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We discuss the problem of second-order correlation in pion production in high-energy processes 
(commonly known as Bose-Einstein correlation) by means of the concept of nonlocality 
and its mathematical realization via the isotopy of Hilbert and Minkowski spaces. Such a nonlocal 
approach allows one to describe the spatial shape of the source where pions are produced 
("fireball"), and to account also for the correlation in phase. The correlation function obtained 
by this method does not contain free "ad hoc" parameters. Moreover, a test of this 
nonlocal correlation function performed on UAI experimental data is as good as that given by 
the conventional treatment. Such an approach suggests an interpretation of the pion 
production as a decay process of the fireball whose mean lifetime can be explicitly evaluated. 
Using the data of the UAI ramping run, we find an expression for the metric parameters 
as functions of the energy. They provide an effective dynamical description of the hadronic 
interaction in terms of a deformation of the Minkowski metric. The related parameters 
of the fireball admit of future experimental verification at DELPHI. The law of deformation of 
time in the presence of a hadronic field is derived. Its behavior with energy allows one to 
give an appealing picture of confinement and asymptotic freedom of hadronic constituents. 
O 1996 American Institute of Physics. [S 1063-7761(96)00209-01 

1. INTRODUCTION 

The phenomenon of second-order interference in pion 
production from high-energy collisions1 was widely dis- 
cussed in its formulation as a Bose-Einstein (BE) correlation 
among identical particles2 by borrowing concepts from inter- 
ferometry in radio astronomy.3 Previously, it was merely 
considered as an unexpected and unforeseen correlation in 
the production of pions.4 

The so-called BE correlation was later recognized as 
common to widely disparate processes, such as hadronic 
(also involving nuclei and heavy ions) and hadro-leptonic 
reactions, as well as pair annihilations and yy-reactions (for 
an experimental as well as theoretical review, see, e.g., 
Ref. 5). 

From a phenomenological viewpoint, the effect is that 
pairs of identical bosons show a higher probability of ernis- 
sion at small opening angles--or, equivalently, at small rela- 
tive momenta-than pairs of nonidentical particles. As al- 
ready mentioned above, it was first interpreted, for equally 
charged pions, as a manifestation of their BE statistical 
properties? The BE correlation picture of this phenomenon 
originates, of course, in the quantum-mechanical interference 
of the wave functions of the particles and the consequent 
requirement of a total wave function symmetric under par- 
ticle exchange.' 

Note that at the macroscopic level (for instance, in radio 
astronomical interferometry), the interference-and therefore 
the correlation-curs in the space near the detector. This 
implies a coherent source. In contrast, at the microscopic 

level, we have to look for correlation, i.e., interference, in the 
spatial region near the source, which, a priori, is not ex- 
pected to be coherent. This is the very reason for the unpre- 
dictability of the correlation effect first observed for pions: 
classically, the interference (and therefore the correlation) of 
the detected bosons is a strict consequence of source coher- 
ence. Although the principles at the very basis of the BE 
interpretation are, of course, of universal validity, we think 
that there is a difference in their application to the micro- 
scopic case as compared to the macroscopic one. 

In our opinion, the inadequacy of BE correlation in the 
microscopic case is due to the model of source coherence 
used in deducing the correlation function. 

To see this, let us critically review the main lines of the 
classical procedure of deriving the second-order correlation 
function C(2) defined by 

where P (p l  ,p2) is the two-particle probability density sub- 
jected to BE symmetrization and P(pi) is the corresponding 
single-particle quantity for a particle with four-momentum 
pi. In practice, one often uses the simplified expression 

where the reference probability density PO(pL,p2) is essen- 
tially the same as P(pl,p2) apart from its lack of BE sym- 
metrization. 
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At this point, in the standard treatment one introduces 
the model of "uncorrelated emission," which is considered 
to be a useful way to deal with an "uncorrelated source." 
This leads to an identification of the two concepts. However, 
in our opinion, these two concepts do not coincide in gen- 
eral, as we shall see in the following. 

Incidentally, in the usual model of uncorrelated emission 
quantity P(pl,p2) loses its character of probability density 
(in its usual, strict quantum, meaning) and rather takes the 
form of an "expectation value" of the space-time distribu- 
tion of the boson sources, p(ri) (with ri  being the position 
four-vector of the ith boson). For one has 

where qy: is defined as the amplitude for a boson pair to be 
produced at r and r2 and registered in the detector at xl and 
X2-  

The next logical step in the standard treatment of the BE 
correlation is the identification of lack of correlation with 
casuality. In other words, the uncorrelated boson source is 
assumed to behave like a radioactive source, which a priori 
is not justifiable at all. Due to the identification of source and 
emission (cf. Eq. (1.3)), the uncorrelated emission is identi- 
fied with casual emission. This leads to assuming a Gaussian 
space-time distribution of the source: 

The final result of these hypotheses is the well-known 
expression for C(2), i.e., 

where Q12=pl-p2. 
Equation (1.5) obtained by the standard approach de- 

scribes the interference of bosons emitted by a totally inco- 
herent source. However, as is well known, this formula is 
unable to account for the experimental findings. Indeed, in 
order to get satisfactory agreement with the experimental 
data, one is forced to introduce an "ad hoc" parameter A 
(totally alien to the model) physically interpreted as the frac- 
tion of pairs of identical particles that appear to interfere (and 
are therefore correlated): 

Note that there is no way consistent with the standard 
approach to avoid the artificid~troduction of the "chaotic" 
parameter A (although a justification of the parameter can be 
provided in the framework of very sophisticated-and some- 
what involved-models; see, e.g., Ref. 6 and references 
therein). 

Apart from the above quoted A-problem, let us recall that 
some recent papers cite the (partial at least) inadequacy of 
the standard BE theory to account for the existing experi- 
mental data.' 

In this paper we discuss a model of BE correlation that 
overcomes most of the critical remarks to the standard treat- 

ment we put forward above. The model relies in an essential 
way on the hypothesis of a nonlocal origin of the phenom- 
enon. 

In this connection, recall that in recent years there has 
been renewed interest in nonlocal gauge (pio- 
neered by ~fimov" according to a very early suggestion by 
Wataghin in 193411). In particular, it has been shown that 
nonlocality makes it possible to eliminate and 
to get a "hidden" Higgs boson? 

