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Averaged quadratic characteristics of electric transport in a disordered, two-component simple 
cubic lattice have been calculated in the context of the conductivity problem. Average 
squares of electric field strengths in each component have been found, thus we could derive not 
only the effective conductivity, but also its derivative with respect to one argument within 
the same accuracy. We have studied longitudinal and transverse quadratic characteristics as well 
as a more general bilinear form of electric field, which has allowed us to tabulate several 
functions of twosparameters which determine the Hall coefficient and magnetoresistance in a weak 
magnetic field. We have demonstrated that calculations of average quadratic characteristics 
around the metal-dielectric transition yield detailed information about the critical behavior of 
kinetic parameters and permit a comprehensive verification of the similarity hypothesis. 
O 1996 American Institute o f  Physics. [ S  1063-7761 (96)01809-41 

1. INTRODUCTION 

The conductivity of disordered two-component lattices 
has been studied using computer simulations by many au- 
thors (see Refs. 1-4 and references therein). In standard 
computer simulations, only the effective conductivity 
a, = a, f  ( p , h )  is usually calculated, where p is the concen- 
tration of the first component and h  = u2 l a l  is the ratio of 
the conductivities of the components. In this case, attention 
is usually focused on a, (or the function f, which is the 
same) around the metal-dielectric transition and the respec- 
tive critical exponents. Nonetheless, not only the function f  
(throughout the domain of its arguments), but its derivative 
f'= d f l d h  is also important for studies of transport in two- 
component materials, namely for calculations of low- 
frequency dispersion of conductivity? thermoelectric 

and galvanomagnetic effects in low magnetic 
fields.' Other parameters, which are usually termed as effec- 
tive quadratic  characteristic^,'^ must be also calculated. 

The study of quadratic characteristics is interesting from 
several viewpoints. For example, calculations of the mean 
squares of electric field strength in each component yield not 
only the function f ,  but also its derivative f '  within the same 
accuracy without .labor-consuming numerical 
differentiation! This allows one to obtain more information 
than usual about the behavior of the function f  in the critical 
region and thus to verify the statements based on the simi- 
larity hypothesis more substantially. Furthermore, the longi- 
tudinal &, and transverse averaged quadratic functions 
(see Sec. 5) are needed for calculating magnetoresistance.' 
Finally, the effective Hall coefficient is derived from the 
more general quadratic characteristic, i.e., function cp (see 
Refs. 8 and 9, and Sec. 6). Note also that quadratic charac- 
teristics calculated in the critical region permit a comprehen- 
sive verification of the similarity hypothesis. 

This has led us to a conclusion that even in studies of 
conductivity the set of calculated parameters must be en- 
hanced to include quadratic characteristics in addition to 

a,. In the two-dimensional configuration, a generalized 
computer simulation was performed on a disordered qua- 
dratic lattice.'' This simulation not only reproduced and im- 
proved the results by other authors, but also yielded new 
data. For example, not only the function f and its derivative 
f' were tabulated, but also the other functions included in the 
expressions for the Hall coefficient and magnetoresistance. 
The behavior of all these parameters was also studied in the 
critical region. 

This paper describes a computer simulation on a three- 
dimensional, two-component lattice with randomly distrib- 
uted bonds between lattice sites characterized by the conduc- 
tivities al and u2. The simulation has been performed to 
comprehensively study the lattice's electric characteristics. 
Given a specific configuration of bonds of two sorts, a sys- 
tem of Kirchhoff's equations was solved on a computer, and 
potentials V ,  were calculated at all lattice\sites. They were 
used to calculate various linear and quadratic effective char- 
acteristics, specifically the function f  and its derivative f' . 
Besides, we have calculated and tabulated (in a graphic 
form) the longitudinal and transverse functions #i,,.r and fii, 
included in the expression for the magnetoresistance.' We 
solved concurrently a similar problem of the conductivity in 
an auxiliary lattice, which was a generalization of the two- 
dimensional dual lattice'' to the three-dimensional case. This 
has allowed us to calculate the function cp in the expression 
for the effective Hall ~oefficient.8~ The behavior of each 
function has been studied around the metal-dielectric transi- 
tion, and not only their critical exponents, but also the coef- 
ficients of the respective expansions have been determined. 

