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In this paper we discuss the method of intensity fluctuation spectroscopy, which is based on 
spectral analysis of the photocurrent correlation function of probe light scattered by a medium 
under study. Starting from first principles, we estimate the sensitivity of the method, taking 
into account the quantum nature of photoabsorption, and examine the feasibility of using it to 
detect probe light with nonclassical photon statistics. We show that the measurement errors 
for the photocurrent spectrum are determined by fourth-order correlation functions of the 
photocurrent, which we express in terms of TN-ordered correlation functions of the field 
from first to fourth order. When the fluctuation spectrum is observed by using an optical 
heterodyning scheme, these measurement errors can be written in terms of the Mandel 
spectral parameter for the recorded light t(R),  which characterizes the deviation of the spectrum 
of photocurrent fluctuations at a frequency R from the Poisson level. The use of squeezed 
light with l(fl)-+ - 1 for this detection can lead to a considerable increase in the sensitivity of 
the method of intensity fluctuation spectroscopy compared with the use of coherent light 
in an analogous recording scheme. As an example we consider two nonlinear processes: two- 
photon absorption by a two-level atomic transition, and parametric conversion of light 
in a four-wave process via scattering by atoms with oriented internal angular momenta. We show 
that the use of squeezed light leads to the possibility of observing a qualitatively new effect 
in fluctuation spectroscopy-a correlation-induced Faraday effect. O 1996 American Institute of 
Physics. [S 1063-776 1 (96)00509-41 

1. INTRODUCTION 

Traditional methods of atomic and molecular high- 
resolution spectroscopy are based on analysis of the inten- 
sity, spectral content, and polarization of light transmitted or 
scattered by a medium under study.' However, in addition to 
these characteristics, important information about physical 
processes taking place in the medium is also contained in the 
fluctuations of intensity and polarization of the probe light. 
The use of information-containing properties of fluctuations 
in the parameters of light to analyze the state of the medium 
under study constitutes a new type of intensity fluctuation 
spectroscopy (Refs. 2-6)'' The method of intensity fluctua- 
tion spectroscopy is based on measuring the correlation func- 
tion of the photocurrent and then writing it in terms of the 
correlation function of the electromagnetic field and the cor- 
relation functions of the medium susceptibility. Once we 
have analyzed the measurement results, we can obtain im- 
portant information about the dynamics of the fluctuations 
and various characteristics of the relaxation process in the 
medium under study. In a number of cases, the fluctuation 
spectrum contains information that is absent from the first- 
order field correlation function spectrum. A further interest- 
ing feature of the method is the fact that in combination with 
optical heterodyning it allows us in principle to observe the 
spectrum of correlations of the component of scattered light 
with the same frequency content, i.e., averages of type 
( a a )  and ( a + a + ) ,  whereas a measurement of the spectral 
intensity gives only a measurement of the average (a'a).  
Here a and a +  are annihilation and creation operators for the 
field oscillator respectively. 

Optical mixing spectroscopy has been successfully used 
to solve a range of problems, for example, investigation of 
the velocity distribution of molecules in liquids and gases, 
analysis of the properties of various randomly nonuniform 
media, see Refs. 5 and 6, and the study of the internal dy- 
namics of macrom~lecules.~'~ The possibility of using inten- 
sity fluctuation spectroscopy to investigate the dynamics of 
fluctuations in the population and orientation of an ensemble 
of atoms with Zeeman splitting of their levels was demon- 
strated in the experiments of Refs. 8,9. A number of theo- 
retical papers'0-14 were initiated by these experiments, 
whose goal was to investigate the potential of the method in 
atomic spectroscopy applications. Especially interesting was 
the use of correlation methods to investigate nonclassical 
statistical effects such as antibunching of photons and gen- 
eration of squeezed states of light, which are caused by the 
nonlinear interaction of light with matter and which reflect 
the quantum character of the evolution of the internal state of 
atoms of the medium under study. 

Despite the successful use of the method of intensity 
fluctuation spectroscopy to address a number of problems 
and the great potential of the method for investigating the 
nonlinear scattering of light by various media, its use under 
more widespread circumstances is restricted by insufficient 
sensitivity due to the large experimental errors in measuring 
information-bearing fluctuations. This is connected with the 
fact that for optically thin media the fluctuation amplitudes 
are proportional to the square root of the particle concentra- 
tion, and not the concentration itself as is the case for an 
ordinary optical detection signal in the traditional spectro- 
scopic approaches,' and also with the fact that the 
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information-bearing fluctuations of interest must be sepa- 
rated from a background of shot noise and, in the general 
case, of Gaussian fluctuations that contain no additional in- 
formation beyond that which is contained in the field spec- 
trum, see Ref. 6. Since the average values of shot noise and 
Gaussian noise can always be subtracted from the total sig- 
nal, the measurement potential of the method of intensity 
fluctuation spectroscopy is limited by fluctuations in the lev- 
els of these types of noise. Errors in the correlation measure- 
ments when the light has Gaussian statistics are discussed in 
Refs. 2 and 3. There it was shown that when an analyzer with 
a transmission bandwidth yf and a signal collection time T is 
used for the spectral analysis of photocurrent fluctuations, 
the ultimate sensitivity of the method is determined by the 
parameter ( yfT)-I". An analogous estimate was also made 
for probe light with Poisson statistics. Although this param- 
eter can be made small, in real situations this smallness may 
be insufficient for precision measurements, which hinders 
the widespread practical application of the method. 

In recent years, experimental and theoretical investiga- 
tions have demonstrated the possibility of creating sources of 
so-called squeezed light, for which the manifestation of non- 
classical statistical properties is character is ti^.'^^'^ The use of 
such sources for optical monitoring, which leads to a de- 
crease in the photodetector noise and an increase in the mea- 
surement accuracy, was demonstrated in the experiments of 
Refs. 17-19. We can expect that in those cases where the 
quantum nature of fluctuations in the probe light parameters 
becomes important, improvements of this kind are possible 
for the method of intensity fluctuation spectroscopy as well, 
i.e., the estimate of the sensitivity of correlation measure- 
ments given above can in principle be improved. Further- 
more, the newly discovered possibility of using the methods 
of optical mixing spectroscopy to observe effects based on 
the fundamental relations of quantum mechanics such as the 
Heisenberg uncertainty relation is interesting and important 
in its own right. The goal of the present paper is to investi- 
gate the sensitivity and to seek new applications for the 
method of intensity fluctuation spectroscopy, taking into ac- 
count the quantum-mechanical peculiarities of the probe 
light. 

In examining squeezed light as a possible source of 
probe light in intensity fluctuation spectroscopy experiments, 
it is necessary that the discussion be based on a fully 
quantum-mechanical theory of photodetection, both to calcu- 
late the signal and to estimate its errors. In this case we arc 
required to calculate second- and fourth-order correlation 
functions of the photocurrent. The quantum theory of photo- 
detection developed by ~lauber?' (see also Ref. 21) assumes 
that quantum effects are manifest in real situations only 
when the "field-photodetector" interaction is taken into ac- 

FIG. 1. Electronic detector channel. 
'Ihe photodetector current passes 
through a resonance filter tuned to 
frequency a,. The cumnt obtained 
as a result of a subseuuent square- 
law transformation id(t) % $( t )  is av- 
eraged in an integrator, and ST is the 
output signal of the integrator. 

