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In the absence of external fields and currents, ferroelectrics and ferromagnets are known to 
undergo phase transitions to inhomogeneous (polydomain) structures induced by the dipole- 
dipole interaction. The long-wavelength order parameter fluctuations near such a transition 
are studied for T> T ,  in the mean-field and scaling regions by considering the quadratic part of 
the free energy functional for a thin plate of a uniaxial crystal with the polar axis 
perpendicular to the plate surface. It is shown that the specific anomalies in the long-period 
responses of a crystal appear due to condensation of the inhomogeneous (periodic) soft mode with 
period proportional to $ (L is the plate thickness) in accordance with the phenomenological 
result of Landau and Lifshitz for the c-domain width and the microscopic result of 
Tarasenko, Chensky, and Dickshtein for T 4  Tc-  0. The behavior of x-ray and neutron scattering 
and light propagation in ferroelectrics near such a transition is described. O 1996 American 
Institute of Physics. [S 1063-776 1(96)01109-21 

It is well known that the main cause of the transition to 
a polydomain structure in ferroelectrics and ferromagnets is 
the dipole-dipole interaction of the order parameter 
fluctuations.'-4 It was shown by Landau and ~ifshitz' that 
the reduction of magnetostatic (or electrostatic) energy in a 
polydomain can be greater than the (positive) domain wall 
surface energy contribution just below T , ,  making the poly- 
domain structure energetically more favorable than the ho- 
mogeneous one in some interval To< T< Tc in free (without 
external fields, currents, and conductors) ferromagnets and 
ferroelectrics-insulators. This result actually means that we 
have transitions in some inhomogeneous (incommensurate) 
phases in such crystals which must be described by some 
order parameter functions depending on the form of the crys- 
tal. According to Landau and ~ifshitz,' the c-domain struc- 
ture period d in a plate of thickness L is proportional to 
fi. Thus in the infinite-volume limit one can regard spatial 
variations of the order parameter as a surface effect having 
negligible influence on the critical properties of the crystal. 
Indeed, this long-period variations could change the spec- 
trum of the soft order parameter fluctuations only at small 
wave vectors k < lld cc llfi. Then the thermodynamical 
quantities which depend on the whole spectrum of these fluc- 
tuations, such as the heat capacity, would not be influenced 
by these changes. Still it is apparently necessary to determine 
the actual order parameter distribution and the spectrum of 
its long-range fluctuations, since some physical properties of 
free ferroelectrics and ferromagnets can be described only 
with due account of the specific long-period polydomain 
structure induced by the dipole-dipole interaction. We can 
only mention the features in the light and sound propagation 
and diffuse x-ray and neutron scattering which show the 
polydomain phase transition to occur. In general, the reaction 
of a crystal to the external perturbations (fields) with wave- 
length comparable to the structure period would be signifi- 
cantly modified in comparison to the cases when such struc- 

ture does not occur, e.g., in a toroidal Heisenberg 
ferromagnet or short-circuited ferroelectric plate. 

The first microscopic treatment of the polydomain phase 
transition in terms of the free energy functional with magne- 
tostatic contribution was undertaken by Tarasenko, Chensky, 
and ~ickshtein?~ who found in the limit T-+T,- 0 the ap- 
proximate equilibrium order parameter distribution in the 
plate of a uniaxial ferromagnet with period d a $ and stud- 
ied the dynamics of the long-wavelength magnetic excita- 
tions below T , .  At the same time, the peculiarities of the 
long-wavelength responses should be exhibited above T ,  and 
their full description could be obtained more simply at least 
in the mean-field region, since we need to consider only the 
part of the Landau-Ginzburg free energy functional with the 
dipole-dipole interaction term quadratic in the order param- 
eter. Moreover, it is easy to show that the mean-field results 
are also valid in the fluctuation region in the immediate vi- 
cinity of T,  after substitution of the renormalized parameters. 
So in the present work we obtain the exact order parameter 
correlation function describing the anomalies of long- 
wavelength responses near the polydomain phase transition 
for all T> T ,  and describe the behavior of x-ray and neutron 
scattering and light propagation in ferroelectrics near such a 
transition in a plate of the uniaxial crystal. 