The calculations have been performed on a Convex- 
C210 vector computer by simulating a 50X 50X 50 lattice at 
six values of the parameter h, namely h =  loprn, where 
m = 1, . . . ,6. The bond problem of the simple cubic lattice 
has been studied, in this case the critical concentration (per- 
colation threshold) is p,-0.247.2 The effective parameters 
were determined by averaging over twelve configurations. In 
the critical region, which is more difficult for calculation and 

553 JETP 83 (3), September 1996 1063-7761/96/090553-09$10.00 O 1996 American Institute of Physics 553 



FIG. 1 .  Basic and auxiliary (dashed lines) lattices. 

where the spread of parameters in different configurations is 
larger, the data were averaged over twenty configurations. 

2. ORGANIZATION OF THE COMPUTER SIMULATION 

The problem of the conductivity in an inhomogeneous 
lattice has been formulated in the conventional m a ~ e r . ' . ' ~  
We have considered a simple cubic 
N  X N  X N  = 5 1 X 51 X 5 1 lattice (the number of links was 
50X50X 50, accordingly). The potential at each lattice site 
r = ( j ,  k ,  1) is denoted as V r = V j , k , , ,  where j = l ,  ..., N ,  
k  = 1, . . . , N ,  and 1 = 1, . . . ,N.  At all the sites, except a frac- 
tion of them on the boundary, the potential is determined by 
the system of Kirchhoff's equations 

where the sum is taken over the six vectors connecting near- 
est neighbors: 

In Eq.(l) a , , + ~  is the conductivity between the sites with 
the coordinates r  and r + A ,  which assumes the value 
a,  = 1 with a probability p  ("pure" bonds) and a2 = h  with 
the probability 1 - p  ("defect" bonds). The sites on the two 
opposite faces of the lattice perpendicular to the x-axis are 
under constant potentials equal to 0 and 1, respectively. In 
the directions of y -  and z-axes the boundary conditions are 
periodic, i.e., the sites with k =  1 and k = N  (just as with 
1 = 1 and I = N )  are under identical conditions. 

The calculations were performed as follows (compare to 
Ref. 10). At a fixed concentration p  a specific configuration 
was generated, i-e., the fraction 1 - p  of the bonds selected at 
random were replaced with defect bonds, whose conductivity 
was a 2 = h .  Then the equation system (1) was solved at 
given a r , , + ~  with the boundary conditions defined above. 
Concurrently with the main problem, we solved a similar 
problem about the potentials Fr at sites of the auxiliary lat- 
tice that was generated by the transition to the dual lattice in 
the xy -plane and translation of vertical bonds (see Fig. 1, 
where the components of the auxiliary lattice are shown by 
dashed lines). In this case, the potentials on the opposite 
faces of the lattice perpendicular to the y-axis were defined 
as zero and unity, and periodic boundary conditions were 

imposed in the x and z directions. The potentials 6 were 
used in combinations with V ,  to calculate the function cp, 
which determines the effective Hall coefficient (see Sec. 6). 