However, in the present paper we will treat nonlocal 
effects by exploiting some new mathematical tools explicitly 
constructed in the last decade in order to deal, among other 
things, with nonlocal effects, i.e., the so-called Lie-isotopic 
generalizations of special relativity theory and quantum 
rnechanic~.'~-'~ (A comprehensive and detailed exposition of 
Lie-isotopic theories from both physical and mathematical 
points of view is given in Ref. 16.) 

The main lines of the Lie-isotopic approach to BE cor- 
relation have been already given by santilli.17 However, our 
physical motivations are basically different, and the very 
derivation of the nonlocal correlation function departs, in 
some respects, from that in Ref. 17. As a matter of fact, we 
get a different final form of the physical correlation function 
for fitting the experimental data. Moreover, our basic aim is 
to extract (preliminary) information from BE correlation 
about the possible description of the hadronic interaction in 
terms of a deformed (isotopic) Minkowski metric. 

The paper is organized as follows. In Sec. 2, we first 
discuss the physical model of the source when nonlocal ef- 
fects are taken into account, and then carry out the explicit 
calculation of the correlation function C(2) in the nonlocal 
hypothesis. In Sec. 3, we discuss the main physical implica- 
tions of the nonlocal model of BE correlation developed in 
the previous sections. Section 4 contains the fits to the ex- 
perimental data. In Sec. 5 we derive explicit expressions for 
the parameters of the effective Minkowski metric describing 
the (nonlocal) hadronic interaction. The law of time defor- 
mation in a hadronic field is derived in Sec. 6. Finally, con- 
cluding remarks are presented in Sec. 7. Appendices A and B 
contain the mathematical rudiments of the Lie-isotopic gen- 
eralization of quantum mechanics and classical analogs of an 
incoherent source producing correlated detection, respec- 
tively. 

2. NONLOCAL DESCRIPTION OF BOSE-EINSTEIN 
CORRELATlON 

Let us summarize the fundamental concepts whereby we 
analyze second-order correlation in pion (boson)') produc- 
tion in high-energy reactions. We have a source that is in 
general incoherent and a correlation among the mesons pro- 
duced that occurs near the source (far from the detection 
place). We propose to separate the internal space of the 
source, where pions are produced, and the space external to 
the source, where they are detected and their correlation ob- 
sewed. In essence, the internal model of the source (dis- 
cussed here) is introduced in order to account for the emer- 
gence of correlation from an incoherent source, while we 
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explicitly calculate the correlation function in the external 
space where the detector is placed (as we shall see in the 
following). 

We consider the pion (boson) source to be made up of a 
certain number of subsources, and we will refer to it hence- 
forth as the total source. 

The subsources are incoherent too, but they produce ob- 
jects that are detected as correlated. Moreover, the sub- 
sources are indistinguishable; therefore, we do not know 
which subsource provides the contribution of incoherence 
(see Appendix B for a classical description of the source). 

Although there may be other sources of nonlocality in 
the phenomenon?) we claim that this indistinguishability can 
be well represented as a first contribution to nonlocality. 
Were we able to distinguish among the various subsources, 
our detector would be situated inside the total source and not 
outside as it actually is. Putting the detector inside the source 
would break this nonlocality, thus recovering the locality of 
the phenomenon. 

A second contribution to nonlocality comes from the fact 
that, in general, the subsources are distributed inside the 
source in an anisotropic way. This has two different (but 
related) implications. 

First, in general, we cannot assume that the source is 
spherical. Therefore, we have, in principle, to take account of 
its possible deformations, whose magnitude will be provided 
by the experimental data. Let us then assume hereinafter that 
the source is not spherical (or, otherwise speaking, it lacks 
global rotation symmetry, in its standard meaning, in the 
usual Minkowski space). From a physical viewpoint, we as- 
cribe the loss of spherical symmetry of the source to the 
nonlocal origin of the correlation. In other words, the pres- 
ence of nonlocal effects inside the source gives rise to an 
asymmetric pion production that appears externally as an 
effective nonspherical geometry of the source. 

Second, we have to take into account the consequent 
anisotropy of the distribution function. The most general (but 
simplest) way to implement such an anisotropy is to assume 
that the source is still distributed according to a Gaussian 
function, but with different parameters for each direction of 
four-dimensional space-time (i.e., a four-vector distribution 
function): 

The exact meaning of the width parameters R, will be clari- 
fied later on. 

In order to take account of these two nonlocal effects, 
we introduce an (external) Lie-isotopic Minkowski space de- 
fined as (see the mathematical appendix for the definition of 
the isotopic ((star)) product a*b)I3 

where R is the usual field of real  number^,^) g 
=diag(l,l,l,- 1) is the usual metric tensor of $e standard 
Minkowski space, and the Lie-isotopic element T is given by 

so that 

Moreover, we recall that in this framework, the 
b-parameters are not constant, but are to be regarded, in 
general, as functions of the physical quantities characterizing 
the system or the process considered. In particular, we as- 
sume in the following that the metric parameters do depend 
on the energy of the process (to be understood as the phe- 
nomenological energy measured by the detectors, far from 
the source, i.e., in full Minkowskian conditions). Therefore, 
in this respect, the parameters b,  do play a dynamical role 
(cf. Sec. 5). We stress that the hypothesis of the dependence 
of the metric parameters on the energy is essential in order to 
get a comparison of the theoretical predictions with the ex- 
perimental data, and is a basic point of our application of the 
isotopic formalism we p!t forward in the present paper. 

The spatial part of T is given by 

and describes the (possible) spatial deformation of the total 
source, whereas the fourth component b4 replaces the chao- 
ticity (which thus disappears from the model) and has the 
meaning of the temporal correlation (i.e., phase correlation) 
of the bosons. 

