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We examine the irregularities in the spectra of the Rydberg states of polar molecules of the 
symmetric-top type. These irregularities are associated with the degeneracy of the molecular-core 
wave functions with respect to the sign of the projection of the total angular momentum on 
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1. INTRODUCTION 

During recent years extensive research has been in 
progress in the field of Rydberg spectra of molecules, in 
particular, by ZEKE spectroscopy methods (see, e.g., the re- 
views by Miiller-Dethlefs and schlagl and Merkt and 
~ o f t l e ~ ) . ~  The principal quantum number n of the electron 
states resolved in such studies reaches a value of roughly 
200, with the fine features of the molecular core manifesting 
themselves in the structure of such states. This calls for a 
theory of highly excited Rydberg states in complex mol- 
ecules. 

For a long time the effect of the core's dipole moment 
on the spectrum of a Rydberg electron has widely been dis- 
cussed in the literature. The topic of discussion was, of 
course, the "penetrating" states, i.e., states with a fairly low 
value of orbital angular momentum, since states with large 
angular momenta can be considered hydrogenlike with high 
accuracy. The penetrating states are excited by a fairly small 
number of photons and are therefore interesting from the 
standpoint of ZEKE spectroscopy. 

A solution of the Schrodinger equation for a Rydberg 
electron in the field of a rapidly rotating symmetric molecu- 
lar core with a dipole moment was found in Ref. 3. The fact 
that the rotation is rapid means that the Born-Oppenheimer 
(adiabatic) approximation is inapplicable and that one must 
use a nonadiabatic approximation, which became known as 
the inverse Born-Oppenheimer approximation. 

However, the discussion in Ref. 3 did not take into ac- 
count the presence in the rotational spectra of the core of a 
w-doublet related to the degeneracy of the rotational levels 
with respect to the sign of the projection of the core's total 
angular momentum on the symmetry axis.') As is known? 
when spatial parity is conserved, stationary states of quantum 
mechanical systems cannot have nonzero dipole moments. 
For this reason the dipole moment of polar molecules (mea- 
sured, for instance, by the Stark effect) is caused by the 
superposition of neighboring (on the energy scale) stationary 
states of different parities. A classical example of such a 
situation is the inverse splitting of levels of the ammonia 
molecu~e.~ 

In the absence of inverse degeneracy, the components of 
the w-doublet act as the neighboring states in forming the 
nonzero dipole moment of the molecule. Below we show 
that this leads to important consequences for the spectros- 
copy of Rydberg states. Hence the widespread notion that 

highly excited Rydberg states are essentially classical states 
is not always true for penetrating Rydberg orbits. 

2. A QUALITATIVE TREATMENT 

In the inverse Born-Oppenheimer approximation the 
distance between the levels of a Rydberg electron with dif- 
ferent principal quantum numbers n(-z2 ~ e l n ~ ,  where Z is 
the charge of the molecular core) is assumed much smaller 
than the distance between different rotational levels of the 
core (-2Bj, where B is the rotational constant, and j is the 
core's total angular momentum). It is known that the split- 
ting of the o-doublet (we denote this quantity by 3) is also 
much smaller than Bj .  Hence the results of Ref. 3 are valid 
if 

In this case o-splitting can be ignored and we can think of 
the molecular core as a system that has a constant dipole 
moment, in addition to having an electric charge. The pres- 
ence of a dipole moment lifts the degeneracy of the spectrum 
of a Rydberg electron with respect to the orbital angular 
momentum and leads to the emergence of quantum defects 
determined by the size of the dipole moment. 

But if 

a Rydberg electron has only a small effect on the core's 
stationary states, which are the components of the 
o-doublet, i.e., the symmetric and antisymmetric combina- 
tions of the core's wave functions with different signs of 
w. In these stationary states the dipole moment is zero, so 
that in the limit (2) a Rydberg electron moves in a purely 
Coulomb field, provided of course that we have ignored the 
higher multipole moments and the short-range part of the 
core potential. 