In calculating parameters of a specific configuration, it is 
more convenient to present the equation system (1) in the 
following (quasi-one-dimensional) form: 

Here is a banded square matrix with dimensions M X M, 
where M =  ( N -  I ) ' ( N -  2). The vector b on the right-hand 
side of Eq. (2) is a column of M elements, of which only 
( N -  1 )' are nonzero, and emerges because Eq. (2) cannot be 
applied to the sites on the opposite faces perpendicular to the 
x-axis. The vector v is a column of M elements composed of 
unknown potentials V j , k , l .  These parameters are ordered in 
the column as follows. The numeration starts at j= 2, and 
k  runs from 1 to N -  1, whereas 1 also runs from 1 to 
N  - 1, and so on. The numeration ends at j  = N  - 1, at which 
k  also runs between 1 and N  - 1, whereas at each k  1 changes 
from 1 to N- 1. As a result, we have the vector 

For convenience it is presented in the form of a row. In the 
auxiliary lattice, the numeration starts at the fixed k = 2 ,  
whereas j  runs from 1 to N- 1 as 1 varies from 1 to N -  1 at 
each j ,  and so on. In this case the matrix and vector v are 
different from and v, but the equation has the same form 
as Eq. (2). 

The equation system (2) and the similar system for the 
auxiliary lattice were solved using Chebyshev's technique of 
polynomial acceleration of the basic iteration 
For each configuration, the calculations were performed at 
six values of the parameter h:  h =  lo-", where 
m = 1, . . . ,6. The potentials calculated at a fixed m 
( 1 S m s 5 )  were used as initial values in the calculation at 
m+ 1. 

In order to check the calculations and estimate their ac- 
curacy, we calculated at all stages the total current across 
each section of the lattice, i.e., the total current in the links 
perpendicular to the x-axis connecting the planes j  and 
j+ 1, where j  is a number ranging between 1 and N- 1. The 
iteration process was interrupted when the spread of the in- 
tegral current in the cross sections was within 0.1%. The 
resulting potentials V ,  (and c) were used to calculate linear 
and quadratic parameters of the lattice. In order to reduce the 
effect of fluctuations in the distribution of defect bonds ow- 
ing to the finite lattice dimensions, we performed calcula- 
tions for several random configurations and averaged the 
characteristics. The uncertainty in the effective parameters 
was estimated as the rms deviation from the average. The 
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calculations of the effective characteristics are given in Figs. 
2-6,. Outside the critical region, the averaging was per- 
formed over twenty configuraticns, and the spread was 
within 1%. In studying the critical behavior of the param- 
eters (around the percolation threshold at p,=0.247), which 
takes place in the concentration range 0.25p50.3, we de- 
tected large fluctuations of parameters calculated in different 
configurations (at h =  and especially at h =  lop6). 
Therefore, the number of configurations in the critical region 
was increased to twenty, but even under these conditions the 
spread of the effective parameters was up to 15-25%. 

3. LINEAR AND QUADRATIC CHARACTERISTICS 

1. Let the average electric field be directed along the 
x-axis. Then the effective conductivity a, of a material to 
which Ohm's law applies, j= u(r)E, is defined convention- 
ally: 

0, = (jx)l(Ex)- (3) 

Here j is the current density, E is the electric field strength, 
and ( . . . ) denotes averaging over the sample volume V: 

In this definition V--im. The parameters (j,) and (Ex) can 
be expressed in terms of the total current I and potential 
difference (I. As a result, for a cubic sample with an edge 
length L we have 

where L =  N- 1 if the bond length equals unity. 
In a two-component lattice, the conductivity a ( r )  may 

have two constant values al and cr2 in the first and second 
components, respectively. The effective conductivity 
a, = a,(p; al ,a2)  of this system can be expressed as 

where p is the concentration (volume fraction) of the first 
component. The function f-the dimensionless effective 
conductivity-is a fundamental parameter in the theory of 
transport in two-component and its calculation is 
the main goal of the computer simulation. 

The parameter a, is a response function to an external 
field characterizing the medium as a whole. One may intro- 
duce "partial" response functions ti ( i=  1,.  . . ,n) for an 
n-component material (n 2 2): 

where 

means averaging over the volume Vi of the i-th component. 
The parameters ti are also effective characteristics of a me- 
dium when V--+m and Vi-+m. 

