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This paper describes how the natural variations in the polarization and dielectric constant near 
the surface of a material affect electromagnetic surface waves. It is shown that when this 
variation is taken into account, it becomes possible for bound TE-waves to exist at the surface 
between nonmagnetic media, waves that do not appear unless this effect is included. 
Dispersion relations for these waves are derived. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

As is well known, the polarization of a medium is pro- 
portional to the average local field EloC acting on a molecule, 
and not the average macroscopic field. The connection be- 
tween the local field and the average macroscopic field is 
established from additional considerations, which take into 
account the properties of the medium under study.'-7 

On the other hand, the average local field acting on a 
surface molecule of a material is always anisotropic, because 
the neighboring molecules that generate this field are located 
on only one side. From this it follows that the polarization of 
a near-surface layer differs from its value in the bulk of the 
material. In particular, a "natural" anisotropy will arise in 
the near-surface layer; this was observed experimentally in 
Ref. 8 as an anisotropy in the reflection of light from the 
(110) surface of single-crystal germanium, and was ex- 
plained theoretically in Ref. 9. 

The thickness of a natural surface layer with properties 
different from those of the rest of the material is the same 
order as the dimensions L of the region in which the local 
field is generated, i.e., it is small compared to the wavelength 
of the field but large compared to intermolecular distances. 

Previous investigations of electromagnetic surface 
waves have not included this natural variation in the polar- 
ization at a surface. 

It is interesting to estimate how the existence of a natural 
variation in the polarization of a near-surface layer influences 
the properties of electromagnetic surface waves. 

2. LOCAL FIELD AND POLARIZATION AT THE SURFACE 
OF A MATERIAL 

In order to compute the local field in a medium, let us 
investigate the microscopic field EmrC acting on a molecule 
of the medium located at a point R. 

This field consists of a primary field E0 (which has not 
yet interacted with any of the molecules) and a sum of all the 
secondary fields created by the dipole moments d ( R 1 , t )  of 
the remaining molecules. Therefore, we can write for the 
time Fourier transform of the fieldi0 

Xexp(ip(R- R ' ) ) ,  (1) 

where the summation runs over the coordinates R' of all the 
remaining molecules of the material except the one under 
study, and we have intsoduced the notation 

Equation (1) is transformed into an integral equation for the 
field if we assume that d ( R 1 , o )  = cu(w)EmiC(~'  ,o), where 
a(o)  is the polarizability of the molecules of the material. 
The effective field acting on a molecule is generated by add- 
ing the fields of many molecules lying in a certain region 
with linear dimensions L that are large compared to the in- 
termolecular distance n- 'I3, but small compared to the 
wavelength 

When this inequality is satisfied, the values of the micro- 
scopic field acting on a molecule are close to its value aver- 
aged over the positions of the other molecules. We will refer 
to this field as the local field E ' ~ .  In order to find the local 
field, let us average (I) over the coordinates of all the mol- 
ecules of the material except the one under study. Then the 
microscopic field acting on a molecule is replaced by the 
local field; to average the sum, it is sufficient to multiply 
each term by the probability of a molecule being located at a 
distance RIf=R-R' in a volume element dVf  , 
dW(RW) = g(R")(dVf lV )  (where g(R") is the so-called ra- 
dial distribution function), and then integrate over all R". 

After this, the dependence on R' disappears from the 
terms of the sum, so that the summation reduces to multipli- 
cation by the number of remaining molecules of the material 
N- 1 = N. The radial distribution function g(R") reduces to 
zero for ~ " % n - ' / ~ ,  because the probability of unbounded 
approach of two molecules in a uniform material equals zero. 
On the other hand, the positions of distant molecules are 
uncorrelated, because g  (R") = 1 for R"Pn - 'I3. Therefore, it 
is convenient to introduce the notation f(R") = 1 - g(RN) 
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and f  ( 0 )  = 1, f (R")  = 0 for ~ " % - n - " ~ .  Taking this into ac- 
count, it is not difficult to obtain the average of ( 1 )  in the 
form 

The polarization of the material is related to the local field by 
the expression 

which allows us to transform ( 4 )  to the form 

It is important that the primary field E0 satisfy the Max- 
well equations in vacuum, with the very same field sources 
as those entering into the Maxwell equations for the average 
macroscopic field in the material. This allows us to obtain a 
relation between the primary field EO, the macroscopic field 
E, and the polarization of the medium P: 

