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In the process of melting of a semiconductor (semimetal) by, for example, laser radiation, 
heating also occurs along the surface of the melt. We consider a model in which the heat flux is 
strictly parallel to the layer and take into account the thermoelectric effect. It is shown that 
the usual longitudinal motion under such conditions can be converted into cellular motion. The 
possibility of observing this effect is discussed. O 1996 American Institute of Physics. 
[S 1063-776 1 (96)00909-21 

1. INTRODUCTION 

In the process of obtaining semiconductor films,'.2 heat 
fluxes with a component along the layer are used. The prob- 
lem in which the temperature gradient is parallel to the 
heated layer has been solved assuming the absence of a ther- 
moelectromotive force."' Flow along the layer occurs in this 
case with a velocity proportional to the magnitude of the 
temperature i.e., there is no threshold. This type of 
flow is stable (see Ref. 6 and the literature cited there), since 
the Rayleigh-Bdnard and the Marangoni convection mecha- 
nisms require a preferred direction of heating. For example, 
in the Rayleigh-Bdnard mechanism, cellular motion occurs 
only in the case of heating from below, i.e., when the tem- 
perature gradient is opposite the force of gravity. In the Ma- 
rangoni mechanism, cellular motion occurs only for heating 
from the bottom of the liquid and does not occur when the 
heating is from the free surface. 

The theory of the mechanism of another mode of con- 
vection in liquid semiconductors-thermoelectric 
convection-was developed in Refs. 7 and 8. It was shown 
that for a sufficiently thin layer of weakly-conducting liquid, 
cellular motion can occur for a sufficiently large heat flux 
perpendicular to the layer, independently of the direction of 
the heat flux with respect to the force of gravity. Physically, 
this type of cellular motion occurs as follows. A charge fluc- 
tuation produced by the temperature perturbation is acted 
upon by the thermoelectric field created by the heating. The 
resulting electric force results in cellular motion. 

In the present paper we consider the effect of the ther- 
moelectric force on motion in a layer produced by a heat flux 
parallel to the layer. It is shown that the motion produced by 
a heat flux directed along the layer increases without limit at 
the same flux responsible for cellular motion when the heat 
flux is perpendicular to the layer. Therefore, motion perpen- 
dicular to the layer is induced. Because the electric force 
mechanism of cellular motion is not associated with a spe- 
cific direction in space, and the conditions of heating with a 
longitudinal heat flux are sufficient, it follows that all of the 
conditions for cellular motion are ~atisfied.~'~ 

2. STATEMENT OF THE PROBLEM 

We consider a liquid layer (the x axis is along the layer 
and the z axis is perpendicular to it) along which there is an 

external constant heat flux, i.e., the temperature gradient 
I VTol =A,=A due to external heating lies exactly parallel to 
the layer. No equilibrium state exists in the presence of a 
longitudinal temperature gradient, and motion along the 
layer occurs for arbitrarily small heating A.  We consider the 
middle region of the layer, i.e., the region not close to the 
walls of the container, which are maintained at constant tem- 
perature. At the "cold" wall at x=O we assume that 
T=To=T,=O. In treating the middle of the layer we can 
assume that the temperature at the bottom and at the surface 
varies linearly: 

It will be shown below that A is constant throughout the 
liquid (for 0 9 z S h ) .  In the middle of the layer the velocity 
of the liquid is such that v = u,% v, . We assume that v,=O, 
our most restrictive assumption. It will obviously break 
down when the temperature of the "hot" wall is sufficiently 
high. 

The continuity equation for an incompressible liquid im- 
plies that the flow velocity depends only on z. Because the 
flow occurs with zero threshold (no equilibrium state), per- 
turbation theory cannot be used, and the nonlinear equations 
of hydrodynamics must be used to describe the motion. For 
thin layers, in which the dimensions along the layer A+h, the 
x and z components of the Navier-Stokes equations (equa- 
tions of motion) can be written in the form 

d2v 1 dp e n y  dT 
v2---=--- dz p dx p dx '  

These equations include the effect of gravity (g is the accel- 
eration of gravity) and the electric force on the charge en (n 
is the number density and e is the charge of a carrier) pro- 
duced by the thermoelectric field E= yVT. 

The equations of motion must be supplemented with 
Fourier's law of thermal conduction 
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and Poisson's equation of electrostatics. Since the electric 
field is thermoelectric in origin, this equation has the form 

We have also introduced the density of the liquid p, its pres- 
sure p, the kinematic viscosity v, the thermal conductivity K, 
the dielectric constant E, the thermoelectromotive force y, 
and the coefficient of volume expansion p. 

