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We discuss a conservative, three-dimensional model of the nonlinear interaction of ultrashort 
laser pulses of relativistic intensity with matter, taking into account the generation of 
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Recently, in connection with the development of super- 
intense lasers, a number of researchers have considered the 
interaction of ultrashort laser pulses with matter at relativis- 
tic intensities of the light field. The optics of ultrashort pulses 
of nonrelativistic intensities have been completely worked 
out. The basic results in this field are summarized, for ex- 
ample, in the monographs of Akhmanov, Visloukh, and 
~hirkin'  and ~ukhorukhov.~ A number of questions on the 
physics of the interaction of strong laser radiation with mat- 
ter have been discussed in the book of Koroteev and 
~ h u m a i . ~  

When laser radiation of relativistic intensity interacts 
with matter, the leading edge the pulse produces rapid ion- 
ization, and therefore the radiation propagates in an induced 
plasma. The pioneering papers on the corresponding plasma 
nonlinearities (relativistic and striction) are those of 
Akhiezer and ~olovin? ~ s k a r ' ~ a n ?  ~ i tvak?  and others. Re- 
cent work on the interaction of laser radiation of relativistic 
intensities with matter can be summarized as follows. A 
mathematical model of the interaction of long laser pulses 
with a plasma was formulated in Ref. 7. A detailed math- 
ematical study of this modelg showed that the equations 
given in Ref. 7 have a denumerable set of eigenmodes. In 
addition, it was established in Ref. 8 by numerical simulation 
that at large depths, laser pulses of supercritical intensity 
experience stabilization and their asymptotic transverse pro- 
files are described by the lowest eigenmodes of the problem. 
This phenomenon is called relativistic-striction self- 
channeling of laser radiation. The model of Refs. 7 and 8 
was extended in Refs. 9 and 10 to take into account the effect 
of higher-order dispersion on the nature of the propagation, 
and it was shown that under conditions of sharp self-focusing 
of light in the plasma there is strong self-modulation of an 
ultrashort laser pulse. 

Physical effects associated with the finite duration of the 
laser pulse have also been considered in a number of other 

For example, a model of the propagation of in- 
finitely wide laser pulses of finite length was worked out in 
Ref. 11, and the equations of this model were extended in 
Ref. 12 to three spatial dimensions. However, these equa- 
tions do not transform into the equations obtained in Ref. 7 
in the limit of an infinitely long pulse. We recall that the 
nonrelativistic three-dimensional interaction of laser pulses 
with a plasma was considered in Ref. 13, where a number of 

dispersion terms in the equations describing the propagation 
of the radiation were neglected. Equations closest to those 
derived in the present paper were given in Ref. 14. However, 
a number of terms associated with the dependence of the 
Langmuir waves generated by the laser radiation on the 
transverse coordinates were omitted in Ref. 14, with the re- 
sult that the problem became nonconservative. 

Most theoretical studies of the problem are based on 
Maxwell's equations and the equations of cold, collisionless, 
relativistic hydrodynamics of charged particles in an electro- 
magnetic field in the absence of collisions and thermal ef- 
fects. These equations can be written in relativistically in- 
variant notation or in the usual three-dimensional form and 
have an energy-momentum tensor of matter and field whose 
components are conserved quantities (see Ref. 9, for ex- 
ample). Because of the complexity of these equations, in 
most papers they are averaged over the period of the laser 
radiation, and other approximations are introduced, leading 
to a system of simplified equations, which are also required 
to be conservative. 

The present paper is devoted to the derivation of a con- 
servative, time-dependent, three-dimensional model taking 
the following physical effects into account: diffraction and 
refraction of the radiation, relativistic and striction nonlin- 
earities in its interaction with the plasma, and the generation 
of plasma waves by the propagating laser pulses. The La- 
grangian formulation of the problem is given below and the 
general instability of a uniform light field is analyzed. 

As a starting point we use Maxwell's equations in the 
Coulomb gauge and the equations of cold, relativistic hydro- 
dynamics for the electronic component of the plasma: 

We assume that the duration of the laser pulse is so small 
that the ions of the plasma can be considered as fixed. In 
(1)-(5) the vector and scalar potentials A and 4 are normal- 
ized by m c 2 / e ,  the momentum p of the electron fluid by m c ,  
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the density of electrons n by its unperturbed value no, the 
time by up1 (where up is the unperturbed value of the 
plasma frequency), and the spatial coordinates by c lup  . 