Thus, within the n - n a range of principal quantum num- 
bers, where 

the Rydberg electron spectrum undergoes a transformation: 
the fraction of the quantum defect associated with the dipole 
moment vanishes. 
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3. THE BASIC EQUATIONS 

We introduce the following notation: J is the total angu- 
lar momentum of a molecule, M is its projection on an axis 
fixed in space, j is the angular momentum of the core, and 
m and w are the projections of j onto the fixed axis and the 
core's symmetry axis, respectively; the effects associated 
with the spin of a Rydberg electron are not taken into ac- 
count. 

The Hamiltonian of a Rydberg molecule can be written 
as follows (throughout this paper we use the atomic system 
of units): 

where H +  is the rotational part of the core Hamiltonian that 
allows for the splitting of the o- doublet, T is the kinetic 
energy of the Rydberg electron, and 

is the electron-core interaction potential, with Z the core's 
charge, d the core's dipole moment, and r the radius vector 
of the Rydberg electron. The dipole moment is assumed di- 
rected along the core's symmetry axis. 

We also introduce the wave functions of a symmetric 
top: 

which depend on the Euler angles. Then the core wave func- 
tions, characterized by a definite parity2) g= 2 1, are linear 
combinations of the functions (6) (see Refs. 7 and 8): 

Here Er(j) is the rotational energy, which depends on the 
type of coupling of the angular momenta in the molecular 
core. 

We seek the complete wave function of the molecule in 
the form 

Plugging (8) into the Schriidinger equation, we arrive at an 
equation for the radial function, and since J and M are al- 
ways good quantum numbers and j and o are such in the 
inverse BomJ-Oppenheimer approximation, we drop these 
labels in R(r): 

The total energy of the molecule in this approximation is 

E = E r ( j ) + ~ .  (10) 

As Eq. (9) implies, the dipole interaction mixes only core 
states with different parities. And since the states that are 
mixed are those of the Rydberg electron that differ in the 
values of orbital angular momentum by 2 1, the complete 
molecular functions on the whole is one with definite parity. 
This fact can be taken into account explicitly if we introduce 
the parity of the molecular function, 

G=( -  l)lg, (1 1) 

and replace g by G in Eqs. (7)-(9): 

Here the functions (12) acquire a dependence on the label 
1, which makes it impossible to interpret these functions as 
core functions. This should come as no surprise since in the 
presence of a Rydberg electron-core interaction the respec- 
tive variables separate. 

We also note the disappearance of dipole coupling be- 
tween a Rydberg electron and the core at o = O ,  which is 
possible if j is an integer. The classical interpretation of this 
fact is straightforward: at o = O  the core rotates about an axis 
perpendicular to the dipole; in the inverse Bom- 
Oppenheimer approximation such rotation is assumed very 
rapid, which means that all projections of the dipole moment 
disappear after averaging. According to quantum 
mechanics: when o = O ,  there can be no linear Stark effect. 

4. LIMITING CASES 

At 6=0 the dependence of the radial functions on the 
label G disappears. In this case, which corresponds to the 
inequality (1) being valid, Eq. (14) admits of an analytic 
solution (see Ref. 3):) The radial function differ only by 
constant factors, 

R G I ( ~ ) = ~ I R ( ~ ) ,  (15) 

and formally R(r) coincides with the Coulomb radial func- 
tion: 
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Here L stands for Laguerre polynomials, n,= 0,1, . . . is the 
radial quantum number, 

v=n,+p+ 112 (17) 

is the nonintegral analog of the principal quantum number, 
and the values of 

are determined by the eigenvalues A of the following system 
of homogeneous linear equations: 

Here the molecule's energy is given by Eq. (10) with 

Now we can examine the limit (2). Since S is large, we 
can ignore the off-diagonal term (the right-hand side) in Eqs. 
(14), which makes the orbital angular momentum 1 a good 
quantum number. Here 

where n is an integer. In this limit only one coefficient al in 
Eq. (15) is nonzero, with (16) being the wave function of a 
hydrogen-like atom, provided that the limiting relations (21) 
hold. 

