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We discuss the reflection of a transverse elastic wave incident from a substrate onto a system 
consisting of a periodic system of piezocrystalline layers with identical material 
properties, one side of which is bounded by the substrate and the other by a mechanically free 
surface. The layers are separated by superconducting or metallized cladding layers, 
depending on whether the layers are made of piezomagnetic or piezoelectric material, respectively. 
Because these cladding layers screen the quasistatic magnetic or electric fields that accompany 
the elastic wave, they cause a reflection of the wave at the layer boundaries that is weak 
due to the smallness of the magneto- or electromechanical coupling parameters. The presence of 
the mechanically free surface ensures total reflection at any angle of incidence, so that the 
amplitude of the reflection coefficient is always unity. This allows us to study the effects of 
diffraction on the phase of the reflection coefficient for a wave reflected from the boundary 
of the substrate-layered structure against this constant (unity) amplitude background. We have 
analyzed the spectral dependence of the phase change of the reflected wave due to multiple 
reflection at the boundaries between layers, which adds to the path length of the wave. We show 
that this diffraction-induced phase shift has a characteristic resonance behavior, attaining a 
maximum value near Bragg-forbidden zones that is roughly twice the increase in the maximum 
background level. We discuss several possible wave effects based on the concept of phase 
resonance. O 1996 American Institute of Physics. [S 1063-776 1 (96)01209-71 

1. INTRODUCTION 

The authors of Ref. 1-3 investigated theoretically the 
properties of controllable Bragg diffraction of acoustic 
waves in a system made up of identical piezoelectric or pi- 
ezomagnetic layers separated by infinitely thin cladding lay- 
ers with metallic or superconducting properties, respectively 
(i.e., cladding layers whose thickness is small compared to 
the wavelength of the sound being used). It is obvious that 
the reflection of a piezoactive acoustic wave by such a met- 
allized (or superconducting) cladding layer is solely a conse- 
quence of the latter's ability to screen the quasistatic electric 
(magnetic) field that accompanies the propagation of sound 
in the adjacent piezoelectric (piezomagnetic) layers. If we 
are discussing a multilayer structure made of such layers 
placed between two substrates, then the reflection coefficient 
r from each individual boundary is small, due to the small- 
ness of the electro- or magnetomechanical coupling param- 
eter q2 (see Ref. 4). This determines such features of the 
acoustic diffraction as the enhanced sharpness of Bragg re- 
flection resonances, their amplitude modulation, and the ex- 
tinction effect. On the other hand, these properties can be 
controlled if we take advantage of the possibility of "shut- 
ting down" the reflection at a superconducting cladding 
layer by converting the latter to its normal state (i.e., "turn- 
ing off" its screening action), or by regulating the linear 
electromechanical coupling of a paraelectric (centrosymmet- 
ric) layer by applying an external electric field. 

In several previous papers'-3 we investigated the prop- 
erties of the amplitude of the reflection coefficient ( R I  from a 
piezocrystalline multilayer structure. However, it is well 

known that when the conditions of Bragg resonance are sat- 
isfied, the diffracted wave also undergoes a rapid phase 
change (by T) in the spectral intervals corresponding to 
maxima of the quantity I R ( .  Note that the method of standing 
waves in x-ray optics is based on this phenomenon; for ex- 
ample, see Refs. 5-7. Obviously, such effects should also 
occur in a system of piezocrystalline layers of the sort we are 
discussing here when the latter are placed between two sub- 
strates. 

However, it is more interesting to discuss the resonance 
properties of the phase of the reflection coefficient under 
conditions where there is no amplitude resonance at all. This 
very situation arises if one of the substrates is taken away, 
i.e., if the layered structure under discussion is bounded on 
one side by a substrate and on the other by a mechanically 
free surface. Of course, for a shear wave incident from the 
substrate onto the multilayer system the amplitude of the 
reflection coefficient equals unity at any frequency and angle 
of incidence (i.e., the boundary between the layered medium 
and vacuum plays the role of an "mirror" for sound). A 
fundamental question then arises: will the spectral depen- 
dence of the phase of the resulting diffracted wave have 
Bragg-like resonances in this case, i.e., can we create a 
"pure" phase resonance against a background of identically 
constant (unity) value of I R J ?  