The gauge condition (3) is equivalent to the continuity 
equation 

The system of equations (1)-(5) conserves energy and mo- 
mentum, as spelled out in Ref. 9, for example. 

We consider the propagation of laser radiation along the 
z axis. We make the following assumptions: 

A) The vector potential of the laser radiation is trans- 
verse and circularly polarized: 

where 

In (7) the frequency o of the laser radiation is normalized by 
o, . Equation (1 1) defines the group velocity, and the disper- 
sion relation (12) corresponds to propagation of a weak wave 
in the unperturbed plasma. We assume that the density of the 
plasma is subcritical, i.e. w> 1. 

B) The momentum of the electron component of the 
f'isma is written in the form 

This representation is equivalent to the assumption that there 
is no rotational correction to the motion of the electron com- 
ponent of the plasma. Substituting (13) into the vector equa- 
tion (4), we obtain a single scalar relation 

C) We neglect the generation of harmonics of the laser 
radiation, as well as quasistatic magnetic fields. This ap- 
proximation is valid when u S l ,  i.e., when the laser fre- 
quency is much higher than the plasma frequency. 

D) It is not difficult to show that in the normalization 
used here, the terms in the hydrodynamic equations involv- 
ing the derivatives n, and $, are proportional to the small 
parameter E,  and therefore if the laser frequency is much 
higher than the plasma frequency these terms can be omitted 
in the first approximation. Physically this means that the re- 
sponse of the electron component of the plasma in the co- 
moving coordinate system can be taken as instantaneous. 

The following system of equations results from these 
assumptions: 

Here we have used the notation v=nly, and the function 17 
plays the role of the independent variable. 

The system of equations (14)-(17) has not been consid- 
ered before in the literature. Because of the approximations 
discussed above it is not equivalent to the original equations 
(1)-(5), and therefore to justify our model physically it is 
required, in particular, to show that the equations of the 
model satisfy the analogs of the basic conservation laws. 
However these analogs are difficult to obtain directly from 
the conservation of energy-momentum of the original rela- 
tivistically invariant system of equations. In the present pa- 
per we use another approach. The Lagrangian is chosen such 
that its variation with respect to the variables a*, 4, +, g 
gives the equations (14)-(17), respectively. We then use 
Noether's theorem to obtain the conservation laws. 

It can be shown that the problem (14)-(17) can be ob- 
tained by varying the following Lagrangian: 

According to Noether's theorem, the system (14)-(17) has 
the following invariants: 

The Hamiltonian 

the number of particles 

and the momentum 

A number of papers assume that the complex amplitude 
of the vector potential is slowly varying in time. In this ap- 
proximation the term (e2/4)a, can be omitted in (14), while 
(15)-(17) remain unchanged. Then (14)-(17) has the La- 
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grangian L' and the invariants H ' ,  N', Pl and Pi defined by 
(18), (19), (21), (23), and (25), respectively. The system of 
equations (14)-(17) with the omission of the term (e2/4)a, 
has also not been considered before. 

The model of Ref. 14 is closest to the equations dis- 
cussed above. Our equations differ from those of Ref. 14 by 
the presence of some additional terms which, in particular, 
guarantee that the system is conservative. 

Our model differs from that of Ref. 12 in that it takes 
into account the effect of the finiteness of the transverse ap- 
erture of the laser pulse on the nonlinear response of the 
plasma. Because of the additional terms, in the limit of a 
long pulse our model transforms into the problem of 
relativistic-striction self-channeling of pulses and filaments- 
tion considered ear~ier .~ .~  

The propagation of a laser pulse in a model completely 
neglecting the generation of plasma oscillations has been 
considered ear~ier .~ . '~  We show that this case follows from 
the system of equations (14)-(17). Indeed, in this case we 
can set the potential correction to the momentum of the 
electrons equal to zero. Then we obtain from (5), (13), and 
(17) that cp= y=(l +la12)1'2. The superfluous equation (16) is 
then omitted. We finally obtain the nonlinear wave equation 

It can be shown that the problem (26) has the Lagrangian 

and its invariants are 

and the integrals defined by (20), (22), and (24). The wave 
equation (26) has been studied both numerically and 
analytically?"0 

The propagation of a tapered pulse, in which the varia- 
tion of the cross section of the pulse leads to important 

as well as the propagation in a plasma of pulses 
from a very wide transverse aperture,11315 can be derived 
from the system of equations (14)-(17). 