Using the equations of heat conduction and electrostat- 
ics, it is not difficult to obtain 

The pressure is eliminated from the equations of motion 
after eliminating the charge en. To eliminate the pressure we 
take the derivative with respect to z of the x-component of 
the equation of motion, and the derivative with respect to x 
of the z-component. We obtain 

As noted above, the longitudinal component of the tem- 
perature gradient predominates 

and the temperature variation along the layer due to the ex- 
ternal heat flux is much larger than the temperature variation 
perpendicular to the layer caused by the motion. This ap- 
proximation is consistent with our model. 

Using this condition, the equation of motion becomes 

On the basis of this equation, the heat conduction equation, 
and the conditions at the surface and at the bottom of the 
liquid discussed above, it is shown in the Appendix that 
dTldx=A is constant over the full depth of the liquid, i.e., 
for OSzSh.  Then the equation of electrostatics (2.6) can be 
rewritten in the form en = YEAUIK and we conclude that in 
the model considered here the thermoelectric charge is "fro- 
zen" into the liquid. 

Because the layer is finite along the x axis, the total flow 
rate of the liquid is zero. Therefore 

In addition, the solution of (2.9) and (2.4) must satisfy 
certain boundary conditions. 

At the solid surface z=0 we have the no-slip condition, 
i.e., v =O. The other boundary may be a solid, in which case 

v =O at z = h, or it may be a free surface, in which the sur- 
face tension (the coefficient a) varies because of the heating, 
i.e., we have the thermocapillary condition 

dv dT d a  
pv -=-a-=-uA=const, a=--=const 

dz dx dT 
(2.1 1) 

(a is the thermocapillarity coefficient). 

3. EXACT SOLUTIONS 

It is convenient to discuss exact solutions of the problem 
using the dimensionless coordinate 5= zlh and the Rayleigh 
number R,  Marangoni number M, and the number z=12, 
which characterize, buoyancy, thermocapillarity, and ther- 
moelectricity relative to the dissipative forces: 

Comparing the dimensionless numbers with one another, 
one can establish a hierarchy of  scale^.^ We have the critical 
thicknesses 

We next write down exact solutions of the problem. 
When both of the boundaries are solid, we find the following 
exact solution (independently of the thickness): 

x l v  -- -+4( '63-152+65)],  1 1 (3.4) 

h 7 ~ / h  21 3 

A more realistic situation is the case in which one 
boundary (5=0) is solid and the other ((= 1) is a free sur- 
face. We consider first a thin film ( h 9 h R M ) .  Then buoyancy 
can be neglected (R=O), and we find 

K M (1 -cos I)(1 -cos(l[))-(I-sin I)sin(Ic) 
v=--  

h 1 I cos I- sin I 
(3.6) 

M (1 -cos 1 ) [ 1 2 ~ 2 + ( 4 - ~ 2 ) ~ ] - 2 1 ~  sin I 

+F I cos I-sin I 

If the film is sufficiently thick ( h > h R M ) ,  then ther- 
mocapillarity can be neglected: 
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[2( 1 - cos I) - I2 cos I](cos(I() - 1) +[2(I- sin I) - I2 sin I]sin(It) 

2I(1 cos I-sin I )  

[2(1-cos 1)-I2 cos 1 ] ( 1 + 1 ~ ~ ~ ) + [ 8 ( 1 - ~ 0 ~ 1 ) + 1 ~  cos1-41 sin I]sin((I) 
X 

413(1 cos I - sin I)  

The solution for E, in the presence of a free boundary is 
quite complicated. 

Because of the linearity of (2.9) and the boundary con- 
ditions, the solution taking into account both buoyancy and 
thermocapillarity is simply the sum of the right-hand sides of 
the equations for the individual forces. 

4. ANALYSIS OF THE SOLUTIONS 

In the absence of the thermoelectric field, (3.3), (3.4) and 
(3.6), (3.7) reduce to the exact solutions when only buoyancy 
or thermocapillarity acts3 When only thermoelectricity acts, 
i.e., when R=O and M =O but I # 0, motion does not occur, 
i.e., for small heating the motion in the longitudinal direction 
is produced by buoyancy or thermocapillarity, but not by 
thermoelectricity. 

It can be shown that the electric charge density is the 
same at the two boundaries, 

I V T ~ ~ ~ = A ~ ,  and does not depend on the direction of heat- 
ing. The values of I, and I* necessary for unbounded growth 
in the case of heating along the layer, and for cellular motion 
in the case of heating perpendicular to the layer, respectively, 
are of the same order of magnitude. In the most symmetric 
form I*=If=2IT. 

This supports the proposition that when the heat flux 
along the layer reaches the value I-+I,, flow along the layer 
is transformed into cellular flow by the thermoelectric 
mechanism. 

Also, when I+ I, the condition v = u, assumed in Sec. 2 
is violated, and there is a nonzero component of the velocity 
v, perpendicular to the layer. 