To study the phase transition to the polydomain phase in 
a regular way instead of construction of domain-wall 
m o d e ~ s ' * ~ . ~ - ~  one should treat the Landau-Ginzburg free en- 
ergy functional with the dipole-dipole interaction term. In the 
mean-field region above T ,  it is sufficient to consider the 
part quadratic in the order parameter, which has the form 

dxlp(x)[i- '(x-x') + D,~(X-x1)]~(x1) ,  

(1) 
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Here i (x)  is the susceptibility tensor with the short-range 
(Omstein-Zemike) space dependence and some (or all) di- 
vergent k=O Fourier components 

The order parameter field P(x) is the polarization in ferro- 
electrics and the magnetization in ferromagnets. The form of 
the dipole-dipole interaction tern implies the absence of 
conductors in the ferroelectric case and currents in the case 
of ferromagnet. 

It is easy to see that generally there is no instability with 
respect to the homogeneous order parameter fluctuations at 
T , .  Setting P(x)=P in (I), we have 

The tensor i could be called the effective tensor of the de- 
polarizing coefficients, because the exact expression for the 
(homogeneous) electric field in the ellipsoids with P(x)=P 
is4 E= - 47riP. In general case ii always has nonzero (posi- 
tive) components due to the relation Tr i = 1,  which follows 
from the equation 

Thus instability with respect to homogeneous fluctuations 
can occur at T ,  only in samples of special form having 
naa-nap=O if (i-l)aa-+O. The homogeneous phase tran- 
sition is also possible in the case of a ferroelectric h!ving on 
its surface conductors with fixed potentials. Then D(x-xl) 
in Eq. (1) must be replaced by 

where G(x,xl) is the Green's function of the Laplace equa- 
tion satisfying the boundary conditions on the conductor 
surfaces1° 

The corresponding substitution in Eq. (4) yields i = 0 when 
the conductor surfaces cover those of ferroelectric sample, 
and we have a transition to the homogeneous state at T ,  in 
this case. 

When the depolarizing field forbids the homogeneous 
state below T,, we can find the actual order parameter func- 
tion Ps(x) having the most divergent fluctuations just by di- 
agonalizing F in Eq. (1). That is, we should expand 

via the eigenfunctions of the linear operator defining F, i.e., 

Then 

4 - 
and the most divergent fluctuations would be associated with 
the mode with the lowest eigenvalue, say A,. Hence the tran- 
sition occurs as a condensation of P,(x)=P,(x) when A, be- 
comes zero. 

Here we consider the simplest case of an (infinite) plate 
with finite thickness L, as in.596 Let its surfaces be at z= 
+ L12 and introduce 

Here kz= 2 m l L ,  n = 0,+ 1,+ 2.. . . In this representation the 
dipole-dipole interaction term can be expressed as 

2 xL 
S(x) = - sin -. 

xL 2 

The integration in Eq. (7) can be easily performed, and 
we have the following expression for F in terms of 
pk,(k,): 

Equation (5) becomes 

The notation d<Jk:(k,) is convenient because in the present 

quadratic (mean-field) approximation 

(P:(k)Pp(k'))=T(Gkz,k;)ap(kl)~(k*-k:). 

Note *that the Fourier transform (6) diagonalizes i(x-x') but 
not D(x-x'). This difference results from the long-range 
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character of the b(x) space dependence. Actually the exact 
diagonalization requires along with the dependence on the 
difference x-x' that the transforming function has periodic- 
ity of L along the z-axis. Since ,f(x-x') is localized at 
Ix-xll<a, where a is on the order of the lattice parameter, 
the last condition fails only in a small part of the period on 
the order of alL. Thus the Fourier transform of ,f(x-x') has 
a term of the same order nondiagonal in k, which can be 
dropped whenAL%a. At the same time, the only length scale 
which enters D(k, ,z - z') is k; I ,  and the nondiagonal term 
in Eq. (10) is small only for k,LB 1. For k, = k: = 0 and 
k,+O it has the finite limit, i.e., 

in accordance with the above considerations. 
Thus, there is no depolarizing field for the modes with 

P:(k=O)=O (if they exist) which actually means that we 
neglect it when we consider the infinite plate. This neglect 
can be justified if the condition 

holds for the modes with small A, which we are interested 
in. There is only one case when such an assumption can hold 
and the consideration of the infinite plate makes sense in the 
uniaxial ferroelectric (ferromagnet) with polar axis perpen- 
dicular to the plate surface. Then 