For sufficiently long pulses one can put d5=0 in (14)- 
(17). In addition, neglecting the term (e2/4)a,, we obtain the 
following nonlinear Schrijdinger equation 

It has the Lagrangian 

and the invariants8,16 

N= i  d2x,(a12, I 
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P,=i d2xla*Vla. I 
This problem has been thoroughly studied. Its denumer- 

able eigenmodes has been given and the relativistic-striction 
self-channeling of strong, ultrashort pulses in a plasma has 
been considered  numerical^^.^ The essence of this phenom- 
enon is that at large propagation lengths of the laser radiation 
into the plasma, the transverse profiles of the momentum and 
density amplitudes of the electronic component of the 
plasma cease to depend upon the longitudinal coordinate and 
approach the lowest eigenmodes of the problem. It has been 
shown numerically8 that to obtain self-channeling it is suffi- 
cient that the laser power exceed a certain threshold, called 
the critical power for relativistic-striction self-focusing. The 
critical power has been calculated analytically.8 In addition, 
the condition H<O is sufficient for relativistic-striction self- 
channeling of a laser pulse in a plasma.16 

We consider further the case of large transverse aperture 
of the pulse. In this limit one can put V,=O and then it 
follows from (16) that v= 4-'. In addition, we omit the final 
term in (14). Then (14) and (15) transform to 

ia ,+(l-  q5-')a+ ~ ~ a ~ ~ + e a ~ , - ( e ~ / 4 ) a , , = 0 ,  (27) 

4**=( 1/2)((1+1a12)/42- 1). (28) 

This problem was considered in Ref. 11. Equation (28) was 
also given in Ref. 15. 

The Lagrangian of the above problem has the form 

~ = i a * a , -  E ~ ( ~ ~ ( ~ - ( E I ~ ) ( ~ ~ ~ ~ + C . C . ) +  Ja12+ 4; 

- ( ( I  + Ial2)/4+4), 

and its invariants are 

If the laser pulse length is of order unity (in the normal- 
ization used here, i.e., the unnormalized length is of the order 
of the width of the plasma skin layer) and the function a 
does not have rapid spatial oscillations in 6, then the last two 
terms in (27) can be neglected. In this case 

where A(# is the solution of the ordinary differential equa- 
tion 

(+it+ 4o+ 4;1)5=(lao12/4:)40*t 

and ao(o is an arbitrary, sufficiently smooth function. It fol- 
lows from the equation that in this approximation dissipation 
of the energy of the pulse by generation of plasma oscilla- 
tions is not taken into account, i.e., we have the approxima- 
tion of steady-state pumping. 

In this approximation it turns out that the frequency shift 
of the propagating pulse is equal to the local value of the 

A. V. Borovskii and 0. B. Shiryaev 477 



electron plasma frequency, which varies because of the rela- 
tivistic increase in the mass of the electrons oscillating in the 
field of the laser radiation, and because of the modification of 
the spatial density of the electrons under the influence of the 
pondermotive force. This effect can be used to perform di- 
agnostics on the irradiated plasma. 

We consider, in the framework of the problem (14)- 
(17), the instability of a uniform radiation field. In this case 
we omit the term (~'/4)a,. 

The exact solution of (14)-(17) corresponding to propa- 
gation of a plane wave has the form 

To study the instability of the light field we represent the 
solution in the form 

The linearized equations for the perturbations (labeled 
by the 1 subscript) have the form 

- 
Y 'Al*l=Y?71*+~-'41*. 

Assuming a plane-wave solution of the form 

where k, ,y and R are related to one another through the 
dispersion relation, which is obtained by requiring a non- 
trivial solution for the amplitudes labeled by the 0 super- 
script. 

First we express +:, I&, and 77: in terms of a: with the 
help of the last three equations of the linearized system: 

We have used the notation 

It is evident from (29)-(32) that the interaction of the radia- 
tion with the plasma is resonant in nature. The resonant spa- 
tial frequency 

Xres= Y- In 

is an eigenfrequency of the plasma, whose electrons suffer an 
increase in mass as a result of oscillating with relativistic 
velocities in the field of the wave of intensity a:. 

We return to the study of the dispersion relation for 
small perturbations. With the help of the first of the equa- 
tions of the linearized system and the above relations, it is 
not difficult to obtain the following expression: 

where 

We consider some special cases. 
A) Filamentation instability, x=O. We obtain 

The condition for filamentation instability is given by the 
inequality 

k2<at/ y. (38) 

This result was obtained in Ref. 17 and used to estimate the 
radiative power in one filament. 