C 
integrator 

id([)  - - 
- - - 

count. In this case, for a wideband photodetector the question 
of how to order the photocurrent operators in the second- 
order correlation functions of the photocurrent at different 
time arguments turns out to be unimportant. As the analysis 
we carry out below shows, a different situation arises when 
we calculate fourth-order correlation functions of the photo- 
current. Their values depend in an important way on the 
ordering of the sequence of operators with different time 
arguments. We will show that the choice of true time order- 
ing of the photocurrent operators leads to an expression for 
the measurement errors in intensity fluctuation spectroscopy 
in terms of TN-ordered correlation functions of the field 
from first to fourth order. We will discuss in detail the spe- 
cific case of a heterodyne photodetector, which can be real- 
ized, e.g., by mixing squeezed light obtained from paramet- 
ric scattering with a classical reference wave, or in using the 
light from a sub-Poisson laser as a detecting source. In this 
case we show that it is possible both to decrease the mea- 
surement errors and to observe certain qualitatively new ef- 
fects. 

The article has the following plan. In Secs. 2, 3 we ana- 
lyze the observed quantities and errors in the method of in- 
tensity fluctuation spectroscopy, starting from classical and 
quantum representations of the photocurrent. In Sec. 4 the 
method of intensity fluctuation spectroscopy is discussed in 
combination with a scheme of optical heterodyning. We ob- 
tain a connection between measurement errors and the Man- 
del spectral parameter for the probing light. Section 5 is de- 
voted to a discussion of concrete examples, one of which is 
two-photon absorption by a two-level atomic transition and 
parametric conversion of light in a fourth-order process me- 
diated by scattering by oriented atoms. 

- ST 

2. QUANTITIES TO BE MEASURED AND THEIR ERRORS IN 
INTENSITY FLUCTUATION SPECTROSCOPY 
EXPERIMENTS 

The electronic measurement sequence that is character- 
istic of intensity fluctuation spectroscopy experiments is 
shown in Fig. 1. The photodetector current i(t) is subjected 
to a spectral analysis by a filter whose resonant frequency 
52' can be smoothly tuned. A current i d ( t )  i ! (t)  is obtained 
after a square-law transformation averaged over a time T. 
The resulting quantity ST is the output current of an integra- 
tor or a voltage on a capacitor of the corresponding integra- 
tion circuit. 

The current at the output of the filter can be defined 
either in terms of the temporal characteristics of the filter 
h(7)  or its spectral transfer function Y 

i ( t )  - - 
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where 

(2.2) 

We have set the "turn-on" time of the filter equal to - w ,  

which eliminates the effect of transient processes from our 
discussion. In this case the output signal ST equals 

For a random process i(t) of arbitrary type, a random vari- 
able defined in this way depends both on the initial time to 
(which we take to be zero) and on the averaging interval 
T. 

For a statistical ensemble of observations, the average 
value of the output signal S= S(Ro) = (ST) (which depends 
parametrically on the filter frequency Qo) is expressed in 
terms of the photocurrent correlation function: 

In what follows we limit ourselves to the case of a stationary 
random process, for which the correlation function 
G(t ,r2) is a function of the time difference T= t - t2. In 
this case the average value S depends neither on the choice 
of initial time nor on the signal averaging time T: 

and is defined by the spectral density G(R) of the random 
process i(t) 

and the transfer function Y(Q) of the filter. 
Let us assume the following relationships among the 

various temporal scales encountered in this problem: the av- 
eraging time T, the transmission bandwidth yf of the filter, 
and the characteristic time for photocurrent fluctuation cor- 
relations TO: 

In particular, this implies that the spectral density G(R) var- 
ies only slightly over a frequency interval of order yf, and in 
place of (2.5) we have 

where the dimensionless parameter qo 

is determined by the transfer function of the filter. Thus, the 
scheme shown in Fig. 1 actually measures the spectral den- 
sity of the photocurrent G(fl) .  

The measurement errors in the method of intensity fluc- 
tuation spectroscopy are determined by the dispersion of the 
quantity ST 

which for the case of a stationary random process has the 
form 

where the spectral function @R,R1,fi) is defined by the 
Fourier transform of the photocurrent correlation function of 
fourth order 

In these relations we have taken into account that under sta- 
tionary conditions the correlation function !T depends only 
on three differences of the arguments, for which we have 
taken T= t l  - t2 ,  T' = t3 - t4, and ?= ( t l  + t2)/2 
- (t3 + t4)/2. 

For the special case of Gaussian noise, where the fourth- 
order correlation function of the photocurrent separates into 
a sum of products of pairs of correlators, Eq. (2.1 1) is trans- 
formed into the well-known Rice relation23: 

However, in general, measurement errors of the spectral den- 
sity G(R) are determined by the fourth-order correlation 
function (2.12) of the photocurrent, which we must be able 
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to calculate or reliably estimate in order to determine the 
sensitivity of the method of intensity fluctuation spectros- 
COPY - 

We call the reader's attention to the fact that in using 
intensity fluctuation spectroscopy to address optical monitor- 
ing problems, the interest is not in the average value ST of 
the observable itself, which is determined by Eqs. (2.8), 
(2.9), but rather its change due to interaction with the me- 
dium under study. When the photocurrent fluctuation spec- 
trum in the absence of a medium is constant in the neighbor- 
hood of the frequencies under study, this implies that it is 
necessary to make at least two measurements for two differ- 
ent values of filter frequency no, and no2 ,  and to compare 
these measurements. The difference in the values S(nOl)  and 
S(Ro2) can be reliably observed if it is considerably larger 
than the square root of the sum of the variances of the quan- 
tities ST defined by relation (2.1 1) for the two resonant fre- 
quencies no, and flO2 of the filter. 

3. PHOTOCURRENT CORRELATION FUNCTION 

The results of the previous section were obtained by 
starting from classical representations of the photocurrent. 
As is well a classical treatment does not lead to a 
completely correct description of the process of photodetec- 
tion. The first-principles quantum theory of photodetection 
developed by ~laube?' and further elaborated in a number 
of subsequent papers (see, e.g., Refs. 21, 15, 24) shows that 
in analyzing the results of a specific experiment it is impor- 
tant to precisely define the measured quantity and its 
quantum-mechanical analog. In particular, in defining the 
quantum correlation functions of the photocurrent it is im- 
portant to address the question of ordering of the sequence of 
operators i(t) with different time arguments. Thus, in papers 
that discuss correlation experiments of the type described 
above, see, e.g., Refs. 21, 15, it is normally assumed that the 
quantum-mechanical analog of the classical average 
(i(tl)i(t2)) is the autocorrelation function of the photocur- 
rent (112{i(t ,)i(t2)}+), where {A ,B}+  is an anticommuta- 
tor, and the brackets ( . . . ) denote a quantum-mechanical 
averaging over the "source-field-photodetector" state. 
However, whereas for the pair correlation function the rela- 
tion ( i ( t l ) i ( t 2 ) ) = ( i ( t 2 ) i ( t l ) )  is satisfied as a rulei5 (be- 
cause in this case a lack of commutativity can be associated 
only with 8-correlated shot-noise contributions to this func- 
tion), i.e., the question of ordering of the photocurrent opera- 
tors is not important, quantum-mechanical effects are mani- 
fest only when we take into account the "field- 
photodetector" interaction. A different situation arises when 
we compute the fourth-order correlation functions of the 
photocurrent, whose values depend significantly on the or- 
dering of operators with different time arguments. 