We now explain why the source deformation is ex- 
pressed by a deformation of the metric. Indeed, the deforma- 
tions of a physical entity (i.e., its loss of global rotation sym- 
metry) can be looked upon from either an active or a passive 
point of view. In the first case (active viewpoint), the physi- 
cal entity is deformed, whereas the metric of the embedding 
space remains unchanged. From the passive point of view, 
the deformation of the physical entity is induced by the de- 
formation of (the metric of) the space itself; in other words, 
both the entity and the space are deformed. As is easy to see, 
the deformation of the metric allows one to recover the sym- 
metry lost by the physical entity. In more rigorous terms, the 
rotation symmetry, broken in the standard Minkowski space, 
is recovered as a Lie-isotopic rotation symmetry (isorotation 
symmetry) in the space endowed with the Lie-isotopic metric 
(Refs. 18 and 19)~). 

In other words, the mathematical formalism of the iso- 
topy of the Minkowski metric is introduced in order to re- 
cover the rotation symmetry (broken, for the deformation of 
the source, in the usual Minkowski space). 

Let us now consider the modifications induced by non- 
local effects on the source distribution. In general, we have 
to assume a nonlocal distribution function p(r ,r2)  (where ri  
(i = 1,2) are the position four-vectors of the subsources), 
which, besides being anisotropic, is not factorizable as a 
product of distribution functions of the two subsources. 
However, since we identify here in the nonlocality (indistin- 
guishability) of the subsources the origin of casuality, we can 
assume for the function p(rl ,r2) the form 
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where the R is the Gaussian parameter. 
Another possible point of view on the origin of the ex- 

pression (2.6) and (2.7) for p is that the interactions respon- 
sible for boson production are themselves partially nonlocal 
(and therefore nonpotential) in nature. These interactions, 
present inside the source previous to the emission, can be 
assumed to average to Gaussians, whence the form (2.6), 
(2.7) of the nonlocal function p.17 

In different words, at the time of the boson production 
(inside the total source), we have, in general, interactions 
which are nonlocal and nonseparable (i.e., not factorizable 
into individual terns each one depending on the individual 
particle). l7 

After the completion of processes in the interior of the 
source and boson production, all interactions can be effec- 
tively approximated as being local and separable. However, 
the subsources cannot be regarded as pointlike, and this leads 
classically to Gaussian structure of the emission (already for- 
mally contained in the expression (2.6) and (2.7) for p). 

In order to take into account the anisotropy of the metric, 
we have to assume, in general, that there are four distribution 
functions (of Gaussian type) different for each dimension. 
Equation (2.7) must be therefore replaced (cf. Eq. (2.1)) by 

in which, for consistency, the usual square of the four-vector 

r has been replaced by the Lie-isotopic square r2 = r*r. 
The second step to get a fully nonlocal distribution func- 

tion is related to the change of meaning of the parameters 
R,, which up to now have preserved the same "local" 
meaning as in Eq. (2.7), i.e., essentially the axes of a sphere. 
In the nonlocal case, the spatial parameters Rk describe the 
sphere deformation, and, therefore, in general, must be re- 
garded as the axes of an ellipsoid. This amounts to say that 
we have to put Rk= a; I; generalizing this result to the time 
parameter, we have therefore to set 

where the a, are the physical parameters describing the 
space region of the total source in which the subsources are 
distributed. It is easy to see that they are related to the pa- 
rameters of the metric 17 given by Eq. (2.4) of the isotopic 
Minkowski space by 

In the following, we use the standard convention h=c 
=1, so that a,=b,. The explicit distinction between the 
Gaussian parameters and the metric parameters will be ex- 
ploited only in some special cases, in which we want to 
stress their different physical origin. 

The above equations accomplish the link between the 
notion of nonlocality and its implementation by means of the 
metric deformation. Then, the vector distribution function 
becomes 

As a final step in the nonlocal description of BE corre- 
lation, we note that the standard expression of the two- 
particle probability density, Eq. (1.3), does possess naturally 
the structure of an isotopic scalar product. Indeed, putting 

(cf. Eq. (Ag)), we can write the probability of getting two 
correlated pions with momenta p and p2 ,  produced at r and 
r2 and detected at xl  and x2, as 

Equation (2.13lrepresents the inner product of a Lie-isotopic 
yilbert space H. Henceforth, the wavefunction: with a hat, 
$, are therefore to be regarded as vectors in H. Moreover, 
e(ri) is the anisotropic expression of the Gaussian source 
function. 

Let us now introduce the Lie-isotopic correlation func- 
tion 

wh2re the hat means that the probabilities are to be evaluated 
in H, according to Eq. (2.13). 

The Lie-isotopic boson state (i.e., the symmetric Lie- 
isotopic wavefunction) is defined ad7 

where the star product is to be considered in the isotopic 
Minkowski space (2.2). Replacing Eq. (2.8) in (2.13), on 
account of Eq. (2.15), we get 

where 

exp(i~*x)~,(x)d4x.  

If we want now to average over all subsources by also 
taking into account the anisotropy of their spatial distribu- 
tion, we have to average over all space-time directions. In 
other words, we replace the average over the (unknown) dis- 
tribution of subsources with an average over all dimensions 
that accounts also for their distribution in phase. This is eas- 
ily accomplished by assuming that the squared modulus in 
Eq. (2.16) is an isotopic norm, i.e., 
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Then, by repeating the various manipulations and inte- 
grations as in the conventional case? we reach the following 
expression of the isotopic correlation function:'" 

6(,)= 1 + b: exp - 7 + b i  exp - 7 ( ") ( i$) 
+b, exp ( -7 ) -b: exp ( -7 f )  , (2.19) 

where 

Note that the terms in the exponents, given explicitly by 

are insensitive to any scalar renormalization of the metric; 
specifically they are invariant under the scale transformation 

evidently because of the isotopic element b i  in the denorni- 
nator. 

Equation (2.19) can be also rewritten in compact form, 
i.e., 

Notice that the above results are essentially exact with 
the sole approximation used in the calculation of the isotopic 
correlation function being that pertaining to the extended 
character of the sources of the individual particles and the 
selection of the Gaussian form for their spatial distribution. 
From now on, however, some approxim$ions have to be 
made in order to reach an expression for C(z) which is suit- 
able for experimental verification. 

3. NONLOCAL EXPRESSION OF THE CORRELATION 
FUNCTION 

A 

In order to compare the isotopic correlation function C(z) 
derived from the nonlocal model with the experimental data, 

we need to express Q2 in terms of the quantities actually 
observed. 