The similarity of the analytical formulas for the solutions 
of Eqs. (14) in the two limiting cases (1) and (2) suggests 
that the solution in the intermediate case has a similar form. 

5. THE VARIATIONAL METHOD 

We seek the solution of Eqs. (14) in the form of (15) and 
(16) with a value of p that has yet to be found. According to 
the Ritz variational after averaging (14) over the 
functions (15) and (16), with E taken as a Lagrange multi- 
plier for normalizing the vectors {a l } ,  we find that 

(22) 

In deriving Eq. (22) we used the value of the matrix element 
of r - 2  between the wave functions (16) (see Ref. 8; for 
nonintegral values of v we used the semiclassical approxi- 
mation in calculations9): 

(nrp(r -2Jnrp)= ~ ~ I v ' p .  (23) 

Varying (22) in a,, we arrive at the following system of 
linear equations: 

FIG. 1. Optimized values of p as functions of the radial quantum number 
n, in states with j = J =  112. The solid curves correspond to G= 1 and the 
dashed curves to G = - 1.  Curve 1 represents the function that in the limit of 
small values of n, corresponds to the state with p1 112 and in the limit of 
large values of n, to the state with p=3/2. Curve 2 represents the function 
that in the limit of small values of n, corresponds to the state with p=312 
and in the limit of large values of n, to the state with p =  112. 

where ~ ( p )  can be found from the condition that this system 
has a nontrivial solution. 

In the simplest cases where J = j = $to each value of G 
there correspond two energy eigenvalues: 

Varying in p the smallest value of E,  which in (25) corre- 
sponds to the lower sign in front of the third term on the 
right-hand side, we get the optimum value of p. The corre- 
sponding eigenvectors are given by the following expres- 
sions: 

The energy of the upper level can be found by reasoning 
along similar lines and allowing for orthogonalization of the 
eigenvectors. 

Figure 1 depicts the values of p optimized in this manner 
as functions of the radial quantum number n, for G =  - 1 
(dashed curves) and G= 1 (solid curves). In the limit of 
small n, these values of p coincide with the result of Ref. 3, 
while in the limit of large n, they assume the hydrogen-like 
values 4 and $. The transition from one asymptotic value to 
the other takes place in the region where u= n (n  a- 60 for 
the data of Fig. I), which agrees with the qualitative discus- 
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sion in Sec. 2. Note that the difference between n ,  and the 
principal quantum number n  of a hydrogen-like state, men- 
tioned in Sec. 3, is small for penetrating Rydberg orbits. 

We draw the reader's attention to the qualitatively dif- 
ferent behavior of levels with positive and negative parity. 
Negative-parity levels vary smoothly, while positive-parity 
levels change even the shells to which they belong. Such 
asymmetric behavior of the spectra for states of different 
parity is due to the choice of the sign of the value of the 
o-splitting 6>0 and to the fact that the parity of the com- 
plete molecular wave function depends on the parity of the 
orbital angular momentum of the Rydberg electron. For in- 
stance, the state with angular momentum 1=0 (in the hydro- 
genlike approximation) from a lower shell is in resonance 
with the states with I= 1 from the adjacent upper shell. At 
the same time, the similar states with the angular momentum 
1 =0 from the upper shell and the state with 1 = 1 from the 
lower shell are not in resonance: the o-splitting moves these 
states apart rather than together, so that their perturbation is 
fairly weak. Note that the signs of 6 for the neighboring 
values of j are differenL8 