In order to define normal ordering of the photocurrent 
operators under the signs of statistical and quantum- 
mechanical averaging, we start from the fact that the integral 
transformation in the original relation (2.1) consists of an 
expression for the system (filter) response to an external per- 
turbation (the input photocurrent) that satisfies the principle 
of causality. For this reason it is natural to assume that the 
first signal to arrive at the input of the square-law detector is 

the signal induced by the photocurrent at the earliest time, 
and to associate with the observed quantity ST a quantum- 
mechanical operator of the following form: 

where the photocurrents are quantum-mechanical Heisenberg 
operators and T denotes their time average. Since it is a 
quantum observable, the quantity ST satisfies the necessary 
requirement of self-adjointness sT= s;. In this case the ex- 
pression for the mean-square fluctuations of ST, as before, is 
determined by relations (2.11), (2.12), which contain the 
photocurrent correlation function 59, which now averages 
photocurrent operators that are time-ordered in the necessary 
way. Taking into account the self-adjointness of ST,  the 
function 4;: which is a quantum generalization of (2.12), can 
be written in the form 

Here is the operator of anti-ordering in time. In this rela- 
tion we take into account that for a stationary random pro- 
cess the correlation function 27 in fact depends only on the 
three argument differences T, T ' ,  7 defined according to 
(2.12). However, in the general analysis of this section we 
will discuss the correlation function of all four temporal ar- 
guments independently, i.e., we will assume that 
F= .F(t, ,t2 ,t3 ,t4). 

The photocurrent operators i(t) entering into the corre- 
lation function are expressed in terms of the operator of the 
number of atoms N(t) ionized at time t: 

Here Nk(t) is a single-atom projection operator onto all the 
excited states that are evolving in accordance with the 
Heisenberg equations, while the summation with respect to 
label k runs over all atoms of the photodetector; e is the 
electron charge, which we set equal to unity in what follows 
(e = 1 ) . Calculation of the correlation function for photocur- 
rent is thus reduced to calculating the corresponding correla- 
tion function for the number of excited atoms, which can be 
done with the help of perturbation theory based on the as- 
sumptions of ~laube?' for the model of an ideal photode- 
tector. In this case it turns out that our approach to ordering 
the operators in the definition (3.2) is not the only one pos- 
sible. We calculated the fourth-order correlation functions 
for various types of time ordering of the photocurrent opera- 
tors, along with unordered and symmetrized averages. In this 
case, if it is approximately true that recombination of photo- 
electrons in the detector with the emission of photons does 
not occur, i.e., if the transfer of energy from the field to the 
detector is unidirectional, the following calculated averages 
coincide: 
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A common feature of all these averages is the fact that they 
all correspond to various possible averages of the products of 
operators ordered along the contour introduced by Konstan- 
tinov and Perel' in their diagram technique.25 

Substituting (3.3) into the definition (3.2), we can write 
the photocurrent correlation function in the form 

Here dld{ t }  = dld t l  dldt2 dldt3 d ld t4 ,  and 

Kklmn(tl r t 2  9t3 9t4) 

=(%~k(~l)~l(~2))~(~m(t3)~n(t4))). 

(3.6) 

Let us break up the correlation function for the photocurrents 
into a sum of several terms, which describe one-, two-, three- 
and four-atom interactions with the field: 

where 

The prime on the summation sign implies that we retain only 
terms corresponding to differing values of the summation 
labels: k # 1,  etc. 

In order to express the correlation functions of the pho- 
tocurrent (3.8)-(3.11) in terms of the correlation functions of 
the electromagnetic field, let us discuss the interaction of 
light with the photodetector atoms in the lowest orders of 
perturbation theory. The total Hamiltonian H of the system 
we write in the form of a sum of an unperturbed Hamiltonian 
Ho that describes the independent evolution of the electro- 
magnetic field and the detector and an operator V that de- 
scribes their interaction: 

Let us transform to the interaction picture and introduce the 
evolution operator for the complete system under discussion: 

A A 

S - ) =  T ( ( d t ) .  (3.13) 
h -m 

In this case the atomic correlation functions (3.6) can be 
written in the form 

=(~i-'~~(t,)~~(t~))T(~~(t~)~~(r~)i)), (3.14) 

where the single-atom operator N i ( t )  is defined in the inter- 
action picture and can be expressed in terms of creation op- 
erators *\I t ( rk , t )  and annihilation operators q y ( r k  , t )  of an 
atom at the point rk in state s ,  which is an eigenstate of the 
Hamiltonian of internal motion of the atom: 

The operator V ( t )  in the interaction picture has the following 
form in the dipole approximation: 

Here is the matrix element of the pth component of 
the transition dipole moment vector between the ground so 
and excited s  states, and ~ : - ) ( r ~  , t )  is the Operator for the 
negative-frequency component of the field intensity. Here we 
use a co(c0ntra)variant system to describe the tensor indices 
and will adhere to the definition of the field frequency com- 
ponents used in Ref. 26: E'-e"@', i.e., the + and - signs 
are associated with photon creation and annihilation opera- 
tors, respectively. The time evolution of the operators 
*yt (r t )  and q y ( r t )  is determined by the field and detector 
Hamiltonians: Ho= H d +  H f .  The Hamiltonian Hf also takes 
into account the interaction of the field with the scattering 
medium, so that the operators ~ r ) ( r , t )  are exact Heisen- 
berg operators with respect to all the interactions in which 
the light participates except for its interaction with the detec- 
tor. 

464 JETP 83 (3), September 1996 D. V. Kupriyanov and I. M. Sokolov 464 



Let us calculate the correlation functions Kklmn( . . . ) 
(3.6), (3.14) and the photocurrent correlation functions 
(3.7)-(3.11) expressed in terms of them by using the 
Keldysh diagram technique.27728 In calculating the functions 
Kklmn(. . . ) we make the usual assumptions corresponding 
to the model of an ideal Glauber photodetector.20 The spec- 
trum of the sensitivity function of the photodetector we as- 
sume to be considerably broader than the spectrum of the 
light under study, so that the process of photoabsorption can 
be treated as localized in time. We will also assume that the 
original state consists of photodetector atoms in their ground 
states, all of whose sublevels are uniformly occupied, and 
that the probability of light absorption does not depend on its 
polarization. We will neglect the recombination of photo- 
electrons and the resulting feedback of the photodetector to 
the incident light. In what follows, we will discuss as ex- 
amples the diagram representations of the functions (3.6), 
(3.14) entering into the expression for the correlation func- 
tions F4( . . . ) and F3( . . . ) , and point out distinctive fea- 
tures of the calculation for these examples. 

Analysis of the possible diagrams shows that in the ap- 
proximations discussed above the correlation function 
Kkrmn(tl ,t2 , t3 ,t4) with non-coinciding values of the atomic 
labels k # 1 # m # n,  which determines the photocurrent cor- 
relation function F4( . . . ), is given by the following graphi- 
cal expression: 

(3.17) 

Here the straight lines, whose ends are denoted by labels + 
or -, denote the Green's functions that appear in the 
Keldysh technique for the ground and excited states of the 
i-th atom, which are averages of atomic operators * time- 
ordered in various ways: 

where the ordering operators TUIr2 (u, , a 2 =  2 )  act accord- 
ing to the following rules: T - -  = T is the operator of time- - 
ordering, T +  + = T is the operator of time-anti-ordering, 
T +  - is the identity operator, and T -  + is the operator of 
transposition. In the case of fermion statistics, Eq. (3.18) 
must be multiplied by - 1 if the ordering operator TVlc2  
leads to a transposition of operators. In order to simplify 
the description we use abbreviated notations in the diagrams. 
For example, the label k 1 denotes k 1 = sk  , r k  , t , where 
sk is an internal state of the kth atom; analogous notations 
are used in the remaining cases. We associate matrix ele- 
ments of the dipole moment with vertices of the diagram, in 
accordance with the general rules of the Keldysh diagram 

The summation sign over s in the diagram 
(3.18) indicates that the summation should be carried out 

over all excited states of the atoms. We draw the reader's 
attention to the fact that when there are no excited atoms in 
the initial state of the photodetector, taking into account the 
8-correlated nature of the process of photoabsorption for an 
ideal photodetector, the choice of signs for vertices and at the 
ends of the diagram (3.17) is the only one possible. 