Since 

the parameters ti should obey the sum rule: 

The average current density (j) is expressed in terms of ti as 
follows: 

(j) = E u;(E)("= E u;t;(E), 
I i 

hence 

where ai is the conductivity of the i-th component. In the 
case of a two-component system (i = 1, 2), the parameters 

and t2 can be expressed in terms of a,. We derive from 
Eqs. (10) and (12) 

which are identical to the expressions given in Ref. 8. We 
define a, and ti as linear effective characteristics. 

2. Various quadratic effective characteristics are also 
specific response functions. They include the functions $; 

which determine electric field strength squared averaged 
over the volume of the i-th component: 

It is convenient to introduce the dimensionless electric field 
strength in the medium: 

Then the functions t,bi are expressed in terms of e(r): 

*;= (e2)(i). (16) 

In a two-component system, the functions $i are expressed 
in terms of the dimensionless effective conductivity f8: * -('?2)(1)- 

1 - -f-hf', (17) 

According to Eq. (18), the derivative f '  can be numerically 
calculated without differentiating f. The function f can be 
expressed in terms of the averaged parameters squared using 
Eqs. (17) and (18): 

f = + h ~ , b ~ =  (e2)(')+ h(e2)('). (19) 

Equation (19) also derives from the well-known identity 
(.iE)=(j)(E). 

It is known that in a random inhomogeneous medium the 
simultaneous change of variables al++a2 and p +  1 -p 
does not change the macroscopic properties of the material 
hence a ,(p;al  , a2 )=  a,( l  - p ; a 2 , a l )  and the following re- 
lation applies to the function f defined by Eq. (6): 
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Similarly, we have the following relations for the functions 
$i : 

$1(p9h)=$2(l -pll/h),  $2(p,h)=$1(1 -p,llh). 
(21) 

The validity of Eq. (21) is proved by substituting Eq. (20) 
into Eqs. (17) and (18). 

In a calculation of lattice parameters, the electric field 
strength Ex(r) = Ex(j, k, 1,) is defined as a difference be- 
tween potentials at neighboring sites (along the x-axis): 

Therefore, we can express the total current as 
N-1 N-1 

where j is an arbitrary number ranging between 1 and 
N- 1. In the problem statement given in the previous section 
( a l  = 1, U = 1 ) , the function f is expressed in terms of the 
total current as f = Il(N - 1 ), where I is defined by Eq. (23). 
In the case of a discrete lattice, the functions $i are defined 
by the equation 

FIG. 2. (a) Common logarithm of the dimensionless effective conductivity, 
(b) @,=(e2)(')= f- h f ' ,  and (c) $2= (e2)(')= f '  as functions of the con- 
centration p at several values of the parameter h: ( 1 )  h= lo-'; (2) 
h= (3) h= lo-'; (4) it= (5) h= lo-" (6) h= The criti- 
cal concentration p,= 0.247. 

where the sums are taken over all bonds with the conductiv- 
ity ui and L=N- 1. 

In this work we calculate numerically the function 
f(p,h) using both Eq. (5) and Eq. (19). The two results 
coincide within the calculation uncertainty. Figure 2a shows 
the common logarithm of the dimensionless effective con- 
ductivity versus concentration p at six values of the second 
argument h. Figure 2b shows the parameters $, and G2 as 
functions of p at fixed h. Although the functions f ,  G, and 
t,h2 have been calculated only at h< 1, they can be easily 
extrapolated to h>  1 using Eqs. (20) and (21). Note that at 
all stages of the calculations Eq. (13) was used as an addi- 
tional criterion of correctness of results. 

4. FUNCTIONS f AND +I IN THE CRITICAL REGION 

In a system undergoing the metal-dielectric phase tran- 
sition, the function f can be expanded, according to the simi- 
larity hypothesis, in the critical region ( h e  1, 171 9 1, where 
r= ( p  -p,)/p,, p, is the critical concentration) as 
 follow^:^^^^ 
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where 

is the transition width.12 The critical exponents t, s, and q 
are related by Eq. (26). The numerical factors A k ,  a k ,  and 
Bk are equal to unity within one order of magnitude, and it is 
obvious that A o ,  a o ,  and B ,  are positive. As was proved in 
Ref. 5, A ,  > O  and B2<0. One can easily prove that a ,  >O. 