Al'shits et al. showed in Ref. 8 that a transverse acoustic 
wave reflected from a mechanically free boundary of a pi- 
ezocrystal acquires a phase shift due to excitation of a sur- 
face electric- or magnetic-field wave, and that in a geometry 
not too close to grazing, this phase shift is proportional to the 
parameter q2+ 1. Analogously, we showed in Ref. 4 that a 

509 JETP 83 (3). September 1996 1063-7761/96/090509-08$10.00 O 1996 American Institute of Physics 509 



... -- ------ .., ----- ------ 

8 

... d -- ----- 1 ------ I... [ ---- 1 ----- 1 
FIG. 1. Geometry of the problem: equidistant (a) and non- 
equidistant (b) cases. 

wave passing through a single thin cladding layer of screen- 2. STARTING RELATIONS 

ing material between identical piezocrystalline media also 
acquires a small phase shift of order q2.  

If, however, a transverse wave is incident from an "in- 
put" substrate onto a system consisting of identical piezoc- 
rystalline layers and screening cladding layers with a me- 
chanically free surface as its "output," the reflection 
coefficient obviously has the form R = exp(i@), where in- 
cludes the "trivial" phase advance associated with the path 
length of the wave making a round trip through the layered 
system in the forward and backward directions, and an addi- 
tional diffraction-induced phase shift A@ due to contribu- 
tions from multiple reflections and refractions. We expect 
that the quantity A@, unlike the phase shift due to an indi- 
vidual cladding layer, will attain rather large values when the 
number of layers is large enough, and that its spectral depen- 
dence will exhibit resonant behavior. In this case, the option 
of "turning on" and "turning off" the reflection at bound- 
aries between the layers mentioned above should make it 
possible to discontinuously change the phase @ by the value 
of the diffraction contribution A*. 

For definiteness, we illustrate this effect and derive vari- 
ous expressions for the case of piezomagnetic layers with no 
piezoelectric properties (the corresponding magnetic symme- 
try classes are listed in Ref. 9), and then discuss the changes 
that must be made in these expressions in order to treat the 
case of a piezoelectric layered structure. 

We consider a periodic structure consisting of N identi- 
cal layers of piemmagnetic hexagonal crystal separated by 
thin superconducting cladding layers. On one side the lay- 
ered system is adjacent to a semi-infinite substrate, while on 
the other side it is bounded by a mechanically free surface 
(i.e., a vacuum boundary). Coupled waves of elastic dis- 
placement u and quasistatic magnetic induction B and poten- 
tial F are described by the standard equations 

where 

6 is the mechanical stress, p is the density, t are the elastic 
constants, A are the piezomagnetic moduli, and @ is the 
magnetic permeability. The elastic displacement and force 
are continuous at the interlayer boundaries, while the normal 
component of the magnetic induction goes to zero at a clad- 
ding layer in the s-state by virtue of the Meissner effect 
(when the thickness of the superconducting film is much 
smaller than the wavelength but much larger than the Lon- 
don penetration depth). 

We assume that an elastic wave incident from the sub- 
strate excites a shear wave in the layered system with 11112, 
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propagating in the xy plane (Fig. I). In this case, according 
to (2), the elastic force f= Gn(nlly) is directed along z. The 
complete acoustomagnetic wave field in the nth layer con- 
sists of a superposition of incident and reflected waves, along 
with a pair of nonuniform modes whose parameters are given 
by Eqs. (11, (2): 

0 

+b/?( I* ) exdk,(y+nd)], 
- i ~ l l  

(3) 

where an overall factor of expEi(k~- or)] has been omitted; 
the labels i ,  r and s, s' refer to the incident, reflected, and 
nonuniform modes, respectively, the asterisk denotes com- 
plex conjugation, d is the layer thickness, and 

k,=w&sinO, ky=k,cot8, 

K ~ = %  cot 8 - 4 w m l ~ 1 5 1 p 1 1 r  
- 

K,= -c4 cot 8-4wml4ml5/pl1, 

The boundary conditions at y = -nd that relate the wave 
fields in the nth and (n + 1)th layers are written in the form 

Furthermore, the free-surface condition holds at the bound- 
ary y = - Nd of the layered system: 

along with an additional boundary condition for the magnetic 
field that depends on the phase state (superconducting or 
normal) of the free surface. 

