In the subcritical region the density 
remains the same as that produced during the initial increase 
in the field. In order to completely determine the distribution 
n ( x )  in the continuous limit, the matching conditions for the 
vortex density on the boundary between the critical and sub- 
critical regions and the boundary conditions on the supercon- 
ductor surface must be known. 

Let us find the condition relating the vortex densities on 
opposite sides of the boundary xo between the critical and 
subcritical regions. We utilize the fact that at x<xo  the den- 
sity n  * is equal to n* -dec,  while at x > x o  it equals n  * -'"'. 
On the basis of (16) and (30), we arrive at the relation 

Using (43), (53), and (55), we ultimately obtain 

The absolute value is omitted in (56), since the appearance of 
a subcritical region at Ho>O requires that Hm,>8~JcAlc,  
which implies, in turn, that n i n c ( x P )  > 8 ~ J ~ A l c 6 ~ .  

We now consider the boundary conditions at the super- 
conductor surface. If we have a situation in which no vortex 
has yet exited the superconductor, to calculate n ( x )  it is 
sufficient to know how the values of the vortex density on 
the boundary between the critical and subcritical regions - 

dec x = x o  are related. It is easy to verify that this condition, 
together with the condition for conservation of the total num- 
ber of vortices, uniquely specifies the solution of the problem 
(see Ref. 6). 

If the external field decreases so much that vortices be- 
gin to exit the superconductor, another condition is needed in 
addition to that specifying the density change at the bound- 
ary between the critical and subcritical regions. The latter 
depends on whether a macroscopic near-surface vortex-free 
region 0 < x < x p  exists or not. If there is no such region, we 
obtain the following boundary condition for the vortex den- 
sity by virtue of the continuity of the magnetic induction at 
the superconductor surface: 
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If a macroscopic vortex-free region exists, the additional 
condition is the relationship between the vortex density at the 
boundary of this region, its thickness, and the critical current 
density. As we have already noted, when the field decreases 
below hit:, the vortices nearest the surface gradually begin 
to approach the surface. As shown in Sec. 4 and Appendix B, 
the state of the vortex system becomes unstable when the 
first row of vortices is at a distance smaller than xu,,, (36) 
from the surface. The first row of vortices then exits the 
superconductor, and a near-surface vortex-free region forms 
between the sample surface and the point xu,,, . If the thick- 
ness of this region is much greater than the distance between 
rows, it becomes macroscopic; otherwise, it can be omitted 
from the macroscopic description. We note that the stability 
of the vortex rows near the surface cannot be correctly ana- 
lyzed in the macroscopic nonlocal critical-state 
and therefore such a vortex-free region does not appear in it. 

We now obtain the conditions specifying the thickness 
of the vortex-free region and show that it becomes macro- 
scopic in weak enough fields. Using (36), we obtain 

* - dec 
(xu,,,) - P / ~ A  
(nunst) + P / ~ A  

It is clear from the latter expression that as the external field 
and, consequently, the vortex density near the surface de- 
crease, the distance xu,,, increases and diverges when 
@ondec(xu,,,)~ 4 r ~ ~ h / c .  We note that this divergence 
should be eliminated by cutting off xu,,, at scales of order 
A, since the terms of order unity were neglected in compari- 
son to p during the derivation of (58). Thus, it is clear from 
everything said that consideration of the near-surface vortex- 
free region is essential at least in weak fields. 

Thus, for weak fields, the macroscopic nonlocal critical 
state-mode~~-~ must be generalized with consideration of the 
presence of the near-surface vortex-free region. This can be 
done by introducing an additional condition. Since 
B ( x ) ~ ~ ~ = @  nder (x) in the critical region (see, for example, 
Ref. 3), from the equality (58) we obtain 

In the vortex-free region the magnetic induction is deter- 
mined by Eq. (41) with n = 0: 

Substituting this solution, taken at the point x=x,,,,, into the 
condition (59) and solving the resulting equation relative to 
the thickness of the vortex-free region, we find 

FIG. 4. Distribution of the magnetic induction and the vortex density in a 
superconductor when the external field decreases and there is a macroscopic 
vortex-free region. 