The following expansion of the function can be de- 
rived from Eqs. (17) and (25): 

FIG. 3. (a) Longitudinal + , , = ( # ) ( I )  and (b) 
transverse $,,=(e:)(') functions at several val- 
ues of h (notations are given in the caption of 
Fig. 2). 

Note that, unlike Eq. (25a), the correction in Eq. (28a) is 
quadratic in the small parameter h / r  ' IS.  In deriving Eq. 
(28c) we have taken into account Eq. (26). 

The expansion of the function t,b2 is derived from Eqs. 
(1 8) and (25): 

FIG. 4. (a) Longitudinal +,I=(4)'Z' and (b) 
transverse +z,=(e:)'2) functions (notations are 
given in the caption of Fig. 2). 
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FIG. 5. Function cp calculated by Eq. (41). 

According to Eq. (29), as a function of the concen- 
tration has a sharp peak around p = p ,  if h e  1 (Fig. 2c). If 
Eqs. (26) and (30) are valid, q l = q ,  i.e., the critical expo- 
nents of G2 at r > 0  and r < 0  coincide provided that the 
similarity hypothesis holds. As was noted above, the coeffi- 

FIG. 6. Function .R calculated by Eq. (43). 

cient a ,  is positive, therefore the maximum of 1 4 ~  plotted 
against p  is centered at p > p ,  (Fig. 2c) and is shifted with 
respect to the critical point p,  by the value - hS1'. 

Since the functions and t,b2 are positive by definition, 
it follows from Eqs. (17) and (18) that 

After substituting this into Eq. (25), we obtain the condition 
s< 1 and the inequalities A >0 and B2<0  derived in Ref. 5 
from physical considerations. 

In processing the results of computer simulation at 
p > p ,  (outside the transition region), it is more convenient to 
derive the exponent t not from the function f, but @ I  be- 
cause its correction is smaller than that o f f  owing to the 
smallness of h [compare Eq. (25a) with Eq. (28a)l. The fac- 
tor A. was determined simultaneously with t. Then the ex- 
ponent q, as well as the factors A , and B  ,, can be derived 
by processing the calculations of using Eqs. (29a) and 
(29c) (the equality q f  = q  can be also checked). Finally, the 
critical exponent s and the factor a,-, can be calculated by 
three methods, namely, from f ,  e l ,  and e2 as functions of 
h  at p = p , .  The parameters of the critical region derived 
from computer simulations are listed in Table I. 

5. LONGITUDINAL AND TRANSVERSE QUADRATIC 
CHARACTERISTICS 

Beside the functions i,bi, it is also interesting to investi- 
gate the functions 

where ql and e, are the components of the vector e defined 
by Eq. (15) and oriented parallel and perpendicular to the 
average electric field (E), where ( . . . )(') has the same sense 
as in Eq. (8). The functions in Eq. (31) are related to +bi in 
Eq. (16) by an obvious equation 

In the case of a discrete lattice (problem statement in Sec. 2), 
the function @il is defined by the first sum in Eq. (24), and 
rlr,, by the other two sums. 

In the case of a random inhomogeneous medium, we 
have relations similar to Eq. (21) (see, for example, Sec. 7): 

and two more relations derived from Eq. (33) by exchanging 
the indices 1 S 2 .  Equation (33) allows us to determine the 
functions ~ ) ~ ~ ( p . h )  and q$,(p,h) at h> 1 if their values at 
h  < 1 are known. 