The internal portion of the diagram consists of a block 
that describes the fourth-order correlation function of the 
electromagnetic field, and which takes into account all of the 
interaction with the system "field plus source," including 
the interaction with the medium being probed: 

p,4+ -p;4, p33+ -jIe33, 

(3.19) 

For an ideal photodetector, there is an analytic expression 
corresponding to diagram (3.17) that relates the photore- 
sponse to the correlation function of the electromagnetic 
field (3.19) when the arguments and labels of the latter co- 
incide: ,uiriti=,ui'ri'ti', where i =  1 to 4. If we then substi- 
tute (3.17) into the photocurrent correlation function (3.1 I), 
the summation over all photodetector atoms can be replaced 
by integration over the surface of the photocathode, which 
leads to the following expression for the correlation function 
r4: 

where o is the average frequency of the incident light, and 
5 is the quantum efficiency of the photodetector. Repeated 
tensor indices (here defined in a Cartesian basis) imply sum- 
mation. 

This expression can also be obtained by starting from the 
well-known formulas of Glauber applied to an ideal four- 
atom photon dete~tor.~' The calculations of Ref. 20 (see also 
Ref. 24) were carried out for an arbitrary n-atom ideal pho- 
todetector as part of a discussion of the photoabsorption pro- 
cess to lowest nonvanishing order in ordinary time- 
dependent perturbation theory. In order to determine the 
probability for a photoabsorption at each of the photodetec- 
tor atoms at "its own" instant of time ti, the evolution op- 
erator for each of the atoms is also calculated at that time 
instant t i .  By direct comparison, it is not difficult to verify 
that the method of calculation used in Ref. 20 for the prob- 
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ability of recording n photons by an n-atom photodetector 
corresponds precisely to calculating the correlation function 
Kkl.  . . ( t l  , t 2 ,  . . . ) with k# 1 # . . . defined by relation 
(3.14). We can also say that the physically transparent con- 
clusion regarding the probability of an n-fold coincidence 
discussed by Glauber corresponds to calculating the time- 
ordered expression for the atomic correlation functions in the 
form (3.14), (3.6), and thereby is a basis for the time order- 
ing in the expression for the quantum observable ST; see 
(3.1). 

Let us discuss the photocurrent correlation function 
F 3 ( t l , t 2 , t 3 , t 4 )  defined by Eq. (3.10). The lowest nonvan- 
ishing order of perturbation theory in the interaction 
of detector atoms with the field that contributes to 
the atomic correlation functions Kkklm(t  , t 2 ,  t 3 ,  t 4 ) ,  
Kklkm(tl  ,t2 ,t3 , t4 ) ,  . . . with k# 1 # m, will be the sixth, with 
the main contribution coming from diagrams with one un- 
connected line. The correlation function Kkklm(tl  , t2 ,t3 , t4 )  
is determined by the following graphical expression: 

+ ( k l  +-, k2). 

where the second term denotes a diagram that differs from 
the first by the replacement kl- k2. The correlation function 
Kklkm(tl  ,t2 ,t3 , t4 )  is determined by the following diagram: 

+ ( k l  t, k3). 

Note that, as in the discussion of the diagram (3.17), the 
choice of signs for the vertices of diagrams (3.21), (3.22) is 
the only one possible for an ideal photodetector. A graphical 
representation of the remaining four atomic correlation func- 
tions that enter into F 3 ( .  . . ) can be obtained without diffi- 
culty by analogy with (3.21) and (3.22). The analytic calcu- 
lations of all the diagrams that appear are straightforward 
and for the most part repetitive. When substituted into the 
photocurrent correlation function F3(.  . . ), the connected 
portions of the diagrams generate factors determined by the 
third-order correlation function of the electromagnetic field, 
and the disconnected ends lead to 8-functions in the corre- 
sponding temporal arguments. 

Generalizing these discussions, we remark that the low- 
est nonvanishing perturbation orders with respect to interac- 
tion of detector atoms with the field for the correlation func- 
tions F2( . . . ) and Fl( . . . ) will be fourth and second 
respectively. The primary contributions to the diagram ex- 

pansion of the corresponding atomic correlation functions 
will come from diagrams with two and three disconnected 
atomic lines. In this case, just as in the case of F3(  . . . ), the 
connected parts of the diagrams will generate correlation 
functions of the electromagnetic field, while the discon- 
nected atomic lines will lead to Bcorrelated factors. Omit- 
ting simple but tedious intermediate computations, we 
present the final results for all the components of the photo- 
current correlation function (3.8)-(3.11): 

where we use the notation 

and define the nth order correlation function of the electro- 
magnetic field as follows: 

In expression (3.27) we have used the same system of abbre- 
viated notation as in Eq. (3.20). 

The expressions we have obtained for the various com- 
ponents of the photocurrent correlation function (3.23)- 
(3.26) show that contributions are present in the full photo- 
current correlation function (3.7) that are proportional to 
electromagnetic field correlation functions of various orders 
from first to fourth. For a real photodetector, the accuracy of 
the 8-correlated factors is determined by the spectral absorp- 
tion bandwidth of the detector, which must be considerably 
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wider than both the spectral content of the incident light and 
the frequency band of photocurrent fluctuations under study 
as defined by the spectrum of the correlation functions 
g ,(. . .) . Note also that although the functions F i (  . . . ) with 
i =  1 to 4 are determined by field correlation functions of 
different order, as we will see below, they give comparable 
contributions to the total correlation function of the photo- 
current when the state of the field is close to coherent. 

4. ERRORS IN MEASURING THE PHOTOCURRENT 
FLUCTUATION SPECTRUM BY OPTICAL HETERODYNING 

,When a medium is investigated by the method of inten- 
sity fluctuation spectroscopy, the amount and content of in- 
formation obtained depend significantly on the choice of a 
specific optical scheme for detecting the probe light. The 
most complete information is given by polarization-sensitive 
correlation measurements, where the detected light is sub- 
jected to a polarization analysis, since this scheme allows us 
to measure not only the intensity correlations of the light, but 
also its polarization correlations, see Ref. 13. The use of 
probe light with quantum statistical properties, e.g., light in 
the squeezed state, imposes definite limitations on the pos- 
sible methods for detection. The quantum statistical proper- 
ties of squeezed light are significantly "spoiled" when the 
light passes through various kinds of polarization analyzers, 
due to partial absorption. In this paper we discuss the use of 
squeezed light to increase the sensitivity and extend the pos- 
sibilities of the method of nonlinear correlation spectros- 
copy. Our scheme is based on the principle of optical hetero- 
dyning, in which light scattered by a medium is mixed with 
a strong coherent reference wave. In using this technique, we 
will assume that the light incident on the medium is in a state 
close to coherent, with quantum properties that are mani- 
fested only in its fluctuations. In this method the light scat- 
tered by the medium is recorded in the forward direction; 
therefore the reference wave is a coherent component of the 
light passing through the medium. Initially, the nonclassical 
(squeezed) light can be combined with the coherent light in a 
beam splitter with a high transmission coefficient, see Fig. 2. 