As shown in Ref. 1-3, by substituting Eq. (3) into (5) 
and eliminating the amplitudes of the surface modes by using 
the boundary conditions for the magnetic induction we can 
express the amplitudes of the incident and reflected waves in 
neighboring layers in terms of one another: 

where w is a matrix propagator with components 

iqi(cos kyd - cosh k,d) 

'' sinh kxd + q: sin kyd ' 

2 q2,=q& tan 8, q&= 4 1 r m ~ ~ l p 1 1 h .  (10) 

In what follows, we will avoid tedious calculations by 
making the short-wavelength approximation, which is natu- 
ral for the Bragg problem, corresponding to the condition 

In this case Eq. (9) simplifies: 

It is also convenient to assume that the substrate is made 
of the same piezomagnetic crystal as the layers (in the for- 
mulation we will use here, the sixfold axis is parallel to the 
z axis, and the boundary between the substrate and the lay- 
ered system has superconducting properties). Then, accord- 
ing to Refs. 1-3, within the framework of the short- 
wavelength approximation (1 1) the transfer matrix from the 
semi-infinite substrate to the first layer precisely coincides 
with the propagator W. Consequently, the amplitudes bjo) 
bSO) for the incident and reflected waves in the substrate are 
related to the amplitudes b!N) b!N) in the Nth layer by 

The matrix that equals the Nth power of the propagator w 
(det W= 1) satisfies the standard relations 

where K is the Bloch wave number, which specifies the ei- 
genvalues exp(+iKd) of the matrix W, so that 
cos(Kd)=(Wll + Wfl)/2. For this case, taking (8) into ac- 
count we obtain 

where the approximate equality is valid under condition (1 1). 
According to (3), near the points ?rl (I = I ,2,3), when 

I kyd - wll - q; this equation reduces to: 

Setting Kd= wl in (16) determines the coordinates 

of the boundaries of the so-called "forbidden zones," within 
which the Bloch wave number K =  K(ky) takes on complex 
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values Kd = ml+ iKr . Far from the forbidden zones, to first tan(NKd) S 
order in q; the approximate equation (15) implies the simple [sin(k,d) - 2q; cos(k,d)] sin(Kd) +tan- 2 
relation 0 - 2 Arctan 

S sin(k,d) 
1- q;+tan- - 

k,d= ~ d +  q;. (18) ( 2 )  mn(Kd) tan(NKd) 
(24) 

3. RESULTS AND DISCUSSION 

According to (13), (14), we can cast the reflection coef- 
ficient R at the "input" of the layered structure (y = + 0, see 
(3)) in the form 

where ei"b!N)lbjN) is the reflection coefficient from the 
free boundary of the layered system at y = - Nd (see Fig. 1). 
Obviously, S depends on the phase state (superconducting or 
normal) of this boundary. If a superconducting cladding 
layer is deposited on the latter (S= a,), i.e., the free-surface 
condition (6) is augmented by the requirement that the mag- 
netic induction be screened, i.e., [B , ( -  ~ d ) ] ( ~ ) =  0. Then by 
substituting (3) into these boundary conditions and eliminat- 
ing the surface-wave amplitudes, we obtain 

. sinh k,d- iq;[cosh(kxd) - emikyd] 
e 1 4 ,  

sinh kxd + iq2cosh(kxd) - eikyd] ' (20) 

In the short-wavelength approximation (1 I), this gives 

which naturally coincides with the exact expression com- 
puted in Ref. 8 for the phase shift associated with reflection 
from the free superconducting surface of a piezomagnetic 
semi-infinite medium (i.e., not a layer). 

Analogously, when the free boundary of the layered sys- 
tem is in its "free" state (i.e., Eq. (6) augmented by the 
condition of continuity of the magnetic field), we may set 
S= 8, , i.e., in the short-wavelength approximation the phase 
shift is given by the expression obtained in Ref. 8 for a 
semi-infinite medium: 

Note that 

S,=S, for p l l P 1 .  

s,=s,/~ for ml5=0, pll-1, (23) 

where the first condition is satisfied in sufficiently strong 
ferromagnets, the second in antiferrornagnets belonging to 
the magnetic symmetry classes mlmm, 6/rnmm, 41rnmrn.~ 

Substituting (14) and (1 1) into (19) and using the disper- 
sion relation (15) in the short-wavelength approximation, to 
first order in qi we are led to the following expression for the 
phase of the reflection coefficient: 

(in accordance with (19), the phase is defined up to a mul- 
tiple of 2 m). 