No relations like Eqs. (17) and (18) are known for the 
functions qil and but their basic properties can be de- 
rived from Eqs. (31) and (32). The shape of @ I I  (for h< 1) 
can be seen in Fig. 3a, which shows ell  as a function of 
concentration p at two values of the other argument, 
h  = 10- and h  = Note that the shape of the longitudi- 
nal function is almost identical to that of @, , as well as 
its amplitude. The shape of the transverse function @,, (Fig. 
3b) is similar to those of and 14, at ps0.4,  but is very 
different in the interval 0 . 4 5 ~ 5  1 and turns to zero at 
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TABLE I. Summary table of parameters in the critical region. 

P'PC 

Here All=hsll"ll is the peak width of the function 
According to the similarity hypothesis,12*13 all critical phe- 
nomena at zero magnetic field are characterized by one scale, 
therefore the value of A should be comparable to A. in Eq. 
(27) (compare to the discussion in Ref. 8). Hence, follows 
the second relations among the introduced critical exponents: 

'f' 58 

I =  3.72 0.4 g=0.320.1 
C = 0.32 0.3 W =  1.720.3 

Since both $11 and are positive, it follows from Eq. (32) 
that cannot decay more slowly or increase faster than 

. From this condition we derive the limitations on the 
respective exponents: 

The critical behavior of the function I),, is described identi- 
cally. The same limitations and relations apply to as to 

only the label 1 is substituted by t. 
The behavior of the function $21 in the critical region 

can be described similarly to Eq. (29) (here we also give 
only the expansion terms of the lowest order): 

f 'f' R 

Equation (38) derives from the condition A 21- AO , where 
A21= hA2llq21 is the peak width of the function $21. Since the 
singularity of $21 cannot be of a higher order than that of 
4b2, the following conditions should be satisfied: 

'f' d 

In the critical region, the same relations and conditions apply 
to 4b2, as to +21, only the label I is substituted by r. 

Thus only one new critical exponent is needed to de- 
scribe the critical behavior of the functions $11, $,,, t,bzI, 
and t,b2,, and the complete set of critical exponents can be 
composed of t l l ,  t,, , q2,, and q2, . The rest of the critical 
exponents can be expressed as 

Nore.The first column lists parameters o f f ,  9 , .  and (I., ; the second lists 
parameters of the longitudinal characteristics I) , ,  and $,, , and the function 
cp; the third column shows parameters of $,, and i,h2,, and the function 
3%. 

p =  1. The drop of this function to zero at p--+ 1 is quite 
natural because in a homogeneous medium the transverse 
component of the electric field should be zero. Finally, the 
shapes of the functions and g2!, which are similar to that 
of i+h2, are shown in Fig. 4. 

The critical behavior of the functions flI1 in system un- 
dergoing the metal-dielectric transition can be described 
similarly to Eq. (28) (only the expansion terms of the lowest 
order are given): The parameters derived by processing computer simulations 

of the functions and in the critical region are listed in 
Table I. 
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6. HALL COEFFICIENT 

The conductivity of an isotropic material in the magnetic 
field H is described by the tensor 

in which we use the notations of Ref. 8. In a weak magnetic 
field (H-+O) the Hall component a, is linear in H. In this 
approximation the Hall component of the effective conduc- 
tivity tensor can be expressed as 

where the galvanomagnetic parameters of the components 
are given in the explicit form. The function cp(p,h) in Eq. 
(40)  is determined by the medium properties at H=O. In a 
randomly disordered system, the function cp  satisfies the fol- 
lowing condition (see the next section): 

hence the function cp(p,h) can be determined at h> 1 if it is 
known at h< 1. 

Let us denote the electric field in the medium determined 
in solving the conductivity problem at H=O for a given elec- 
tric field (E('))  as E(')(r),  where the superscript v denotes 
that the average field is aligned with the axis v. The function 
cp(p,h) can be expressed in terms of the electric field 
E( ' ) ( r )  as fo l~ows:~*~ 

In this paper ~ ( ~ ) ( r )  in Eq. (41) is the field in the basic 
lattice, and E(Y)(r) is the field calculated in the auxiliary 
lattice (see Section 2). The field strength ~ ( ~ ) ( r )  and 
E(Y)(r) are expressed in terms of the potentials V ,  and ?, by 
equations like Eq. (22). The result of the computer simula- 
tion is shown in Fig. 5, where cp(p,h) is plotted against 
concentration p at two values of h .  