The quantities v = v,, E,, and F, for ISI, are illus- 
trated in Figs. 1-3. Figure 1 shows the dimensionless veloc- 
ity (curve l), electric field (curve 2), and force (curve 3) for 
the case when both boundaries are solid: 

eEZ(0) = &E,(h). (4.1) v 1:(Ir-I) Ez l31~-1) 
" 1 = ~ / h  R 

, E,=- 
When the temperature at the hot wall increases, the yA R ' 

quantity A, and therefore the numbers R, M, and I ,  increase. 
An increase in R and M does not change the solution quali- F, z:(I~-I)~ 

F -  
tatively, but when I reaches a certain critical value I, ' - ~ y ~ A ~ / h  R~ ' 
(I,=Ir=2.rr for the case of two solid boundaries and 
1,=Zf=4.5 (the first nonzero solution of the equation (compare with (3.3143.5)). 
I=tan I) for the case when one boundary is free), the solu- Figure 2 shows the case when one boundary is solid 
tion changes qualitatively. The quantities characterizing the (Z=O) and the other is free (Z=h): 
flow increase without bound when I-tZ,, and the component 
of the thermoelectric force parallel to the layer and the heat 
flux in the z direction through the surface z = h are 

and the velocity and temperature are both inversely propor- 
tional to I,-I. The quantity F,=enE, and the heat flux 
along the layer 

h dT 
v Tdz 

are of order (I, - 
It has been shown that cellular motion occurs when 

[=I* in a liquid layer heated perpendicular the layer?'* FIG. 1 .  Distribution of the dimensionless velocity (curve I), electric field 
This is due to a thermoelectric force proportional to (curve 2), and force (curve 3) in the case of solid boundaries. 
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FIG. 2. Distribution of the velocity (curve I), electric field (curve 2). and 
force (curve 3) when one boundary ((=0) is solid and the other (5= 1 )  is 
free. Only the themocapillary and thermoelectric mechanisms are effective; 
buoyancy forces are neglected (thin layer). 

In this case we neglect buoyancy in comparison with ther- 
mocapillarity, which is valid in thin layers (compare (3.6) 
and (3.7)). 

For the same conditions, but in the absence of ther- 
mocapillarity we have plotted in Fig. 3 

5. POSSIBLE EXPERIMENTS 

The conditions closest to our model are obtained upon 
alloying steel or semimetal melts (with carbon or tungsten, 
for example) by means of laser radiation?.I0 However the 
internal flow in such melts has not been studied. 

Taking P=(9-6)X low4 K-', p= 1-10 &m3, y= 10- 
100 pVIK F K - 5 ~  ~ o - ~ - I  mm2/sec, a = ( l - 1 0 ) ~  
N/m K for the parameters of the it can be shown 

FIG. 3. Distribution of the velocity (curve I), electric field (curve 2),  and 
force (curve 3) when buoyancy and the thermoelectric force are effective 
(thick layer). 

that for a temperature difference of = lo3-lo4 K between the 
center and the sides of the container the dimensionless num- 
bers are such that 1 is close to If. Therefore the distribution 
of the alloying material over the thickness of the melt will 
correspond to curve 1 of Fig. 2. 

Indeed, in surface laser heating1' the liquid layer is thin, 
hence the heating is the same over the full thickness. The 
heated region (the "spot") is large and the temperature dif- 
ference between the center and the periphery is significant. 
This situation also corresponds to our model. 

6. CONCLUSION 

We have shown that in a liquid semiconductor (semi- 
metal) with temperature increasing along the surface, the 
flow along the layer in fact increases without bound for the 
same values of the temperature gradient as in the case of 
cellular motion with heating is perpendicular to the layer. 
Because the thermoelectric force depends only on (VT,( and 
not on the direction of heating, cellular motion also occurs in 
the case of an external heat flux parallel to the layer. 

The author thanks A. M. Bonch-B~evich and M. N. 
Libenson for discussions of the experimental situations. 

APPENDIX 

We consider (2.9) as a quadratic equation in dTldx. It is 
evident that because the coefficients of the quadratic equa- 
tion are functions only of z, the quantity dTldx depends only 
on z. Therefore J2~ ldx2=0 ,  and the heat transport equation 
becomes 

Differentiating this equation with respect to x, we obtain 

and therefore dTl dx = C z + C2, and 

The constants C ,  and C, and the arbitrary function f(z) are 
found from the solution and the boundary conditions. We use 
the fact that in our model the temperature along the bottom 
and along the surface of the layer varies linearly. We have 

and 

Because these relations must be satisfied for any x, it 
follows that C2=A, f(O)= f(h)=O, and hence Cl=O. 
Therefore dTl dx = C2 = A, so dTl dx is constant for 0 S z 6 h . 
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