We assume that both the boundaries of the layer and the 
free boundary of the multilayer structure are in the supercon- 
ducting state. Then Eq. (24) has the following form, taking 
(21) into account: 

On the other hand, if in (24) we set q;=0, and thus 
k,=K, we obtain @=ao for the phase shift when all the 
superconducting cladding layers are in the n-state, i.e., all the 
boundaries between layers are "transparent": 

where L = Nd (i.e., 2kyL is the length of the wave path along 
the y-axis; see Fig. 1); of course, the cladding layer of the 
free surface of the layered system is also in the normal state. 
Then we can introduce the value of the diffraction-induced 
phase shift 

that discontinuously appears when all the layer boundaries 
whose reflections are "turned off" are converted to the 
s-state (including the free surface), and that conversely dis- 
appears when these boundaries are reconverted to the 
n-state. According to (25)-(27), 

Here, in order to obtain an expression for A@ that is a con- 
tinuous function of k,d, we have taken the principal value of 
the arctangent and added a term containing 7, which by 
definition equals the integer part of the argument. This en- 
sures that when the piezomagnetic moduli are set to zero in 
(28), we obtain A@=O. 

Note that in the case under discussion here, i.e., piezo- 
magnetic layers, we always have A 0  = @ - Qo< 0. How- 
ever, for a system of piezoelectric layers of the sort men- 
tioned in the Introduction, which we will turn to shortly, we 
always have A@>O (because there is a sign change in the 
phase shift at an isolated boundary due to the interchange 
(43), which takes us to the piezoelectric case; see below). For 
consistency we will work with the absolute value LA@(, so 
that in both cases we may speak of maxima and minima of 
the diffraction contribution lA@l, which is either subtracted 
from the "natural" phase advance cPo (for piezomagnetic 
layers) or added to it (for piezoelectric layers). 
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Let us analyze the properties of the oscillatory function 
A@(k,d) given by Eq. (28) for a large number of layers 
NB 1. It is not difficult to verify that under condition (18), 
i.e., for k,d sufficiently far from the forbidden zones, the 
extrema of lA@(kyd) 1 are given by 

(m = 1,2, . . . <N), i.e., under nonresonant conditions the 
diffraction-induced phase shift A@ is of order ( - 2 ~ ~ ; ) .  

This conclusion is entirely understandable in light of the 
following semiqualitative considerations. Note that the re- 
flection coefficient (r)  and transmission coefficient (t) of a 
wave incident on a superconducting boundary between lay- 
ers with no multiple reflections (i.e., for b?+')=0 in (7)) 
has, according to (7), (8), (12), the following form:') 

Far from the forbidden zones (i.e., from the Bragg reso- 
nances) the reflected waves are incoherent, and the diffracted 
wave at the input to the surface of the multilayer structure for 
NB 1 is primarily made up of waves transmitted by the 2N 
boundaries. 

If under the additional assumption Nqi< 1 we limit our- 
selves to the approximation of a single pass through each 
boundary between layers, we can obviously write 

where rs= e"~ is the reflection coefficient from the free sur- 
face of the structure (see (20), (21)). Hence, taking into ac- 
count the condition N B  I (i.e., Nq2B I 6,- 6,l -q2,), we ob- 
tain from (27) the desired estimate A@--2Nqi for A@. 

This result can also be interpreted in terms of the Bloch 
formalism. Note that according to (18) and (25), when 
NB 1 the condition @-2KNd = 2KL holds for the phase 
@ of the reflection coefficient outside the forbidden zones. 
Consequently, the diffraction contribution A@ (27) can be 
estimated by the difference between the length of the wave 
path along the y axis in units of the Bloch wave number K 
and its "ordinary" length 2kyL: 

whereupon, taking (18) into account, we once more obtain 
2 A@- - 2Nq,. 