The photocurrent correlation function G(t, ,t2) deter- 
mined by Eq. (2.4), expressed in the notation (3.7), can be 
written in the form 

In the method of optical heterodyning, we can separate a 
group of high-intensity modes from the light incident on the 
photodetector in which the field is in a state close to coher- 
ent. The amplitude of the coherent component can be sepa- 
rated out in calculating the quantum averages, which for- 
mally reduces to replacing the field operator by the sum 

where the first term, which is a unit operator, projects out the 
complex amplitudes of states that are eigenstates of the field 
operator (coherent modes of the reference wave), while the 
second term corresponds to the Heisenberg operator for field 
fluctuations. 

FIG. 2. Observation of the fluctuation spectrum of transmitted light using 
the method of optical heterodyning. The coherent reference wave (Coh)  is 
mixed with the squeezed light (Sq) in a beam splitter (M)  with a high 
transmission coefficient. The light passing through the scattering medium 
(SM) is absorbed by the photodetector D and is subject to further spectral 
analysis, see Fig. 1 .  

Taking into account (4.2), the spectrum of the function 
G(r),  r= t - t2 determined by relation (2.6) can be written 
in the form 

G ( n )  = l JSo+ 12(~~o)22rr8(Cl)  

where So is the area of the illuminated surface of the photo- 
cathode, J is the flux density of photons in the reference 
wave, i= l JSo  is the average photocurrent, and is the 
quantum efficiency of the photodetector. 

In Eqs. (4.2) and (4.3), we take as a reference wave a 
wave packet with negative-frequency components of the fol- 
lowing form: 

which defines a monochromatic light signal propagating 
along the z axis with a narrow range of wave vectors and a 
complex polarization vector e. Let us neglect the effect of 
diffraction, i.e., we will not take into account the difference 
between longitudinal components of the wave vectors. The 
distribution of transverse wave vector components k1 is de- 
termined by the following packet amplitude function: 

~ ( k ~ ) =  lE(k1)1eie0, 

The functions @ a ' u 2 ( ~ , f i )  ( a ,  ; u2= t) are spacetime Fou- 
ClPz 

rier components of the normal (a, = -+ ; u2 = 7 ) and anoma- 
lous ( a ,  = t ; u2= t ) correlation functions 
@"Iu2 ( r  , t , ,r2t2) of the Heisenberg field intensity operators 

PlF2 
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which we assume depend only on the coordinate differences 
T= t l  - t 2 ,  p= r, - r2 after separating out the rapidly oscil- 
lating phase factors: 

Xexp -iulo t l--  { ( 2) 

The second equation in (4.3) defines the Mandel spectral 
parameter & a ) ,  which measures the deviation of the fluc- 
tuation level from the shot-noise limit in the region of the 
spectrum under discussion. The spectral dependence of the 
Mandel parameter is determined by the corresponding de- 
pendences of the field correlation functions (4.6), and is a 
manifestation of quantum beating components of the field 
intensity in the photocurrent spectrum against the back- 
ground of the classical reference wave. In accordance with 
relations (2.8), (2.9) (see also the discussion at the end of 
Sec. 2), we conclude that measurement of the Mandel param- 
eter &fl) in the vicinity of the filter resonance frequency 
a-.no corresponds to measuring the observable 
S =  s (no ) :  

where the parameter 770 is determined by Eq. (2.9). In this 
case, in order that the uncorrelated contribution ?27~8(fl) 
to the spectrum (4.3) arising from the product of photocur- 
rent averages in the correlation function be absent from the 
output signal determined by the integral (2.5), it is necessary 
for the following condition to hold: 

which is a criterion for ideality of the filter that notches out 
the neighborhood of zero frequency. Our estimate of the 
spectral transfer function in (4.9) corresponds to a filter with 
temporal characteristics of the following form: 
h(r)  = exp(- y,~)cos(&.r). In this section we will assume in 
our analysis that the important condition (4.9) is satisfied. 

The results of the previous section show that in order to 
calculate the measurement error of the observable S T ,  whose 
variance AS2 is determined by Eqs. (2.10), (2.11), (3.2), it is 
necessary to compute the correlation functions for the de- 
tected field to all orders from first to fourth; see Eqs. (3.7), 
(3.23)-(3.28). In this case, using the expansion (3.7) for the 
fourth-order photocurrent correlation function, we can make 
an analogous expansion for the variance (2.10): 

in which each term directly corresponds to one of the con- 
tributions (3.23)-(3.26) to the photocurrent correlation func- 

tion. Let us analyze these contributions still further, taking 
into account distinctive features of the heterodyne detection 
system. 

The contribution AS: to the variance is determined from 
the photocurrent correlation function (3.23), and conse- 
quently from the first-order correlation function of the field. 
The AC component is proportional to the first power of the 
heterodyne wave intensity, and in the case under discussion 
here of a strong reference wave it is small, of order - 
yf 1% 1 compared to terms that are second order in the in- 
tensity, which appear in AS;- AS:. In what follows we will 
neglect the contribution of AS: to the total variance. 

The variance AS; is determined by a subgroup of the set 
of terms that enter into the correlation function F2; see 
(3.24). These terms are in turn determined by the second- 
order correlation functions of the detected field. In isolating 
the principal contribution to the variance AS; we can discard 
small corrections that appear because of the incoherent com- 
ponent of the field, and save only terms that involve the 
reference wave. In other words, we can ignore whatever cor- 
relations there are in the field in calculating AS;. Taking into 
account the partial compensation of the second term entering 
into (2.1 I), AS; has the form 

here we have introduced the dimensionless parameter 7, 

which depends on the type of filter. Note that in deriving 
(4.1 1) we have discarded a small contribution proportional to 
the square of the filter transfer function evaluated at zero 
frequency I Y (0) 12.  

The variance AS;  is caused by the contributions of six 
terms (3.25), which are determined by third-order field cor- 
relation functions. In these correlation functions terms are 
present that do not depend on time, proportional to the third 
power of the reference wave intensity J 3 ,  and also terms 
proportional to SJJ2 ,  where SJ is the contribution to the 
photon flux density from the incoherent component of the 
light. However, all the terms of this kind can be ignored in 
AS:, first of all because of the partial compensation by 
analogous terms contained in the product of second-order 
correlation functions of the photocurrent in (2.1 I), and sec- 
ondly by virtue of the fulfillment of condition (4.9), which 
eliminates the effect of the neighborhood of zero frequency 
on the photocurrent fluctuation spectrum. The primary con- 
tribution to AS: comes from those terms that are propor- 
tional to the square of the reference wave intensity J 2  and 
which also contain the correlation functions of the incoherent 
component of the field (4.6), (4.7). Analysis of these terms 
shows that the corresponding contribution to the variance 
can be directly expressed in terms of the Mandel parameter: 
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where we have discarded small terms proportional to 
Iy(0)l2.  