To this end, let us address some physical considerations 
aimed also to clarify some main points of the formalism we 
exploited. 

It is easily seen from the above discussion that the spa- 
tial parameters bk of the metrics of the isotopic Minkowski 
space describe the possible spatial deformation of the source 
arising from interior nonlocal effects, whereas the time pa- 
rameter b4 represents the temporal deformation (i.e., the cor- 
relation in phase). 

Let us assume that (as is indeed the case) spatial defor- 
mation of the source does actually occur. Then it is expected 
that the spherical geometry of the source (corresponding to 
an isotropic probability of pion production) is changed into 
an ellipsoid of rotation, in which the length of one of the 
semiaxes is much greater than the others. 

Moreover, in general, the source volume is not preserved 
by the deformation process. Therefore, while before the de- 
formation the source can be considered a spherical "fire- 
ball" of unit radius, 

after the deformation we have17 

(we recall that bk= ak/fic). 
Obviously, the parameter b provides a measure of the 

amount of deformation. Furthermore, since both the spatial 
deformation of the source and the appearance of the time 
parameter b4 are to be ascribed to the same nonlocal effects, 
we expect on physical grounds that 

In particular, if one of the bk ,  say, b2, differs from 1/14 
much more than the other two spatial parameters, it is clearly 

In other words, the b-number can be considered to be the 
"nonlocality parameter." 

These relations can be interpreted as expressing a "tow- 
ing effect" ') of the total deformation along one of the spa- 
tial dimensions. In general, we cannot say a priori which 
among the bk differs most from 11 6. Clearly, this depends 
on the phenomenon considered and, in this sense, our ap- 
proach can be used for phenomena different from BE corre- - 

lation. We can also define a "loss-of-spherical-symmetry" 
parameter n, as follows: 

We are now ready to express the correlation function 6(,) in 
terms of the observed variables. To this end, let us first of all 
adopt the Goldhaber convention, i.e., 

where q, and ql are, respectively, the components of q trans- 
verse and parallel to the vector n=P/P (P=pl+pz). Stan- 
dard kinematic considerations yield 41=q0, and therefore 
Q"~:. 

Since the pion momentum is that observed by the detec- 
tor, and therefore outside the nonlocality region (far from the 
total source), we can assume in the first approximation that 
the two-pion system remembers the nonlocal effects that pro- 
duced it. Let us further assume that this memory is repre- 
sented by a change in the modulus of the vector Q2 propor- 
tional to the parameter b that measures the amount of 
deformation (both spatial and temporal) of the metric (see 
Eqs. (3.2)-(3.4)), namely 

Then we get 
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where Eq. (4.4) has been taken into account in the last step. 
The correlation function takes now the form 

Gauss 

C,z, 

where we put 

Let us explicitly stress that the above approximation 
leading from Eq. (2.19) to Eq. (3.9) does not represent a 
limitation of the model, but arises from the need for com- 
parison with the experimental data on the basis of the experi- 
mental knowledge of the single kinematic parameter q,. 

Let us now discuss the limit of Eq. (3.9) in the conven- 
tional Minkowski space. In this case the values of the param- 
eters 6, are of the order of 11d (see Eq. (3.1)), and the 
metric T ~ ,  is replaced by the usual Minkowski metric g,,, 
so that one gets'7 

The above expression must be considered a local gener- 
alization of the standard correlation function obtained via an 
averaging process over all space-time directions. An inter- 
esting feature of the generalized formula (3.1 1) for C(,) is 
that it yields as a maximum valueI7 

which is verified by all available experimental data (see, e.g., 
those in Ref. 20). In this connection, we recall that the con- 
ventional expression for C(,), Eq. (1.5), gives as a maximum 
value C;ir=2 (which is lowered by hand by introducing the 
chaoticity parameter X). 

Let ys explicitly stress, therefore, that taking the local 
limit of C(,) for q,+O is not the mere operation of letting the 
variable go to zero: one first has to change the nonlocal func- 
tion in a nonlocal metric into a local function in a local 
metric, and then let the variable going to zero. 

From the above discussion, it follows, incidentally, that 
an a posteriori (but nevertheless valid) motivation for intro- 
ducing nonlocality is that this is the only way which enables 
us to use different parameters for different dimensions in the 
Gaussian distributions. Otherwise, the correlation function 
we obtained would have no basis at all, and could be con- 
sidered naively as a trivial attempt to fit the experimental 
data with the least possible number of different Gaussians 
(cf. Sec. 2). 

Indeed, in the local limit of e(2) (obtained by the recipe 
given above), all the Gaussians must be considered with 
identical parameters (bt= 113) (due to the space-time isot- 
ropy), and one cannot use different parameters for different 
dimensions in order to get a sum of different Gaussians. In 

FIG. 1. Fit to the UAI experimental data obtained by the usual Gaussian 
correlation function CP (Eq. (4.1)); Aq,=0.022 GeVlc. 

our opinion, this is perhaps the deepest reason that led us to 
consider a nonlocal model of BE correlation. 

4. FIT OF THE UA1 DATA 

The experipental data used to test the nonlocal correla- 
tion function C(2) are those of the minimum bias of UA1 
with energy 6 ~ 6 3 0  GeV, and q, and q, ranging over the 
intervals OSq,<0.2 GeVIc, 0.02Sq,<2 ~ e v 1 c . l ~  The corre- 
lation function was derived by considering the ratio (like 
same-eventsllike mix-events).20 

Figure 1 shows the fit of these data obtained by the usual 
Gaussian correlation function C(,) (see Eq. (1.6)) which we 
rewrite here for the reader's convenience: 

with y being a normalization factor, X the chaoticity param- 
eter, and R = h c f i ,  the fireball radius. The fit performed by 
Eq. (4.1) gives a reduced chi-square d= 1.39, and the cor- 
relation coefficients show that the three fit parameters, y, A, 
and p, are not correlated (as expected). 