xu,,, = A arcsinh - (4:;.a). 
It follows from the latter that the vortex-free region is in fact 
macroscopic, at least in weak fields. It vanishes in suffi- 
ciently strong fields, in which x,,,, is of the same order as the 
distance between vortices a - d m ,  i.e., in fields 
H-H*, where the field H* in which the vortex-free region 
vanishes is specified by the following equality: 

Thus, the discussion in this section shows that the mi- 
croscopic model goes over completely to the nonlocal 
critical-state model6 in the limit p @  1 in the case of an in- 
creasing external field. When the external field decreases, the 
microscopic model coincides with the nonlocal critical-state 
model at fields Ho>H*. When Ho<H*, the near-surface 
vortex-free region must be taken into account. We note that 
when J,AO, we have xunS,-+O, i.e., the macroscopic vortex- 
free region under consideration is not present in a soft super- 
conductor. An example of the distributions of the magnetic 
induction and the vortex density with consideration of the 
near-surface vortex-free region under discussion is presented 
in Fig. 4. 

7. CONCLUSIONS 

A microscopic discrete critical-state model for a hard 
superconductor has been devised in this work. In this model 
the state of the system is described using the coordinates of 
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the individual vortices. In the general case, the problem of 
calculating the coordinates of all the vortices is very compli- 
cated. However, when certain constraints are imposed on the 
character of the pinning, this problem can be solved exactly, 
i.e., the coordinates of all the rows of vortices found within 
the superconducting half-space can be calculated. In addi- 
tion, the stability of the solution obtained can be investigated 
(see Appendix B). This makes it possible to investigate sev- 
eral effects which cannot be studied via the macroscopic ap- 
proach. 

It has been found that in the strong-pinning limit, 
pB 1, it is easy to go over to the continuous limit. In this 
case all the results of the microscopic model for sufficiently 
strong external fields H o > H *  coincide with the results of 
the macroscopic nonlocal critical-state model! in which the 
Bean-Livingston barrier is taken into account. All of the 
basic results of the macroscopic nonlocal critical-state 
 mode^^-^ have been confirmed. The exact microscopic solu- 
tion demonstrates the occurrence of density jumps, as well as 
the existence of vortex-free regions and an interval A H  for 
variation of the external field, in which the coordinates of the 
vortices do not vary. 

In weaker fields H o < H * ,  the vortices exiting the super- 
conductor as the external field decreases become unstable at 
a certain distance from the surface, which is macroscopically 
large. A macroscopic vortex-free region appears. A generali- 
zation of the macroscopic nonlocal critical-state model to the 
case of H < H * ,  in which the existence of the near-surface 
vortex region must be taken into account in a decreasing 
external field, has been devised in Sec. 6. 

This work was performed with support from the Russian 
Fund for Fundamental Research (Grant No. 96-02- 17730). 

APPENDIX A 

In this appendix we derive of Eq. (8), which makes it 
possible to simplify the nonlinear system of coupled equa- 
tions (3). For this purpose we sum the equalities (7) with 
n = k  to n = i >  k :  

Using the recurrence relations (5) and (6), we obtain 

for m > k  and 

for m < i . We now consider the difference 

Using (A2) and (A3), we find 

i-1 i -m  

It is easy to prove that the first and third terms on the right- 
hand side of the last equation completely cancel one another. 
From (Al) and (A4), we then have 

i / i \ 

Now we utilize (7) with n =  k .  We obtain 

Substituting 
i 

1 + 2 a m  ... ak+ = 1 + ck+ -ak+ . .a ici+ ,, 
m=k+l 

(A71 
i- 1 

1 + 2 a m +  ~ . . . a ~ =  l +Ki-ai...ak+lKk, 
m = k  

(A81 

into (A6), we obtain 
i 

2 fmF(l  +Gk+~) (~k+ l+fk ) -Gi+ l  
m=k 

X( l  +Ki-ai...ak+,ak...aI(ho-GI)). (A9) 

Finally, using (7) with n = i ,  we arrive at Eq. (8), which 
makes it possible to obtain the desired variables Gk ... Gi as 
functions of Gi+,  , if the pinning forces on the vortices in the 
rows numbered k  to i  are known. 