Let us discuss the contribution AS: to the variance, 
which is determined by the photocurrent correlation function 
Y4. It is easy to see that terms proportional to the fourth 
power of the reference wave intensity J~ are completely 
compensated by the corresponding terms contained in the 
product of second-order photocurrent correlation functions in 
(2.1 1). An analogous compensation also takes place for four 
of the time-independent terms proportional to 8JJ3 .  Other 
terms in the expansion of F4 in powers of the heterodyne 
wave intensity, which are third order in J ,  turn out to be 
proportional to the linear contribution to the second-order 
field correlation function; see the expansion (4.3). These 
terms are either cancelled by analogous terms entering into 
the product of second-order photocurrent correlation func- 
tions, or are unimportant due to condition (4.9), because the 
corresponding contribution to the variance is proportional to 
the fourth power of the filter transfer function at zero fre- 
quency I Y (0)14. 

A tedious analysis of the contributions to AS: from all 
the terms of the expansion of F4 that are second order in the 
heterodyne intensity shows that only sixteen of them are un- 
related to spectral fluctuations in the neighborhood of zero 
frequency and are not cancelled by terms of the same order 
entering into the product of painvise photocurrent correlation 
functions in (2.11). These terms are determined by all pos- 
sible correlation functions of the incoherent field components 
of the following form: 

where the operator Tu1u2u3u4 orders field operators along the 
Konstantinov-Perel' contour25: the signs ai= + correspond 
to positioning the operators on the upper and lower edges of 
the contour in a fashion corresponding to time anti-ordering 
or time ordering. In this case the operators that appear on the 
upper edge of the contour always come first in the product. 

In this paper we are primarily interested in the case of 
probe light that is in the squeezed state. For squeezed light 
obtained from parametric scattering by a crystal, the fourth- 
order correlation function (4.14) breaks up into a sum of 
painvise products of the averages (4.6). Physically, the rea- 
sons for this factorization are quite obvious. In all the pro- 
cesses in which two-mode squeezed light is generated, the 
photons are created in pairs, so that only photons of a given 
pair can be correlated and no other correlations between dif- 
ferent pairs can exist. Thus, we can say that the probe light 
possesses no four-photon correlations that do not factor into 
products of pairwise correlations. Four-photon correlations 
can arise when the interaction between the light and the me- 
dium under study is mediated by processes like eight-wave 
mixing, caused, e.g., by successive scattering of four photons 
by a single atom. However, the probability of such pro- 
cesses, which is proportional to the number of scatterers N in 
the medium, is much smaller than the probability of two 

successive four-wave processes taking place on different at- 
oms, which is proportional to N'. Neglecting these multi- 
photon processes, we can approximately assume that 

Substituting this expansion into the expression for the corre- 
lation function F 4 ,  we can write AS: in the following form: 

We call the reader's attention to the fact that Eq. (4.15) has 
the same form as for Gaussian light. In this case, for a large 
number of scatterers N the neglected terms that describe 
higher-order correlations are small, of order 1IN. However, 
in contrast to the purely Gaussian statistics, for the case of 
squeezed light the nonzero contribution to (4.15) comes from 
anomalous correlation functions. In this case the contribution 
AS: to AS2, like the contribution AS:, is determined by the 
Mandel spectral parameter [ ( a )  at filter frequency no, 
which for squeezed light can be negative. 

Combining the results (4.11), (4.13), (4.16), we obtain 
for the total variance (4.10) the following expression: 

This relation, which is valid in the limit yfT-+m, can be 
used to estimate the sensitivity of measurements of the Man- 
del parameter by optical heterodyning. Let us write the Man- 
del parameter in the form 

where to is its value for light incident on the medium. This 
value is assumed to be constant in the spectral range of in- 
terest to us, where 8 t ( f i )  is a small correction due to con- 
tributions from scattered light. Using relations (4.8), (4.17) 
and taking into account 'the comments we made at the end of 
the second section on the need for at least two independent 
measurements in order to determine the change in the Man- 
del parameter in the medium under study, we obtain the fol- 
lowing estimate for the limiting value of 85 that can be ob- 
served by this method: 

This relation shows that the sensitivity of measurements of 
the information-bearing component of the photocurrent spec- 
tral density can be greatly improved if the probe light is 
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squeezed, i.e., the Mandel parameter 80-4 - 1 for the light 
incident on the medium, and the photodetector efficiency 
5-1 1. 

It is interesting to note that the "improvement" factor 
1 + 56 enters into Eq. (4.19) to first order. When squeezed 
light is used in linear spectroscopy to measure a small ab- 
sorption coefficient, the analogous "improvement" factor 
enters to the 112 power; see Ref. 19. Thus, the use of 
squeezed light in nonlinear correlation spectroscopy can be 
considerably more effective. However, it is important to note 
that that the relations between measured quantities (e.g., the 
Mandel parameter) and the characteristics of the scattering 
medium are specific to correlation spectroscopy and are not 
universal, and in general require some additional analysis. 
The choice of an optimal experimental geometry depends 
critically in this case on the nature of the scattering medium 
and the type of scattering. We will illustrate these points in 
the next section for the example of nonlinear scattering of 
light by an atomic medium. 

5. CORRELATION SPECTROSCOPY OF AN ATOMIC 
MEDIUM 

Equation (4.3) relates the photocurrent statistics to the 
correlation characteristics of the field. The latter enter into 
this expression through the normal (@EL: A:;;;) and 

anomalous (8:;;; ,@:::) correlation functions of the field 
intensity, which are defined by Eqs. (4.6), (4.7). In what 
follows, we will discuss the case of a single polarization 
component, and introduce the following functions: 

which satisfy the symmetry relations 

These relations show that only two functions are indepen- 
dent; we pick a(--) and a(+-). 

For quasimonochromatic light propagating in the z di- 
rection, when diffraction effects are neglected this pair of 
correlation functions can be represented as follows: 

taking into account that in general the phase of the anoma- 
lous correlation function 6 can also depend on the transverse 

wave vector K~ and on frequency 0: 8= B(K, , a ) .  It is 
convenient to introduce a generalized spacetime spectral 
Mandel parameter 

((K.1 , a ) = A ( ~ l  ,a)+A(-Kl , - a )  

+2 cos 2 ( e ( ~ ,  , a )  - 8 0 ) ~ ( ~ l  , a ) ,  (5.4) 

in terms of which we can write the spectral Mandel param- 
eter defined by Eq. (4.3) as follows: 

In this expression, the integration runs over possible values 
of the transverse heterodyne wave vectors K, , which we 
assume are considerably smaller than the limiting value 
~ ~ ~ , , - ( k l ~ ) " ~ ,  where L is the length of the scattering me- 
dium. The quantity ~2~ determines the ultimate spatial scale 
for coherence of the scattered light that allows phase match- 
ing of light scattered by different volumes of the medium. 
This scale can also be interpreted as the ultimate spatial scale 
over which low-noise measurements are possible, see Ref. 
29. Because there is a natural limit on the possible values of 
the parameter .$(a) > - 1, the real positive-definite functions 
r = T(K, , a )  and A = A(K, , a )  satisfy the following inequal- 
ity: 

Thus, a measurement of the Mandel parameter & a )  is in 
fact a collection of measurements of the three quasi- 
independent quantities A ,  8, r. The effect of the scattering 
medium reduces to modifying these quantities as follows: 
X, 6, r j h ' ,  8', r'. For squeezed light these parameters 
have a clear interpretation as quantities that specify the ec- 
centricity and orientation of the ambiguity ellipse in the com- 
plex amplitude plane, within which quantum fluctuations 
take place in the amplitude of the negative-frequency com- 
ponents of the field intensity at frequencies K, , a. In what 
follows, we will refer to this as the squeezing ellipse for 
brevity. 