Here we ignore the wave-vector dependence of the noncriti- 
cal xl and write down explicitly the expansion of ,yl;'(k) at 
small k. Then we can use the x and y components of Eq. (10) 
to express P:(k) via F$ (k). For An(kL)x1 9 1  we have 

where 

To obtain Eq. (12) the summation over kz= 2rrnlL, n=O 
-+ 1, + 2.. . was performed using the relation 

where the contour C encircles the real axis and x (u )  is the 
analytical continuation of A(kz). Eliminating e ( k )  from the 
z-component in Eq. (10) we get 

-al(k)a,(k, ,k:)lPi(kL ,k;)=O. 

The solution of this equation has the form 

cn(k,)aun(k) 
Pi(k)= - 

XI, '(k)+4rrk:l(&lk:+k:)-hn(kl) ' 

un=(- I),. (13) 

Representing A ,(k,) as 

we get the equation for 6,,(k,): 

=4mlk:[( elkL q n  tan 6, ) u n -  I ] ,  

For 

~ I L Q  &kl61[', 

we have 

Hence the lowest eigenvalue belongs to the mode with n = 1 
and k, = ko , 

Note that this value of ko satisfies the condition (15) for 

L+max(lL ,l~ll ,) .  

Then 

differs from Xi' by a small quantity of order 1,lL. Thus the 
transition to the polydomain structure takes place at T  
= Ti. , which is only slightly below T ,  . From Eqs. (1 1) and 
(17) we get 

The period of the resulting (domain) structure is 
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xld xld 

We obtain the same expression for d as was found in Refs. 5 
and 6 for T< T, confirming the &-dependence of the period 
as in the Landau and Lifshitz phenomenological result for 
the c-domain structure.' This result also agrees with the ex- 
periments in the uniaxial ferroelectric rochelle salt.3 For 
1,-a- m, L =  m, el-1-10 we have d-low6 m, 
which is the typical value for the c-domain structure period 
in ferroele~trics".'~ and f e r r~ma~ne t s .~  Indeed in rochelle 
salt we have J-1, 2 m3 and el- 10.12 Hence we 
have 1,-2. m, which is on the order of lattice param- 
eters in this crystal. The Fourier transform of Eqs. (12) and 
(13) with n= 1 and c,(k,)=S(k,- ko)+ S(k,+ ko) gives the 
following order parameter function: 

z 
cos[.rr-2Sl(ko)] - 

L 

This result differs from that found in Refs. 5 and 6 in the 
limit T-+T,-0 only by the small surface terms with cosh 
and sinh which were neglected in Refs. 5 and 6 and small 
higher-order harmonics whose amplitudes vanish at T,. 
Curves indicating the directions of P, are shown in Fig. 1. 
Part of the period is occupied by closed loops which do not 
come out on the surface. Its width can be estimated as 

d 
w=-  arccos - 

.rr (2Ed,L) l- lbL.  

We have 

w e d ,  E , - l&l ,  w ~ d l 2 ,  

Here we note that the P, given by Eq. (19) appearing at T 
= Ti is substantially modified at lower temperatures. It is 
rather difficult to find the order parameter distribution below 

FIG. 1. The directions of Ps(x) for 
el=l.l (a) and e,=lO (b). 

given by Eq. (19) as secondary order parameters4 which 
could make P, more like the experimentally observed do- 
main structures far below Tf . Still, the period of the 
c-domain structure generated in this way will be the same 
value of d in Eq. (18) for a1l.T < Tf . The validity of these 
general considerations was explicitly demonstrated in Refs. 5 
and 6. 