The above reasoning suggests that the smooth variation 
of negative-parity levels for the case J= j= $ considered here 
will be replaced by a more rapid variation if we take into 
account the mixing of states with different values of n , ,  
which was not done when Eqs. (14) were replaced by the 
approximate equations (22). And although in view of the 
semiclassical nature of Rydberg states the off-diagonal ma- 
trix elements (in n,) of the type (23) are generally smaller 
than the diagonal matrix elements, the presence of a reso- 
nance leads to a dramatic change in the behavior of levels 
with G =  - 1 depicted in Fig. I. More precisely, if we incor- 
porate the resonant interaction of levels with different n,  into 
the picture, the dashed curves in Fig. 1 change and become 
to resemble in shape the solid curves, which correspond to 
G=  1. 

6. PERTURBATION THEORY 

The perturbation theory in the dipole interaction of a 
Rydberg electron and the core provides a correct description 
of the behavior of the levels, with the exception of the im- 
mediate vicinity of the crossing point. For an unperturbed 
base we can take the hydrogenlike one, which meets the 
conditions (21). The off-diagonal term (in 1 )  in (24) can be 
taken as the perturbation. Since the values of p are not varied 
here, the wave functions with different values of n, are au- 
tomatically mutually orthogonal. 

Without going into the details of calculations, we list the 
corrections to the energy levels in second-order perturbation 
theory for the simplest cases. By introducing the notation 

we can easily arrive at the following formulas: 
(1) h or J =  j= f, 

FIG. 2. Quantum defects p:, as functions of  the radial quantum number 
n, in states with j=  J =  112 and G =  1. The solid curve corresponds to 
1=0 and the dashed curve to I= 1. 

Here the second subscript on E stands for the orbital angular 
momentum of the hydrogenlike state "generating" the given 
excited states. We see that the above expressions become 
meaningless for G =  1 at n z n s  because of the resonances 
mentioned in Sec. 5. But at the same time they make it 
possible to obtain more precisely the resonant values of n .  

(2) For J= j= o= 1, 

In this case there is a resonance for both G =  1 and 
G = - 1 .  

7. CONCLUSION 

Anomalies in the Rydberg spectra similar to those just 
described can manifest themselves in atoms when there is 
resonance between the frequencies of transitions between 
Rydberg states and the states of the atomic core belonging, 
say, to different sublevels of the fine structure.1° However, 
the absence of a dipole moment in the stationary states of 
quantum systems is a direct consequence of spatial parity 
conservation in the interaction of the particles comprising the 
system. In this sense the described anomalies in the spectra 
of penetrating molecular Rydberg orbits can be thought of as 
being of a purely quantum nature. 

Figure 2 depicts the variations of the quantum defects 
,uf, in states with j= J= fat G =  I. To allow for w-splitting it 
is advisable to define quantum defects in the following way: 

We see that at n-- n  the quantum defects undergo a consid- 
erable change, with the result that the very concept of a 
quantum defect looses its constructive meaning. 

Quantum-defect theory has reached its greatest popular- 
ity in atomic physics (see, e.g., Refs. 11 and 12) and in 
applications to homonuclear diatomic  molecule^.'^*'^ The 
theory presupposes the possibility of analytic continuation of 
quantum defects from the bound-states region to the region 
of continuous states. However, because of the anomalies of 
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the quantum defect in polar molecules described in this pa- 
per, extending quantum-defect theory to such molecules con- 
stitutes a nontrivial problem. 
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effect of quantum defects on molecular Rydberg states. The 
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')A similar effect in diatomic molecules is known by the name of 
A-doubling. In symmetric molecules with Hund coupling of type a the 
commonly used term is a-doublet. In this paper we denote the quantum 
numbers of the core by lower case letters and those of the entire molecule 
by upper case letters. 

')1n molecular spectroscopy, functions with a given parity g and the parity 
G introduced here are usually known as positive or negative functions. 

3 ) ~ e  note in passing an error in Ref. 3: the factor (- l)'jf ' should be 
dropped from Eqs. (5) and (6) in Ref. 3. 
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