B) Modulation instability, k=O. With the help of the 
general expressions (33)-(37) it is not difficult to show that 

where 

Dl= Q(ai,0,x2)(Q(at,0.x2)- 4/79 + ( ~ / Y ) ~ ( E x ) ~ .  
(39) 

The condition for modulation instability is given by the in- 
equality Dll<O. It can be shown from (39) that the region of 
the instability is bounded by x<x'. When ~ 4 1  we obtain 

y-'[l -a$4?]. For arbitrary E we have X' < y-'. 
C) General instability. The most interesting case is the 

general filamentation-modulation instability. It follows from 
the general expression for the instability increment 

a= +k(k2- ~ ( a t , k ~ , ~ ~ ) ) ' I ~ +  0 (e2 )  (40) 

that the conditions for the instability are 

O <  YX2< 1 for k2<a$l y (41) 

and 

y-2[1 -a$ yk2]< yX2< 1 for k2>a;l y. (42) 

We note that the first of these conditions applies to the range 
of the wave vector k for which the problem describes un- 
stable propagation, independent of the longitudinal coordi- 
nates, while the second condition applies to the range of k 
for which the solution is stable in the absence of longitudinal 
dependence (see Eq. 38). Therefore when the perturbation 
depends on the longitudinal coordinate the filamentation in- 
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FIG. 1. Dependence of the instability increment of the light 
field in a plasma Im a, where R is determined by (33)-(37) of 
the text, on the wave vectors of the perturbation for the param- 
eters of the problem e=0.2, a,= 1. 

stability is neutralized for ?>A,= y-' and when k2>a;l y 
there is an additional instability mechanism of the field. 

Figure 1 shows the dependence of the increment of the 
general instability of the light field on the wave vectors k and 
,y of the spatial perturbations, for the typical values of the 
parameters of the problem e=0.2 and a,,= 1. 

We next consider the following interesting effect. It fol- 
lows from the inequalities (41) and (42) that a plane wave is 
stable when ,$> y-'=(l +a;)-"2. Because y-'-t0 when 
a;-+m, a unifonn field of large amplitude is stable. This is 
explained by the fact that in this limit the electrons become 
so heavy that the nonlinearity "turns off." 

In summary, we have discussed a new model of the 
three-dimensional, nonlinear propagation of relativistically 
intense, ultra-short, circularly polarized laser pulses in a cold 
plasma of sub-critical density. The model takes into account 
the diffraction and refraction of the propagating laser radia- 
tion, the relativistic and striction mechanisms of its self- 
action, which result from, respectively, the mass increase of 
the free electrons oscillating in the light field with velocities 
comparable to the speed of light, and the density variation of 
the electron component of the plasma because of striction, 
and also wave generation in the electron component of the 
plasma. The system of equations obtained here differs from 
those studied previously by the presence of several addi- 
tional terms in the equation for the amplitude of the vector 
potential of the laser field, and in the equations describing 
the oscillations of the electron component of the plasma 
moving together with the propagation of the radiation. 

We have discussed the Lagrangian formulation of the 
new problem and its four scalar invariants. 

We have shown that if the generation of plasma oscilla- 
tions is neglected, the equations reduce to the nonlinear wave 
equation, and in the limit of long pulses they reduce to the 
nonlinear Schrijdinger equation, which has been used in a 
number of papers to study relativistic striction self- 
channeling, filamentation, and self-modulation of strong, ul- 
trashort laser pulses in matter. In the approximation of a 

wide transverse aperture we obtain the equations of the ear- 
lier one-dimensional theory. 

We have shown that our system of equations has an 
exact solution corresponding to the propagation of a uniform 
light field in a plasma, and we have considered the stability 
of this solution to small perturbations. The instability is gen- 
eral, i.e., it is a nonlinear combination of the filamentation 
and modulation instabilities, In the limit of large longitudinal 
wavelength of the perturbation, the calculated increment is 
equal to the increment of the filamentation instability ob- 
tained in Ref. 17. We have also shown that a plane wave is 
stable against perturbations whose longitudinal component 
of the wave vector exceeds the electron plasma frequency, 
modified by the increase in the mass of the electrons oscil- 
lating in the field of the unperturbed wave. 
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