In Fig. 2 we plot the fit obtained by the nonlocal corre- 
lation function d(,) (see ~ q .  (3.9)) given by 

0 0.5 I .O 1.5 2.0 
q,, GrVlc 

FIG. 2. Fit to !he UAI experimental data obtained by the nonlocal correla- 
tion function C(,) (Eq. (4.2)). The dashed horizontal line shows the esti- 
mated value of the "width" r of the fireball (see Eq. (4.7) and the text); 
Aq,=O.O22 GeVJc. 
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TABLE I. Values of the metric parameters b, derived by the fit of 6(2) to TABLE 11. Values of the physical parameters a, of the fireball (ak=ficbk,  
the UAI data. a4=iib,). 

b 1 0.267k0.054 a1 (0.05350.01 1).10-l3 cm 

b2 0.43750.035 0 2  (0.08620.007). lo-'' cm 
b3 1.661+0.013 a3 (0.328+0.003). lo-13 cm 
b4 1.653+0.015 a4 (1.09 - t0 .01) .10-~~ 

along the time axis, and therefore it is easily seen that a4 can 
q2  4: be regarded as the mean lifetime of the fireball: &I= Y [  1 +b:[b i2  UP(-  $) +el2 eXP(- $) 

a4= 7= (1.09+0.01). S. (4.6) 

where y is again a normalization factor and b; = b k / b 4  (cf. 
Eq. (3.9)). 

The fit performed by Eq. (4.2) gives the reduced chi- 
square d= 1.22, which is comparable that provided by Eq. 
(4.11.~) 

The correlation coefficients among the fit parameters 
show that y is not correlated with any of the other param- 
eters, as expected, and that b4 is correlated with the b; , as 
expected. 

The parameters of the nonlocal metric obtained by the fit 
are givenAin Table I. Using these values we get the following 
limit of CQ) for q,+O: 

which does satisfy the constraint given by Eq. (3.12).17 
Let us now check the consistency of the physical as- 

sumptions expressed by Eq. (3.3): 

1.7382 0.029. (4.4) 

Because b4= 1.65320.015, and on account of the b ,  values 
given in Table I, we can state that the hypothesis reported as 
an example in Eq. (3.4) is indeed satisfied by parameter 
b3= 1.661 20.013. Therefore, we have 

Actually b3 is also the spatial parameter with the greatest 
percentage difference from 1 1 6 ,  so it controls the towing 
effect discussed in Sec. 3. 

The values of the physical parameters a, of the fireball 
(total source) are given in Table 11. Of course, the parameters 
a, yield the spatial shape of the fireball. A basic point to be 
stressed is that our analysis of the experimental data show a 
loss of spatial axial symmetry of the BE phenomenon. 

It is worth noting that axial symmetry is usually assumed 
in any analysis of BE correlation simply because there is a 
priori no apparent physical reason which justifies the break- 
down of axial symmetry in pion production. Therefore, if 
confirmed by further analyses, such a result could be a strict 
signature of the role of nonlocal effects in the phenomenon 
of BE correlation. Clearly, such an effect is related to the 
dependence of the metric parameters on the energy of the 
process (see Sec. 2 and next section). 

Let us now discuss the physical meaning of the time 
parameter a, .  It represents the "extension" of the fireball 

Following this interpretation, we can also define a kind 
of "width" r of the fireball given by 

n r = - = 0.61 2 0.02 GeV. 
a4 

Moreover, since for particles with rest mass much lower 
than their energy, the energy can be identified with momen- 
tum, we may consider r as that value of q, (i.e., our momen- 
tum variable, according to the adopted convention) for which 
we have C(2)>l if q,<T and C(,)=l if q ,>r .  As shown in 
Fig. 2 (see the dashed line), this interpretation of r seems to 
be confirmed by the experimental data. 

Eventually, the parameter 7 may be regarded as the larg- 
est time interval separating the production of two correlated 
pions (bosons). In this sense, CT is the maximum correlation 
length, i.e., the maximum distance at which two correlated 
pions (bosons) can be produced. In other words, c~ may be 
considered the maximum size of a subsource (or of a total 
source containing just a single subsource of size CT). Indeed, 
it is 

and from Table I1 we have c 7- a 3 .  

Let us end this section with some physical consider- 
ations. First, the presence of the parameters b ,  in the corre- 
lation function is a direct consequence of the nonlocal treat- 
ment. However, had the values of the b, (derived by the fit) 
been such as to point to an isotropic distribution of the 
subsources?) it would be failed a necessary consequence of 
introducing the isotopic Hilbert space, which-as by now 
familiar-makes it possible to explain the correlation in an 
incoherent source. But we have checked by the fit that there 
is indeed anisotropy, and therefore this result constitutes a 
consistency test of our approach. 

Second, we note that the hypothesis of subsources can 
also be introduced in the usual model. In this framework the 
shape of the correlation function for values larger than unity 
is interpreted as the envelope of a large number of different 
correlation functions (each unity corresponding to a single 
subsource), with different chaoticity parameters and different 
radii. However, this interpretation has found, up to now, no 
experimental evidence due essentially to the low resolution 
in the momentum variable q,.  Moreover, there is a basic 
objection to this procedure; indeed, the resulting correlation 
function is given by the sum of the correlation functions of 
the individual subsources, without any recipe to decide 
where the sum has to stop. Finally, this model implies a 
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TABLE 111. Values of the metric parameters b, as energy functions. 

E,  GeV b  : b  : b  : b  : 

strictly isotropic distribution of the subsources, in order to be 
entitled to sum their contributions. On the contrary, the non- 
locality requirement-which is independent of the fireball 
model-automatically considers the possible anisotropy of 
the subsources, which is accounted for by the average over 
space-time directions. 

5. METRIC DESCRIPTION OF HADRONIC INTERACTION 

We now show that it is possible, from the experimental 
data on BE correlation and the formalism discussed in the 
previous sections, to attempt an effective description of the 
hadronic interaction in terms of the parameters b, of the 
deformed Minkowski metric, Eq. (2.4). 

To this end, we make the basic assumption (as already 
stressed in Sec. 2) that the parameters b, depend on the 
energy E of the interaction process (i.e., the phenomenologi- 
cal energy measured by the detectors far from the source, 
namely in purely Minkowskian conditions): 

E, GeV 

FIG. 4. Ratio of the hadronic metric parameters b:lb:. See text. 