Equations ( 6 )  and ( 7 )  for the field in the bulk of the material 
differ from those equations for the field at the surface only 
by the fact that in the first case the integration over R" is 
carried out over infinite volume, while in the second place 
we must take into account that the molecule can be located 
only in a region of positive Z ' ,  i.e., Z M < Z .  Eliminating the 
primary field from ( 6 )  with the help of (7 ) ,  we are led to the 
equation 

Effective values of the variable of integration R" in ( 8 )  are 
determined by the function f ( R W ) ,  which is nonzero only at 
distances of the same order as intermolecular distances. At 
these distances, when inequality ( 3 )  is fulfilled the polariza- 
tion of the medium changes only slightly and we may re- 
move it from the integral sign in (8 ) ,  after which this equa- 
tion becomes algebraic. In an isotropic medium, we can 
assume that f ( R )  does not depend on the direction of R ,  so 
that in an infinite medium the integration reduces to taking 
the integral 

I d 3 p f ( p ) Q i j ( p ) = 8 i j l  d 3 p f ( p ) = ( 2 / 3 ) +  

After this, Eq. ( 8 )  takes the form 

which reduces to the Clausius-Mosotti equation: 

In a semi-infinite medium it is convenient to introduce the 
notation 

where the dependence on Z  arises from the fact that integra- 
tion over Z" is carried out in the region Z"<Z. From what 
we said above it follows that in an infinite medium 
M i j ( ~ )  = (213) Sij . Using this value, we can transform (1 1) 
to the form M i j ( Z )  = (213) Sij- V i , ( Z ) ,  where 

Taking into account the latter fact, with the help of (1  1), (12)  
we can transform (8) to the form 

+ 4 m a ( o ) V i j ( Z ) } ,  

or, using (10)  

[ E ( o ) -  1]Ei(R,o)=4.rrPj(R,o){Gi,+[e(o) 

3. DIELECTRIC PROPERTIES OF THE NEAR-SURFACE 
LAYER 

Because the tensor Vi , (Z)  has only one preferred direc- 
tion, i.e., the normal to the surface (which coincides with the 
Z  axis), this tensor possesses axial symmetry with respect to 
the Z  axis, V,(Z) = V y y ( Z ) ,  but the principal value V, , (Z)  
does not coincide with the two other values. 

Since the coordinate axes coincide with the principal 
axes of the tensor V i j ( Z ) ,  it is easy to express the compo- 
nents of the polarization from (13)  in terms of the compo- 
nents of the average macroscopic field: 

- l I V z z ( Z ) } .  (14)  

When inequality ( 3 )  holds, the width of the near-surface 
layer is large compared to intermolecular distances, and we 
can describe the properties of this layer macroscopically by 
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using a dielectric constant. It follows from (13) that the di- 
electric constant is a tensor that depends on the coordinate 
Z with principal values 

e x x ( z , ~ ) = e y y ( z . ~ ) = { ~ ( ~ ) + [ ~ ( ~ )  - 1 l V x x ( ~ ) l ~ ~ l  

+[E(w) - llVxx(z)>, 

e z z ( z , ~ ) = { & ( ~ ) + [ ~ ( ~ ) -  l l V Z z ( z ) l ~ ~ l  +[e(o) 

- 1 1Vzz(z)~. (15) 

Thus, the near-surface layer of material turns out to be 
one-dimensionally nonuniform in the direction normal to the 
surface, and is anisotropic. In describing the near-surface 
layer by using the dielectric constant (15), we have neglected 
quantities of order ( 1ILn 'I3) and ( wlcn 'I3), while keeping 
quantities of order (L wlc). 

4. THE INFLUENCE OF NATURAL ANISOTROPY OF A 
NEAR-SURFACE LAYER ON SURFACE WAVES 

The variation in dielectric properties of a near-surface 
layer compared to the properties of the material in the bulk 
takes place within a rather thin layer whose thickness is 
small compared to a field wavelength. This allows us to in- 
clude the properties of the near-surface layer approximately 
by introducing a corresponding surface current into the 
boundary conditions." Then the description of the near- 
surface layer will be less precise than (15), because we have 
neglected corrections of order (L wlc) , which were included 
in (14) and (15). The coefficient of proportionality between 
the surface current and the field will depend on the properties 
of the near-surface layer, and becomes the fundamental phe- 
nomenological characteristic of the dielectric properties of 
this layer. 