The evolution of the correlation functions (5.1) and the 
change in the parameters A, 8, r can be described by the 
optical transport equations for a nonlinear medium. How- 
ever, these equations do not have a universal form, since 
they depend considerably on the specific type of nonlinearity 
being discussed. As an example, in what follows we will 
discuss two-photon absorption by a two-level atomic transi- 
tion and parametric conversion of light in a four-wave scat- 
tering process mediated by atoms polarized with respect to 
internal angular momentum. 

The problem of propagation of light with arbitrary quan- 
tum statistical properties through a multiphoton and, in spe- 
cial cases, two-photon absorber was studied in Ref. 30. In 
Fig. 3 we show the results of a calculation of the Mandel 
parameter for resonant two-photon absorption as a function 
of the gain of the medium K. The calculations were made for 
the spectral region near zero frequency a- 0, which in real- 
ity corresponds to measurement of the photocurrent spectrum 
in a band defined by the relaxation times in the problem. The 
two curves in Fig. 3 correspond to coherent input light with 
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FIG. 3. Result of calculating the Mandel parameter [(a) in the low- 
frequency region as a function of the gain coefficient K of the medium for 
resonant two-photon absorption at the transition 20, according to the data 
of Ref. 30. Curves 1 and 2 correspond to probing by coherent and squeezed 
light. 

Poisson statistics to = 0 (curve 1 ) and sub-Poisson squeezed 
light with to= - 1 (curve 2). These functions show that the 
changes in the Mandel parameter caused by the medium for 
weak absorption (K- 1) are first order in both cases. The 
specific expression that connects these changes with the mac- 
roscopic characteristics of the medium were given in Ref. 30. 
For us, the important thing is that when the probe is resonant 
or close to resonant, these measurements are determined by 
changes in the parameters A and r ,  and do not involve the 
angle 8, which characterizes the orientation of the squeezing 
ellipse. If the two-photon absorber is used as an experimental 
setup to measure these characteristics by intensity fluctuation 
spectroscopy, then according to the results of Sec, 4, the use 
of squeezed light should increase the sensitivity of the 
scheme for measuring small changes in S t  in a significant 
way. This result can be clearly demonstrated by geometry. 
When the medium is probed by classical light using intensity 
fluctuation spectroscopy, rather small changes in the Mandel 
parameter are measured by identifying rather small distor- 
tions in the Gaussian ambiguity circle, which corresponds to 
coherent light. Of course, the problem with making such 
measurements is that we must isolate these small distortions 
against a background of random statistical versions of the 
original ambiguity circle. It is considerably easier to observe 
manifestations of two-photon absorption based on changes in 
the statistics of ideally squeezed input light. In this case, 
observing a change in the Mandel parameter corresponds to 
observing an increase (or appearance) of the small axis of the 
squeezing ellipse, and in the limit of "perfect squeezing" 
and an ideal photodetector there are no accompanying back- 
ground fluctuations; see (4.19). 

The second example-parametric conversion of light in 
a four-wave process mediated by a medium consisting of 
atoms that are oriented with respect to internal angular 
momentum-was discussed in Ref. 14. Transport equations 
that describe the evolution of the correlation functions (5.1) 
were derived in Ref. 14 for the case where the lower state of 

the driven atomic transition was the ground state. This state, 
which did not undergo relaxation during the motion of the 
atom within the beam, was split into a group of Zeeman 
sublevels by an external magnetic field I&, directed perpen- 
dicular to the probe light. The correlation function (5.1) in 
the medium acquires a dependence on the coordinate z: 

and the transport equations14 that describe its variation with 
z can be used when the frequency is close to the frequency 
of the Zeeman splitting no or twice that frequency 2Qo. We 
will use these equations for the case where the probe light is 
circularly polarized and quasiresonant with the atomic tran- 
sition j= 1/2+ j' = 112, where j, j' are angular momentum 
quantum numbers for the ground and excited states; the level 
scheme and excitation geometry are shown in Fig. 4. 

After transforming (5.1) using Eqs. (20), (21) of Ref. 14, 
the variation of the correlation functions @(--)(~,rCl;z) and 
@(+- ) (K ,~ ;Z)  when a - R o  can be described by the equa- 
tions 

Here no is the concentration of atoms, while a(o) is the 
complex cross section that describes linear absorption and 
dispersion of quasiresonant light at a frequency w: 

a ( w ) = u f  (w)+id'(w) 

where d j j l  is the reduced matrix element of the dipole mo- 
ment for the j+jf transition, wo is the frequency of the 
unperturbed optical atomic transition, and y is the natural 
atomic linewidth. We will neglect Zeeman mixing of the 
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L 
FIG. 4. Scheme of working levels (a) and experimental 
geometry for parametric conversion of light by an ensemble 

a of oriented atoms (b). The average orientation of the atomic 
angular momenta (j) is directed along an external magnetic 

! Z '  field H, and corresponds to preferentially population of one 
I 

of the Zeeman sublevels, for example fl,, m = 112. The 
light that illuminates the scattering medium (SM) has 
right-handed circular polarization, and is a superposition of 
the coherent component (Coh) at frequency o and conju- 

cU,o-R,o+R gate modes of squeezed light (Sq) at frequencies o-fl, 
w+ fl. The light absorbed by the photodetector D is sub- 
ject to further spectral analysis; see Fig. 1. 

ground-state sublevels in this expression, assuming that 
J ~ - U ~ ~ + ~ + R , .  The phase 80(z)=80-(1/2)noa"(w)z is 
that of the reference wave propagating in the medium, which 
is the pump wave in the parametric process. The four-wave 
interaction of the pump wave kw with a pair of phase- 
conjugate modes k+ K, w +  R is measured by the constant 
x ( ~ , R ; z ) ,  while R(--)(K,R;z) and h ( + - ) ( ~ , R ; z )  repre- 
sent bulk sources of parametric and Raman scattering. The 
explicit form of these parameters is given in Ref. 14. Here 
we give only their asymptotic expressions, which are valid 
under the conditions RoP I R - Rol + 7 I ,  where 7 is the 
average time of flight of an atom through the probing beam: 

the parameter p = (j,t)lj characterizes the degree of orienta- 
tion of the atoms in the direction of the magnetic field, see 
Fig. 4. It is important to note that the asymptotic relations 
(5.1 1) are valid only when p#O, i.e., only when the light 
interacts parametrically with the nonequilibrium atomic en- 
semble. 

The solution to the system of Eq. (5.9) for an optically 
thin medium reduces to iteration. Transforming these equa- 
tions to a form that describes the change in the parameters 
A ,  8, r when the light probes a transmission band 
a"(w) + a' (w), and assuming ideal conditions for phase 
matching of the squeezing ellipse and the reference wave at 
the input to the medium 8(KI ,R;O) - eO(0) = 7~12, we ob- 
tain for the growth rates of these parameters 

A(e(KL , f l ) - e o ) = A ~ , ( f l ) + A e , ~ ( ~ l  .a), (5.12) 

where the linear A Ol(R) and nonlinear A 8 n 1 ( ~ L  ,R) growth 
rates for the relative angle have the form 

In the low-frequency range of the fluctuation spectrum 
( R e  y) the inequality A O n 1 P  A el follows naturally. In this 
case the change in phase of the anomalous correlator, which 
can be interpreted geometrically as a rotation of the squeez- 
ing ellipse with respect to the reference wave vector in the 
complex amplitude plane (see Fig. 5), is determined prima- 
rily by the nonlinear interactions. The change in the space- 
time spectral Mandel parameter turns out to be proportional 
to the square of the angle of rotation: 

A ~ ( K *  ,f i )=54A e 2 ( q  , f i ) r ( q  ,a> 

and the correction to the Mandel parameter t (R)  is found by 
substituting (5.14) into the integral (5.5). Examining the ex- 
plicit expression for the four-wave interaction constant 
(see (5.11)), we see that in this case the rotation of the 
squeezing ellipse is determined by the orientation of the an- 
gular momentum along the external magnetic field. 