At the same time, in the mean-field region above Ti it is 
the softening of the PI  mode that determines the behavior of 
crystal responses to inhomogeneous external perturbations. 
Thus, the singular part of the intensity of diffuse neutron and 
x-ray scattering in ferroelectrics and magnetic neutron scat- 
tering in ferromagnets is described by the structure factor 
Sll(k) = G:: ,kS(k,). For k,=O and 

inversion of the matrix 6- ' , in Eq. (9) gives 
kz .kl 

Using Eqs. (1 1) and (16), we can also rewrite u(k) as 

Note that xll and 2 can become negative near T' Then 
'I' u(k,) becomes imaginary, u(k,)=ilu(k,)), for k,<- K~ 

but expression (21) still holds for such k, and can be repre- 
sented as 

Specifically, K ~ =  - 2ki holds at T = Tf (cf. Eq. (17)) and for 
k: < 2ki at the transition point we have 

Tr , as this requires the determination of the minimum of the Thus, at T = Ti the intensity of diffuse scattering diverges at 
free energy functional with the p4 Evidently this k= ko, as one would expect for the transition to incommen- 
term will generate higher-order mode contributions to P, surate structure with the period d=2.rrlko. 
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f l o ~ ~  kO. 

Then we obtain the refractive index nzZ=nll(w) as the solu- 
tion of the equation 

n:= 1 + 4 1 ~ ~ ~ ~ ( n ~ ~ w l c , w ) .  

Here c is the velocity of light. Assuming that 

lu(nllwlc,w)l< 1 (24) 

and using the smallness of the vlc ratio, we have 
FIG. 2. The intensity of diffuse scattering for ~ ' = 5 k ;  (O), ~ ' = k ;  (+), 
K ~ = O  (A) and K ~ =  - k; (*). 

ni-zn:[nt-w2 

2wZ v 2 n ; o 4  n;-W2)+ -- 
5 c2n ;  

[ ~ & , ( 0 ) - 2 i r ~ - - ~ ~ ]  , The diffuse scattering profiles are shown in Fig. 2 for 
several T > T:, . They exhibit the peaks near k= ko which are 
not difficult to observe experimentally especially in the cases 

I - I  

OL=2 ,/ZE 
of small I, values and thin samples. E ~ L '  

Another spectacular effect appears near TS for light The conditions for validity of this expression (Eqs. (20) and 
propagating in the ferroelectric plate of the geometry in (24)) can be represented as 
question. It consists of drastic changes in the refractive index 
dispersion due to the dipole-dipole interaction at long wave- w<flL,  & O L 1 ~ ~ l n l l ~ 4 ~ l l l l .  
lengths A-d. To describe it one must determine the dynami- Thus ni %- n; holds for w < f lL  and ni grows rapidly in 
cal dielectric susceptibility the limit w+fl,-0, while for w>flL the light waves be- 

come overdamped. We can relate this light absorption to the 
dP( k, w) 

i (k ,w)  = 
excitation of the specific collective motion with the fre- 

dE(k,w) ' quency f lL  defined by the plate thickness L. For L= 1 mm 
we have flL/2mc= 10 cm-I, and such excitation could be 

When the ferroelectric order parameter fluctuations are soft easily observed in the IR experiments. 
phonons, the susceptibility i(k,w) can be obtained from It is easy to see that the above results remain valid in the 
equations of motion of the form fluctuation region above T, after substitution of the renor- 

malized critical susceptibility'3 

- dF . 2 1 i ( ~ + 2 r ~ ) =  - ~ + E ( ~ , ~ ) c o s ( ~ x - ~ ~ ) .  (22) X I - + y m ( ~ -  T,)-'[I~(T- T,)-']"~ 

and renormalized (finite) and < instead of the bare values. 

Here r is the phonon damping constant and u is the group This is because fluctuations renormalize only the short-range 

velocity of phonons at T = T:. . For kS- ko Eq. (22) just de- part of the inverse order parameter correlator (i.e., - '(k)), 

scribes the propagation of the ordinary longitudinal (LO) while the dipole-dipole interaction term stays the same.I3 

and transverse (TO) optical phonons with the frequencies Here we note that the results presented in this work for 
ideal crystals can be very different in real crystals with im- 

u2 
purities and defects. Still, we believe that the approach out- 

u2 
fl;o~(k)= fl2,02(k) = T 9 

lined here to the study of phase transitions to the inhomoge- 
$ x I I ( ~ )  ' 41 XI neous state in systems with the dipole-dipole interaction can 

be also useful for the study of more realistic cases. 
u This work was supported by the Russian Fund for Fun- 

OiO(k)= (x;' +47r). 
I ,  

damental Research, Grant No. 94-02-03573-a. 
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