In and of itself, Eq. (33) implies that far from the for- 
bidden zones the "physical" incident and reflected waves 
differ only slightly from the corresponding Bloch modes, 
which are continuous in the layered medium. Recall that ac- 
cording to the general theory (see, e.g., Ref. lo), the ampli- 
tude' vectors .(f) corresponding to the incident and diffracted 
Bloch modes b e  proportional to the eigenvectors of the ma- 
triA' propagator W ,  

where wI ,=exp(-ik@(l +iqi) and exp(-ik& 
(see (8), (12)). Here we use the fact that the eigenvalue 
exp(-iKd) corresponds to an incident mode (labeled by I), 
while the eigenvalue exp(iKd) corresponds to a diffracted 
mode (labeled by R). Obviously, (18) implies that 
exp(-iKd)-exp(-ik@(l +iqi). Therefore, far from the for- 
bidden zones, to first approximation it follows from (33) that 

which confirms the correctness of the "Bloch" interpretation 
of our results. 

We now discuss the case in which the value of k,d lies 
in the neighborhood of a forbidden zone, so that the wave 
numbers K and k, are related by Eq. (16). By investigating 
the derivative of A@ with respect to k,d, it is not difficult to 
verify that the phase shift lA@l reaches its principal maxi- 
mum exactly at the right-hand boundary of each forbidden 
zone: 

We can make sense of the value of the maximum (36) 
and establish the relationship between the phase resonance of 
the reflection coefficient and the Bragg condition by appeal- 
ing to the following considerations. Under resonant condi- 
tions, in contrast to (32). we must include in the "total" 
reflected wave not only the waves transmitted at individual 
boundaries but also reflected waves as well, which become 
in-phase as k,d- 7~1. 

Assuming that Nqi< 1, let us discuss a single round trip 
through the layered structure in the forward and backward 
directions, with a single reflection at each boundary. It is 
obvious that in this case we must include in the total wave 
field reflected from the layered system a contribution from 
N waves reflected with coefficient r=  - i q i  (see (32)) in the 
direction y>O (i.e., the incident wave propagates forward, 
see Fig. l), and a contribution from N waves reflected in the 
direction y < O  and then specularly re-reflected (with coeffi- 
cient rSf;;l to first approximation; see (20)) from the free 
boundary of the layered system. Thus, for Nqi+ 1 and 
k,d-TI, we can write in place of (32) 

from which the desired estimate A@- - 4Nq; follows. Note 
that this estimate is also in agreement with Eq. (33), which 
says that near the right-hand boundary of the forbidden zone 
we have k,d- ~ d - 2 q i .  

On the other hand, the simple interpretation of Eq. (33) 
given above becomes incorrect near the forbidden zones. 
Moreover, right at the boundaries of the forbidden zones 
(Kd= vl) ,  the eigenvalues exp(+iKd) of the non-Hermitian 

e 

matrix propagator W become degenerate, and a representa- 
tion using Bloch waves as eigenvectors of the matrix W is in 
general ~nsuitable.~) 
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Equations (29), (30), and (36) describe all extrema of the 
spectrum of the diffraction-induced phase shift A4,(kyd) 
when Nq;e 1. In Fig. 2 we show the spectra calculated by 
using the exact expression (28) (for convenience we set 
6,- 6, in Figs. 2, 3; see (29)). It is clear from Fig. 2 that 
there are N- 1 secondary maxima (29) between the principal 
maxima (36) with half the height of the latter; accordingly, 
these maxima are separated by N identical minima (30). Ob- 
viously, estimates (29), (36) are satisfactory even when 
Nq;s 1. 

As Nq; increases, the principal maximum clearly be- 
comes narrower. In this case the height of the minimum im- 
mediately to the left of each principal maximum increases 
more slowly than the remaining minima, i.e., it eventually 
becomes the principal minimum (Fig. 2b). If the number of 
layers N is large enough that ~ 4 %  1, then in accordance 
with (16) and (28) this principal minimum, which lies near 
the left edge of the forbidden band, is approximately given 
by 

FIG. 2. Dependence of the diffrac- 
tion phase shift of the reflection co- 
efficient on the value of k,dln for a 
system of identical layers when 
q i = O . l .  8= nI4, and N= 3 (a) and 
N =  1 0  (b). 