APPENDIX B 

The stability of the solutions of the microscopic critical- 
state model is investigated in this appendix. 

The solution of Eqs. (8) is not unique. For the case of an 
increase in the field, the sign preceding -yY in (15) is arbi- 
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trary. The signs preceding y? in (33) and preceding y? in 
(29) remain undetermined for a decreasing field. Thus, the 
unstable solutions must be eliminated. 

To show that a particular solution is stable, its stability 
against an arbitrary perturbation must be demonstrated. This 
is a difficult problem. We restrict ourselves to consideration 
of two types of perturbations: 1) displacement of any one 
row from its equilibrium position without altering the coor- 
dinates of any other vortices; 2) displacement of the vortex 
lattice as a whole, i.e., displacement of all vortices over the 
same distance. This approach makes it possible to eliminate 
some solutions known to be unstable. 

Let us consider the first type of perturbation. Let the 
kth row be displaced relative to its equilibrium position: 
xk=xk0)+5. Here and in the following the superscript (0) 
corresponds to the equilibrium values of the respective quan- 
tities. The coordinates of all the other rows remain equal to 
their equilibrium values: xi ,  = xjO) . The distance between 
neighboring rows xi -x i - l  varies only for i = k  and 
i = k + 1 ; therefore, 

In addition, since the difference xk+ -xk-  
- - xk+ - xk+xk - xk- I remains unchanged, 

( 0 )  ( 0 )  ak+lak=ak+lak (B2) 

Thus, only ak and ak+ vary in response to the perturbation 
under consideration: 

Using Eqs. (B1)-(B3), it can easily be proved that 

None of the remaining values of G and K vary. 
The solution is stable in the class of perturbations under 

consideration if the sign of the change in the magnetic force 
A f"' upon displacement of a row is opposite the sign of the 

displacement. Since the expression for the magnetic force is 
the right-hand side of force balance equality (7), using (B4), 
we arrive at the expression 

where the subscript k on A f indicates that this relation refers 
to the kth row. Since instability can appear only in the criti- 
cal region (in the subcritical region a small change in the 
magnetic force is balanced by the pinning force), we can use 
(7) with n= k. We then have 

where the plus sign refers to an increase in the external field 
and the minus sign refers to a decrease. 

Let us now analyze the stability of the solutions against 
this perturbation. We first consider a decreasing external 
field. If, in contrast to (29), we do not predetermine the sign 
preceding y?, we obtain two solutions, rather than one, for 
the equations of force balance (8): 

The solution with the minus sign preceding y is always un- 
stable, since the sign of Afem is the same as the sign of 5. For 
the solution with the plus sign we have 

The superscript "dec" on yk was omitted intentionally. The 
fact is that the change in the magnetic force for the solutions 
corresponding to an increase in the external field (14) re- 
duces to precisely the same expression, except that it con- 
tains # instead of y p .  For this reason, all subsequent 
discussions apply to both increasing and decreasing external 
fields. It is clear from (B8) that if yk 1, the solutions are 
stable against the class of perturbations under consideration. 
This is always true in the case of strong pinning. In the case 
of weak pinning, the condition (B8) holds at least in the 
region not excessively close to the vortex front. 

We now consider the second type of perturbation, which 
affects all the rows of vortices at once. Let all the rows in the 
system be displaced by the same distance: xi=xj0'+5. The 
distances between the rows do not vary. The only distance 
that varies is the distance between the first row and the sur- 
face, i.e., only a, and GI  vary: 

Such a displacement of the entire vortex lattice results in the 
following change in the magnetic force acting on the kth 
row: 

Using (15) and (33), we can represent GI0) for both increas- 
ing and decreasing external fields in the form 
G(,"= ho/2+ yo, which gives 
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It is seen from (B11) that the solution is stable, if there is a 
minus sign preceding yo. The solution with the plus sign is 
unstable. 

Eliminating the solutions known to be unstable from our 
discussion, we arrive at a single solution for the coordinates 
of the rows of vortices. 
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