The following expression for the effective Hall coeffi- 
cient R e = H - ' a a e l a ;  has been derived from Eq. ( 4 0 ) : ~ ~ ~  

where Ri is the Hall coefficient for the ith component 
( i= 1 ,  2) and f is defined by Eq. (6). We should stress that 
in the approximation linear in H Eq. (42) is exact and its 
parameters are arbitrary. Figure 6 shows 5% as a function of 
concentration p at six values of h varying from lo-' to 
1 0 P .  

In a system undergoing the metal-dielectric transition, 
the functions cp  and 5% in the critical region ( 1  71 < 1, h e  1 ) 
are given by the following expressions derived from the 
similarity hypothesis8*9: 

In order to characterize the function cp, we have introduced a 
new critical exponent labeled by 1 in addition to those of the 
function f. The other two exponents can be expressed in 
terms of 1, t ,  and q879: 

Hence, the exponents g and k are expressed as 

The equality of the critical exponents of the function 
9 above ( r > 0 ,  AO< T< 1) and below ( 6 0 ,  AO< 1~14 I )  
the transition point derives from the first relation in Eq. (45). 
Equations (44) provide a comprehensive description (in the 
sense of the similarity hypothesis) of the critical behavior of 
the parameters a,, and Re in the approximation linear in H. 
The parameters obtained by processing results of computer 
simulations of the functions cp  and 9 in the critical region 
are listed in Table I. 

7. MAGNETORESISTANCE 

Under a weak magnetic field (H+O) ,  the corrections to 
the diagonal components of the conductivity tensor, axi and 
a,;, are quadratic in H: 

axi= ui+ yxi , azi=ai+ yZi( ~ x H ' ) .  (47) 

Here ai is the i-th component of conductivity at H=O. Let 
us express the effective parameters axe and a,, in the form 
similar to Eq. (47): 

uxe=(+e+Yxe 9 u z e = ~ e + ? ' z e  (48) 

where a, is the same as in Eq. (6). For a two-component 
system in the approximation quadratic in H,  we have the 
following expressions for yx, and yze :* 

The factors t,h$&) @) xX , and X ,  are determined by the 
properties of the material at H=O and are the functions of 
the parameters p and h .  

The factors i,b$k) and I+%:&) can be expressed in terms of 
the longitudinal and transverse functions introduced in 
Sec. 5:8 
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The properties of the functions t,bil and (in particular, 
their critical behavior) were discussed in detail in Sec. 5. The 
results of Sec. 5 can be directly applied to the functions 
$:k) and I#'), taking into account Eqs. (51) and (52). 

The functions X ,  and X ,  are expressed in terms of the 
electric field strength at H= 0 in the medium in a more com- 
plex form: therefore their determination may be a subject of 
a dedicated study. In this paper we only note that the shapes 
of the curves of X ,  and X, versus p (at fixed h )  are similar to 
those of @ , , ( p )  (compare to the results for the two- 
dimensional  stern).^"^ Hence, their critical behavior can be 
described similarly to that of I+%,,, although each new func- 
tion demands a new critical exponent. 

In a random inhomogeneous medium the simultaneous 
substitutions p-t 1 - p  and do not change its mac- 
roscopic properties: 

Hence, follow Eq. (20) in the approximation of zeroth order 
in H, the expression for cp from the previous section in the 
linear approximation, and Eqs. (33) and the relations for X ,  
and xz in the quadratic approximation with due account of 
Eqs. (47)-(52): 

Using these relations, the functions x , ( p , h )  and , y , ( p , h )  can 
be calculated at h > 1 if they are known at h < 1. 
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