properties of this phenomenon for the more general case of a 
periodic structure made up of layers of hexagonal piezomag- 
netic material that differ in thickness-for example, with 
pairwise alternating thicknesses d l  , d2.  In Ref. 3, in our 
study of the Bragg diffraction of sound by a system of non- 
equidistant layers of this kind placed between two substrates, 
we showed that the intensity of the resonance peaks of the 
reflection coefficient is modulated by a factor 
Ico~(.rrld~I~)I, where D = d l  +d2 is the period of the struc- 
ture. If we now consider our phase-resonance scheme (i.e., 
removing one of the substrates) and use the approximate re- 
lations (32) and (37) for a system of N periodically repeating 
pairs of layers (i.e., N 4 2 N  in (32) and (37)), we conclude 
that the background of the spectrum of A4,(kyd) is of order 
- - 4 ~ 4 :  and Eq. (37) must be replaced by 

from which, taking (26) and (27) into account, we have 

where A@= - rr+ llNq; at the left boundary of the zone 
(Kd=.rrl) and A4,=2(N- l ) 4 i  at the center of the zone We also calculated the phase 4, of the reflection coeffi- 
(k ,d= ~ l + ~ i ,  Kd= rrl+iqi). cient R =  exp(i4,) using the matrix propagator calculated in 

Refs. 1, 3, where this matrix propagator "translates" the 
4. GENERALIZING TO NONEQUIDISTANT STRUCTURES. wave field through a period D = d l  + d 2 ,  and the boundary 
PIEZOCRYSTALLINE ANALOG conditions for a free surface at the last (2N+ 1)th layer, by 

The qualitative representation derived above for the ef- analogy with the equidistant case. The results of these calcu- 
fect of phase resonance allows us to predict the fundamental lations are 

When we examine the diffraction contribution A@ defined the extrema of the function IA9(kyd)l are 

according to (27), we find that far from the forbidden zones I A Q , ( , , , , - ~ N ~ ; +  6,- a,, I A ~ , I , ~ , - ~ N ~ ; +  a,, , 
(41) 

514 JETP 83 (3). September 1996 Alshits et a/. 514 



3 6 9 
k, Dln 

FIG. 3. Dependence of the diffraction phase shift of the reflection coeffi- 
cient on k,Dlrr for the nonequidistant case when q;=O. l ,  8 = ~ / 4 ,  and 
d , l D =  113, N = 6  (a); d , l D =  114, N = 3  (b); d , l D =  114, N = 6  (c). 

and the principal maxima are located near the right-hand 
boundary of the forbidden zones and reach values 

which obviously confirms the qualitative estimate we made 
previously. 

Thus, like the amplitude spectrum discussed in Ref. 3, 
the spectrum of A@(k,d) for a nonequidistant layered struc- 
ture exhibits a modulation of the height of the resonance 
maxima, which depends on the ratio of thicknesses of adja- 
cent layers; see Fig. 3 (the curves in Fig. 3 were calculated 
using the exact expression obtained from (40) by analogy 
with (28)). In particular, if the ratio d l  ID is a rational frac- 
tion SIT with an odd numerator S and an even denominator 
T, by analogy with Ref. 3 a so-called extinction effect will 
appear, in which each principal maximum of order 
1 = Tl2+ nt T, m = 0,1,2, . . . is eliminated from the spectrum, 

i.e., weakened down to the background level ( A @ I - ~ N ~ ~  
(the width of the corresponding forbidden zone vanishes in 
this case; see Figs. 3b, 3c). 

To conclude this section we indicate how the results ob- 
tained above must be modified when we turn to a discussion 
of analogous effects in a system of layers made up of iden- 
tical hexagonal piezoelectric crystals (nonmagnetic, with the 
sixfold axis orthogonal to the sagittal plane as before) sepa- 
rated by thin metallized cladding layers. Although the simi- 
larity between the original equations for piezomagnets and 
piezoelectrics is incomplete for the problem under discus- 
sion, according to Ref. 1 the entire matrix formalism devel- 
oped for the piezomagnetic structure is preserved, and the 
case of piezoelectric layers is obtained by making the re- 
placement 

where g;= 41re:~ /CM& is the electromechanical coupling 
parameter, &= cM+ 4 n-eLle I , e is a component of the 
piezoelectric tensor, and e l l  is the dielectric constant. This 
implies that we can obtain expressions for the piezoelectric 
case from hose we derived above by replacing the parameter 
g ~ = g ~  tan 0 with - g i ,  where now gi=g; tan 0. More- 
over, both 6, and 6, in the corresponding expressions be- 
come identically equal to 6, which is the phase change upon 
reflection from the free surface of a semi-infinite hexagonal 
piezoelectric medium. According to Ref. 8, this value is ei- 
ther 