These results recall the classical Faraday effect, i.e., ro- 
tation of the plane of polarization of linearly polarized light 

h r ( ~ ~  ,R)-AA(K~ ,R)-0, as it propagates in a medium in a magnetic field. In this case, 
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FIG. 5.  Geometric illustration of the changes in the Mandel parameter for 
the parametric conversion shown in Fig. 4. The change in the orientation of 
the major axis of the squeezing ellipse with respect to a coherent reference 
wave, which is characterized by an angle of rotation A 8,, , is proportional to 
the orientation of the angular momenta of the atoms. 

the direction of the polarization vector is associated with the 
major axis of the squeezing ellipse in the complex amplitude 
plane. As in the ordinary Faraday effect, rotation of the di- 
rection of "polarization fluctuations" is initiated by the ori- 
entation of the angular (magnetic) moment of the medium. 
Pursuing this analogy, we can view a heterodyne detector 
that mixes the squeezed light with a reference wave as a 
unique type of "polarization analyzer." However, we call 
the reader's attention to the fact that in this case the direction 
of the average oriented angular momentum vector is or- 
thogonal to, not parallel to, the direction of the probe beam; 
see Fig. 4. It is obvious that the occurrence of such a 
correlation-induced Faraday effect is entirely based on the 
quantum statistical properties of the light in the case of clas- 
sical light and is impossible in principle. Thus, this example 
demonstrates the breadth of possibilities of the method of 
intensity fluctuation spectroscopy based on the use of quan- 
tum properties of light. From a practical standpoint, observa- 
tion of the rotation of the squeezing ellipse in the complex 
amplitude plane induced by nonlinear parametric interaction 
of the light with the medium can be used for spectroscopic 
analysis of the medium characteristics. 

A further interesting feature of the parametric process 
described by Eqs. (5.8), (5.9) is the fact that when the light 
incident on the medium is perfectly squeezed, i.e., 
& , ( K ~  ,a) -1 - 1, the medium becomes optically transparent 
and the Mandel parameter is unchanged. This result is a con- 
sequence of the fact that the intrinsic parametric conversion, 
which redistributes photons between conjugate modes, and 
the nonlinear dispersion, both of which are expressed in 
terms of the same interaction constant, affect the phase of the 
anomalous correlation function in a compensating manner. 

In general, the transformation of the spectrum of fluctua- 
tions of squeezed light by a scattering medium reduces to a 
simultaneous distortion and rotation of the squeezing ellipse; 
by using the method of intensity fluctuation spectroscopy 

based on a heterodyne photodetector, we can observe these 
changes. If the light used to probe the medium were coher- 
ent, the distortion would infringe on the original Gaussian 
ambiguity circle for the quasiprobability distribution corre- 
sponding to the shot-noise background in the spectrum of 
photocurrent fluctuations. In general, it is worth noting that 
extending the possibilities of the method of intensity fluctua- 
tion spectroscopy by replacing coherent light with squeezed 
light can be just as productive as replacing unpolarized light 
by polarized light or using polarization-sensitive detection in 
linear spectroscopy. 

6. CONCLUSION 

In this paper we have estimated the sensitivity of the 
method of intensity fluctuation spectroscopy by using a 
quantum description of the light that probes the medium un- 
der study. The fourth-order photocurrent correlation func- 
tion, which describes errors in measuring the photocurrent 
spectrum (which is what is observed in the method of inten- 
sity fluctuation spectroscopy) consists of the sum of contri- 
butions from TN-ordered field correlation functions from 
first to fourth order. For the case of heterodyne photodetec- 
tion, if we assume quasi-Gaussian statistics when extracting 
operator averages from the incoherent field components, the 
variance of fluctuations in the observables is expressed in 
terms of the spectral Mandel parameter KO)  of the detected 
light. Our estimate shows that when the probe light is 
squeezed, which implies that a limiting value of t(fl)-+ 
- 1 is possible, we may expect a considerable increase in the 
sensitivity of the method of intensity fluctuation spectros- 
copy. We have found that the implications of replacing clas- 
sical light by squeezed light in this case are more significant 
than for the analogous situation in linear absorption spectros- 
COPY. 

As an example of intensity fluctuation spectroscopy us- 
ing squeezed light, we have discussed two-photon absorption 
by a two-level atomic transition and parametric conversion 
of light in a four-wave scattering process mediated by ori- 
ented atoms. In using the results of Ref. 30, we have shown 
that when two-photon absorbers are used to record small 
changes in the Mandel parameter, the sensitivity is consider- 
ably higher for squeezed light than it is for classical light. 
This circumstance is of considerable importance in applica- 
tions, since two-photon and multiphoton absorption pro- 
cesses are widely used in atomic spectroscopy, molecular 
spectroscopy, and photochemistry. 

In the case of parametric scattering, the use of squeezed 
light leads to qualitatively new ways to use the method of 
intensity fluctuation spectroscopy. Changes in the Mandel 
parameter of the transmitted light can be inferred in this case 
by observing a rotation of the squeezing ellipse in the com- 
plex amplitude plane relative to the coherent component of 
the reference wave. For this example the angle of rotation is 
found to be proportional to the orientation of the angular 
momenta of the atoms in the direction perpendicular to the 
probe beam. An interesting feature of this effect, which we 
refer to as a correlation-induced Faraday effect, is that it 
cannot be interpreted by using a classical representation of 
fluctuations in either the light intensity or the susceptibility 
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of the scattering medium. This is because the latter, which 
mediates the generation of phase-conjugate photon pairs, in 
practice changes the state of the field only at the level of the 
quantum uncertainty relation. Also interesting is the fact 
(possibly associated with its quantum nature) that observa- 
tion of this effect is accompanied by a considerably larger 
signavnoise ratio if the squeezing ellipse in the light incident 
on the medium is oriented at an angle of nI4 and not n/2. In 
this case, it is easy to verify that the variance of fluctuations 
of the Mandel parameter determined by (4.17) will be con- 
siderably higher (not lower) than for classical light. Note, 
however, that in this observation geometry, along with the 
rotation we will also observe a distortion of the squeezing 
ellipse. In order to observe a pure rotation, we can couple the 
reference wave at the output from the medium, i.e., just in- 
side the detector channel. In this case we must introduce an 
additional phase shift for the reference wave that takes into 
account the linear dispersion of the medium. 
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')we note that the term "intensity fluctuation spectroscopy" is usually used 
in Russian literature. In the English literature, other names are more often 
used: correlation spectroscopy, optical mixing spectroscopy, and quantum 
beating spectroscopy. All of these terms are quite close in their physical 
meaning, and in this paper we will, for the most part, adhere to the term 
"intensity fluctuation spectroscopy." 
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