For each value of the energy, the parameters b t  and the 
correlation function C(2) satisfy the constraints expressed by 
Eqs. (3.3), (3.4), and (3.12). The behavior of the four param- 
eters versus energy is plotted in Fig. 3. 

The results of Table 111 clearly show that BE correlation 
is spatially anisotropic over the whole energy range 200-630 
GeV. 

Therefore, in spite of the phenomenological value of the 
nonlocal correlation function e(2) given by Eq. (4.2) and the 
results of the previous section, our analysis yields strong 
evidence that hadronic interaction can be treated (according 
to the values of Table 111) neither in terms of a metric with 
constant parameters nor even in terms of the (standard) 
Minkowski metric. 

By interpolating the data of Table 111, we obtain that the 
explicit form of the effective isotropic metric 7 which de- 
scribes the hadronic interaction as a function of E= 6 reads 

b,'b,(E). (5.1) b2-b2- 1, OSESE0=367.5+-0.4GeV, 

Under such a hypothesis, we applied the results of Secs. 3 4- -)- [(EIEo)2, EoSE.  

and 4 to the experimental data taken by the UA1 detector in (5.2) 

the "ramping run" of 1984 and obtained for b, as functions Here Eo must be understood as the energy value for which 
of E =  6 the results given in Table 111. the metric becomes Minkowskian (i.e., 7 (E,) = g). 

E. GeV E, GeV 

FIG. 3. Plots of the hadronic metric 
parameters versus energy: 
a) b : ( ~ ) = ( \ / 9 / 5 ) ~ ;  b) ~ : ( E ) = ( u s ) ' ;  
c, d )  ~ : , , ( E ) = ( E I E ~ ) ~ ,  E0=367.5 
GeV and b : . , ( ~ )  = I ,  E < E o .  
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E. GeV 

FIG. 5. Showing the behavior with energy of all four hadronic metric pa- 
rameters b:. See text and Eq. (5.2). 

The ratio bilb: is plotted in Fig. 4 whence it immedi- 
ately follows that we can put b:=bt (see Eq. (5.2)). The 
behavior of all four parameters b;(E) of the hadronic metric 
is given, for comparison, in Fig. 5, which clearly illustrates 
the spatial anisotropy of the metric (and therefore of the fire- 
ball). Equation (5.2) allows one to rewrite Eq. (3.10) in the 
form 

It follows from $e previous relations that the nonlocal 
correlation function C(2), Eq. (4.2), can be written as 

TABLE IV. Values of the fireball physical parameters as energy functions. 

where E =  6. Relation (5.5) admits of experimental verifi- 
cation by future measurements on BE correlation with DEL- 
PHI when the LEP 2 phase starts in 1995196. Indeed, the 
DELPHI collaboration aims to take data at four or five dif- 
ferent energies in the range ,/s=80-180 G~v.') But the 
same measurements, it will be also possible to check the 
physical parameters of the fireball given by ak=hcbk and 
a4=hb4 (see Eqs. (2.10)), and its width r=hla4.  The values 
of a, and r are summarized as functions of energy in Table 
IV. 

Obviously, in the energy range explored by LEP 2, the 
values of the fireball physical parameters which admit of 
experimental verification are those given in Table V. 

6. HADRONIC TIME DEFORMATION 

The metric given by Eqs. (5.2), derived in the previous 
section from the UAI experimental data, is not always iso- 
chronous with the usual Minkowski metric (bt=l) (which, 
of course, characterizes the electromagnetic interaction). Ac- 
tually, it follows from Eqs. (5.2) that it is b$+ 1 for Eo<E. 

Such a case is not new; indeed, as is well known, the 
same happens for the gravitational interaction, as shown, 
e.g., by the various measurements of red or blue shifts of 
electromagnetic radiation in a gravitational field, or by the 
relative delays of atomic clocks put at different heights in the 
presence of gravity. 

Let us investigate the possible implications of such an 
anisochronism of the hadronic metric. We denote by dt the 
time interval taken by a certain hadronic process for a par- 
ticle at rest ("hadronic clock"). The same process, when 
referred to a Minkowskian electromagnetic metric, will take 
a time Atel to happen. Adopting methods and notation from 
the general theory of relativity, we can state that for a par- 
ticle at rest, 

Since for the isotopic metric given by Eqs. (5.2) it is 
goo= - bi(E), we get 

Equation (6.2) provides the law of time deformation in a 
hadronic field. Figure 6 shows the behavior of law in Eq. 
(6.2), i.e., the plot of dthad versus the energy in units of At,, . 
It is easily seen that there is isochronism at low energies (i.e., 
physical processes have the same rate whether referred to a 
hadronic metric or an electromagnetic one), whereas there is 

0.06- cm 
0.08 10-l3 cm 

0.20.10-'~ cm, OGESE, 
0 . 2 0 ~ 1 0 - ~ ~ ( ~ 1 ~ ~ )  cm, EoSE 

0.67. 10-24 S, OSESE, 
0.67. IO-~~(EIE,)  S, EoSE 
0.9320.17 GeV, OSESE, 

EIE, GeV, E,SE 

TABLE V. Predicted values of the fireball physical parameters in the range 
&=80- 180 GeV. 

a1 0.06. cm 
"2 0.08, cm 
a3  0.20. lo-l3 an 
a4 0.67. to-" s 
r 0.93 20.17 GeV 
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E, GeV 

LlG. 6. Time deformation law in a hadronic field versus the energy. See text 
and Eq. (6.2). 

a time contraction at high energies. In other words, hadronic 
processes are faster when observed with respect to an elec- 
tromagnetic metric. 

Such results provide an interesting representation of two 
fundamental features of strong interactions, i.e., asymptotic 
freedom and confinement. We recall that in deep inelastic 
scattering, where such properties are observed, the probe par- 
ticles interact electromagnetically with the hadron constitu- 
ents. When low-energy probe particles are involved-i.e., 
energy exchange occurs between the probe leptons (which 
undergo scattering) and the hadronic constituents (scattering 
centers) at energy values low with respect to the energy scale 
of hadronic interactions-hadronic constituents behave es- 
sentially as free particles, that is, they are "asymptotically 
free". On the basis of Eq. (6.2), we can interpret such a fact 
in terms of equal time intervals for both electromagnetic and 
hadronic interactions, during which the same amount of en- 
ergy is exchanged. In other words, both electromagnetic and 
hadronic processes require the same time interval in order 
that particles exchange the same amount of energy. There- 
fore, in exchanging energy at such "low" values, hadron 
constituents behave exactly like the electromagnetic probes 
which, when scattered, do not keep any trace of the "bond" 
due to the hadronic interaction. 