Let us discuss a plane surface z = 0 between the material 
and vacuum. Let the dielectric constant of the material with- 
out including the surface layer be e ( ~ ) .  This implies that 
under the action of a field in the material, a bulk density of 
microcurrents is induced: 

where B(z) = 1 for z>0, B(z) = 0 for z <0. Equation (1 6) 
assumes that the properties of the material do not change up 
to the boundary surface itself. However, the existence of a 
near-surface layer implies that in reality the density of mi- 
crocurrents induced by the field differs from (16) by a certain 
quantity Gj(r,w). It is obvious that this quantity reduces to 
zero far from the surface. 

Let us introduce a surface current J(x,y,w) via the rela- 
tion 

The small thickness of the layer in which this current exists 
allows us to treat it as a surface current in the boundary 
conditions. From (15) it follows that the surface current can 
be written in the form 

The electric field of the wave.varies little over the layer 
thickness, so that we remove it from the integral with respect 
to Z; after substituting (15) into (IS), this relationship be- 
comes 

where the quantity 

may be referred to as the surface dielectric constant. In the 
special case where [e(w) - 1]Vzz(z)4 1, we can neglect this 
quantity in the denominator, after which (21) takes the form 

The field of a surface wave propagating along the sur- 
face z=0 that separates the material (z>O) from the 
vacuum, is conveniently written in the form 

Substituting these fields into the Maxwell equations gives 

Using the boundary conditions together with the Maxwell 
equations leads to the relations 

From (24), (25) it follows that two types of surface waves are 
possible: either Ez=O and we must fulfill the condition 

or H z =  0 and we must fulfill the condition 

Thus, without including the natural variation of the po- 
larization of the near-surface layer, the existence of surface 
waves with Ez=O (TE-waves) at a surface separating two 
nonmagnetic media is impossible, because for h = O  condi- 
tion (26) can never be satisfied. Once this natural variation in 
the properties of the surface layer is included, the existence 
of such waves becomes possible. The dispersion equation for 
surface TE-waves is easily obtained from (26): 
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If we take into account that the wavelength of the field 
should be large compared to the interatomic spacing n-'I3 in 
macroscopic electrodynamics, then in order to use (28) the 
following inequality must be satisfied: 

q+nl". 

For very small (or very large) h, inequality (28) is not 
satisfied. This implies that macroscopic electrodynamics be- 
comes unsuitable to describe such waves. Therefore, a mac- 
roscopic treatment of surface TE-waves requires that the fol- 
lowing inequality hold: 

5. DISCUSSION 

The coordinate dependence of the medium dielectric 
constant in the near-surface region (15) can be treated as a 
phenomenological characteristic of the material, to be deter- 
mined by an independent experiment. It should be empha- 
sized that in the final analysis the form of this dependence is 
determined by the radial distribution function g ( R ) .  The 
Fourier transform of the radial distribution function of the 
medium can be measured, e.g., using x-ray diffraction. Thus, 
generally speaking, the form of the coordinate dependence of 
the medium dielectric constant in the near-surface layer can 
be established experimentally. The same thing can be said 
for the surface dielectric constant (28). 

From what we have said it follows that the natural varia- 
tion in the polarization of the near-surface layer of a material 
leads to a qualitative effect: the potential existence of a sur- 
face TE-wave at the boundary between two nonmagnetic 
media. Indeed, the existence of such a wave is possible only 
when this effect is included. The effect on a surface 

TM-wave turns out to be not so important, and reduces to a 
small correction. 

The natural change in the polarization of a near-surface 
layer, in accordance with (21), has a strong effect when the 
medium has a large dielectric constant and is much weaker 
for those media whose dielectric constant is close to unity. 

Generally speaking, the influence of the natural variation 
of the polarization of a near-surface layer is important in the 
same situations where the influence of surface nonuniformity 
is. From this it follows that we must always take this varia- 
tion into account when discussing the effect of various sur- 
face nonuniformities on electromagnetic phenomena. If the 
the natural variation of the near-surface layer polarization 
turns out to have a stronger effect than the surface nonuni- 
formity, then the nonuniformities might as well be neglected. 
This allows us to establish the minimum size of a nonunifor- 
mity that is meaningful to discuss. 
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