S= 2 arctan(g; tan 0), 

in the presence or absence of a metallized cladding layer at 
the surface of the medium, respectively. 

5. CONCLUSION 

There are various experimental schemes that allow us to 
observe and make use of the phase resonance exhibited by 
the reflection coefficient of an elastic wave from a system of 
piezocrystalline layers. It is clear that the possibility of 
"turning on" and "turning off" the diffraction-induced 
phase contribution, and the possibility of controlling its spec- 
tral dependence by converting individual superconducting 
cladding layers to the n-state (thereby changing the period 
d of the structure, realizing conditions for the extinction ef- 
fect in a nonequidistant structure, etc.), allows us to treat this 
layered structure as an analog of a tunable acoustic phase 
filter. 

Another concept of interest is based on the interference 
of reference and diffracted waves (similar to the method of 
standing waves in x-ray optics). Let us assume that the elas- 
tic displacement field at the "input" surface of the layered 
structure (y=0, Fig. 1) consists of a superposition of two 
fields: one from the incident wave uZi = cos(k,x- wt) and one 
from the reflected wave u,,=cos(k~,x-or+@), where @ is 
the phase of the reflection coefficient. The resulting wave 
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FIG. 4. Dependence of the amplitude of the interference wave field (44) on 
k,dl.rr for superconducting cladding layers in the s-state (continuous curve) 
and in the n-state (dashed curve). 

field can obviously be written in the form (recall that the 
elastic displacement of the nonuniform modes equals zero; 
see (3)): 

In Fig. 4 (for definiteness we examine a piezomagnetic 
structure), we compare the dependence of the amplitude 
modulus )cos(@/2)) of the standing wave U (44) on the pa- 
rameter kyd for "turned-on" reflections (i.e., with the super- 
conducting cladding layer in the s-state and @ given by Eq. 
(25)) and "turned-off" reflections (i.e., the cladding layer in 
the n-state, and @ = Qo= 2kyNd + 8, ; see (26)). For 
q; N< 1, diffraction displaces the zeros of the amplitude by 
a small quantity -q;< 1. Obviously, the case of most inter- 
est is that in which the number of layers N is large. In the 
neighborhood of the forbidden zones, when N P  1 the value 
of the amplitude varies rapidly (obviously, for k,d= rrl we 
have 
cos(Qd2) = cos(6J2) IJ cos q; ,cos(@/2) -~os[arctan(2~~$v)]). 
I f  the number of layers N is large enough that the parameter 
q 2 d  is not small, diffraction qualitatively changes the depen- 
dence of the amplitude of the interfering wave field (44) in 

the neighborhood of the forbidden zones, leading to quench- 
ing of the oscillations near its boundary and the appearance 
of a stationary segment (disappearance of the amplitude ze- 
ros) within the zone (see Fig. 4). Note that for ~'$vs 1, the 
phase shift of the diffracted wave relative to the incident 
wave changes from 0 to rr over the width of the forbidden 
zone--exactly as in the x-ray case. 
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" ~ ~ u a t i o n  (31), which was obtained in the short-wavelength approximation 
( l l ) ,  naturally coincides with the results of Ref. 4 for a superconducting 
boundary between two semi-infinite media (up to an additional phase fac- 
tor exp(ik4 for the transmitted wave, arising from referencing the phase 
of the wave solutions according to (3)). 

' ) ~ o t e  that the derivation of the important formula (14) for the Nth power of 
the matrix w given in the well-known Ref. 11, which is based on the 
possibility of diagonalizing the latter, is also incorrect at the boundaries of 
the forbidden zones (Kd= sl). In this case (14) can be proved by induc- 
tion. 
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