In contrast, with increasing energy exchange between 
electromagnetic probes and hadronic constituents, Eq. (6.2) 
shows that different time intervals are required for electro- 
magnetic and hadronic interactions at the same energy levels 
in a given process. Specifically, it is seen from Eq. (6.2) that, 
energies being equal, hadronic processes require a shorter 
time interval to occur than do electromagnetic ones. When 
the energy of the process increases, Eq. (6.2) shows that the 
time interval needed for hadronic interactions falls off ac- 
cording to a hyperbolic law with respect to the time required 
for electromagnetic interactions at the same energy. Indeed, 
in energy exchange at "high" values, hadronic constituents 
are seen as bound particles by the electromagnetic probes, 
which show a "bond" with intensity greater than that pro- 
duced by an electromagnetic interaction. Therefore, at in- 
creasing energy exchange, the hadronic constituents appear 
more and more bound-that is, "confined". Thus the con- 
finement of hadronic constituents finds a natural (qualitative, 
at least) interpretation on the basis of Eq. (6.2). 

Due to the time deformation law, Eq. (6.2), therefore, a 
system built up by hadronic bonds requires, in order to ex- 
change energy among its constituents, a time interval which, 

with increasing energy, is still smaller than the time needed 
to supply energy to the system via the electromagnetic inter- 
action. Thus, the greater the supplied energy, the faster the 
bond responds to the solicitation. 

Finally, we want to spend some words on the problem of 
isolating hadronic constituents, still in light of Eq. (6.2). 

In our opinion, it is wrong to look at such a problem 
from the point of view of finding the energy value at which 
the system becomes unstable, so that its constituents might 
be isolated as particles "free" from the hadron system. 

Apart from the question of whether such an energy could 
be supplied to the system by means of electromagnetic or 
hadronic probe particles, the true problem is that we are just 
trying to get the hadron constituents to move in a "space" 
whose (Minkowskian) metric is not their own (hadronic) 
metric. 

Thus, we deem that the proper way to put correctly the 
problem of the isolation of hadronic constituents is as fol- 
lows: getting an object to move in a space whose metric is 
not its own, and studying its motion. A possible analogy is 
provided by the motion of a real (electromagnetic) photon in 
a space endowed with a gravitational metric, or by the mo- 
tion of a virtual (electromagnetic) photon in a space endowed 
with a hadronic metric. 

7. CONCLUSIONS 

In this paper we have discussed the problem of second- 
order BE correlation on the hypothesis that nonlocal effects 
do play a role in the phenomenon, and that they admit of an 
effective description in terms of a deformation (isotopy) of 
the Minkowski and Hilbert spaces. 

The correlation function obtained by this approach (first 
considered in Ref. 17) does not contain free "ad hoc" pa- 
rameters. 

Indeed, the four parameters 6 ,  entering into its expres- 
sion are nothing but the coefficients of the deformed 
Minkowski metric, and, as such, are a strict consequence of 
the theoretical formalism. Moreover, they admit of a clear 
physical interpretation. The spatial parameters are related to 
the shape of the source (i.e., the interaction region); the time 
parameter describes the correlation in phase, and is related to 
the mean lifetime of the source. Therefore, such a nonlocal 
approach suggests an interpretation of the pion production as 
a decay process of the fireball. 

We carried out a fit to the UAI data, whose reduced 
X-square is comparable to that obtained by a correlation 
function with Gaussian source. The values of the physical 
parameters ak (cf. Eq. (2.10a)) obtained by the fit yield, for 
the first time, detailed information about the actual shape of 
the interaction region. The "width" r of the fireball, which 
is related to the time parameter a4 (lifetime of the source; cf. 
Eq. (4.7)) is in striking agreement with the length of the q, 
interval over which C(z)>l (see Fig. 2). 

We used also the data of the UAI ramping run to obtain 
explicit expressions for the four parameters 6, as functions 
of energy. Both such behavior with energy and the related 
parameters a, of the fireball admit of possible experimental 
verification (e.g., in future DELPHI experiments). 
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In this connection, we must emphasize the loss of sym- 
metry of the BE phenomenon, which shows up in the asym- 
metrical values of the spatial parameters of the fireball (see 
Table 11). This is a quite unforeseen result, since one would 
expect on physical grounds an ellipsoid of rotation for the 
spatial shape of the source. If confirmed by further analyses 
of other experimental data, such asymmetry could be re- 
garded as a clear signature of the presence and effectiveness 
of nonlocal effects in BE correlation. 

We also emphasize that such an approach provides an 
(effective) phenomenological description of the hadronic in- 
teraction in terms of a deformation of the Minkowski metric. 
Indeed, the specification of the behavior of the four param- 
eters with energy (the energy measured by a detector outside 
the source, i.e., in fully Minkowskian conditions) yields a 
"dynamical map" of the hadronic interaction, which can be 
regarded as alternative (or complementary) to a potential de- 
scription of the interaction. Clearly, in cases in which a de- 
scription in terms of a potential does not exist (such as that 
of hadronic interaction), the description in terms of a (local) 
deformation of the Minkowski space-time might turn out to . 
be a useful tool, as we hope to have shown in our analysis of 
the BE phenomenon. 

Note that Lorentz invariance-although broken in its 
conventional sense (at least locally)-is preserved in a gen- 
eralized (isotopic) sense13.16 by the nonlocal formalism, just 
as rotation symmetry (broken due to the spatial deformation 
of the source) is recovered when considering invariance un- 
der the Lie-isotopic rotation gro~p.'87'9 The phenomenologi- 
cal breakdown of gauge theories, and its effective represen- 
tation in terms of a deformed Minkowski metric, was 
considered some years ago by Nielsen and ~ i c e k . ~ '  

Needless to say, we are very far from a full geometriza- 
tion of the hadronic interaction at the degree attained, e.g., 
by the general relativity theory in the geometrization of 
gravitation. This can be only regarded as a preliminary step 
toward such a very far-reaching goal. However, in our opin- 
ion, such a "geometrical" approach can provide quite inter- 
esting insights in some physical aspects of strong interac- 
tions, as we have tried to show by deriving the deformation 
law of time intervals in a hadronic field. Indeed, the "had- 
ronic law of time deformation" derived in the previous sec- 
tion on a purely geometrical basic yields a qualitative but 
appealing picture of the well-known phenomena of asymp- 
totic freedom and confinement of hadronic constituents. 

We have the pleasure of thanking Prof. G. Salvini for 
communicating in 1990 the following which lies thought, at 
the very foundation of this work: "In the phenomenon of 
correlation in pion production. Nature is giving us some in- 
formation I deem fundamental, but we are not yet able to 
fully understand it." Moreover, we are greatly indebted to 
M. Gaspero for invaluable discussions on the theoretical 
foundations and experimental aspects of BE correlation. 
Useful discussions with U. Amaldi, L. Chiatti, A. De Rujula, 
and F. Francaviglia are also gratefully acknowledged. Last 
but not least, special thanks are due to G. Caricato and 
E. Ferrari for their constructive criticism, continuous encour- 
agement, and sincere appreciation of our work. 

APPENDIX A 

Elements of the Lie-isotopic generalization of quantum 
mechanics 

The purpose of this appendix is to acquaint the reader 
with the basic rudiments of that branch of the Lie-isotopic 
formalism of interest to us, i.e., essentially its operator coun- 
terpart that allows one to build a generalized quantum me- 
chanics able to account for nonlocal, non-Hamiltonian inter- 
actions (Refs. 15 and 16)'). 

First of all, we stress that the term "isotopy" must be 
understood here in its mathematical meaning (first intro- 
duced in the context of set theory22), i.e., in general, as a 
change in a mathematical structure that leaves the axioms of 
the structure invariant. 

The term "Lie-isotopic" is due to the fact that this con- 
cept was rediscovered by ~an t i l l i ' ~  and first applied to the 
isotopy of Lie algebras. 

A simple example of isotopy is provided by an isotopic 
algebra. Consider a standard linear algebra .A with elements 
A (e.g., the algebra of linear operators acting on a vector 
space) equipped with the usual sum and multiplication. 
Select a given operator T such that T-' exists. The iso- 

topy .A? of the algebra A is obtained by considering the 
same set of elements { A }  with the same definition of sum, 
but multiplication given by 

It is trivially checked that AA is still a linear algebra, 
whose identity is just given by 

Note that for a given isotopy -4 of A, the isotopic 
element T is fixed once and for all; in general, there is no 
need that T be an element of &-it is only required that T 
be invertible (in the multiplicative group to which it belongs) 
and that the product TA be well-defined for any A.  

It is also clear that there exists a whole class { ,4} of 
infinite possible isotopies of a given algebra .,5 correspond- 
ing to the infinitely many choices of the isotopic element T .  

We now immediately see the connection with the iso- 
topy of a Lie algebra. Indeed, suppose that A is the envel- 
oping associative algebra of a Lie algebra .db4 with product 
given by the usual bracket 

Then, to the isotopic algebra .d there corresponds the 

isotopic Lie algebra 2Tj with product 

As is well known, the mathematical structure of quan- 
tum mechanics is represented by the Hilbert space of states 
.% and the algebra .d of operators acting on it. Thus, it is 
easily seen that the nonlocal Lie-isotopic generalization of 
quantum mechanics is obtained by the following 
i s o t ~ ~ i e s ' ~ ~ ' ~ :  
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i) the isotopy of A according to the rules (Al), (A2), 
I.e., 

where T is assumed, in this case, to be also (conventionally) 
Hermitian (T+ = T); 

ii) the isotopy of the field '& of complex numbers: 

The isotopic field &'is obviously a field with ordinary 
sum and multiplication 

and its elements are called isoscalars (or isonumbers). 
We stress that as a consequence of (A8), the isotopic 

("star") product of isonumbers gives essentially the usual 
product of the corresponding numbers. Moreover, the isoto- 
pic product of an isonumber li by a quantity Q coincides 
with conventional multiplication by a scalar ( i * Q  = nQ). 
However, introducing the isofield R is necessary to preserve 
linearity in the isotopic sense in the action of operators (see 
below); 

iii) the isotopy of the inner product defined on 5E 

where the operator G (with, in general G # T) is nonsingular 
(conventipnally) Hermitian and positive definite, the ele- 
ments I @ ) E %  are isokets (essentially coinciding with 
I@)')E.%, except for a possible different normalization), and 
the isobras ($1 are the conventional Hermitian c9njugat:s of 
isokets and therefore belong to the dual space sD of 5% 

It is easy to see th?t due to the positive-definiteness of 
G, the isotopic space 9 is still a Hilbert space in its strict 
sense. Note also that the isotopic inner product (161) is not 
new in the physical literature: it can be traced back to pauliz3 
(who followed a preceding, unpublished study by Dirac) and 
was used by Gupta and Bleuler in their indefinite-metric ap- 
proach to e le~t rod~namics .~~ In essence, it is easily seen that 
this "lifting" of the inner product leads to a deformation of 
the metric structure of the original Hilbert space %, 

iv) the isotopy of the action of the operators of A on 5% 

Of course, this implies the following isotopic generali- 
zation of the eigenvalue equations: 

where the last step underlines the fact that in the isotopic 
case the eigenvalues are ordinary numbers too. 

A number of implications of the above generalization of 
quantum mechanics follow, both on the physical and math- 
ematical side. We merely recall that, e.g., the definitions of 
hermiticity and unitarity are to be suitably generalized. How- 
ever, it can be shown that, in the case when the two isotopic 
elements T and G coincide, the definition of Hermitian op- 

erator is still the usual one. The case T= G is just that con- 
sidered in this paper. For further details, the reader is referred 
to Refs. 10 and 11. 

Finally, we give the definition of an isotopic metric (or 
pseudometric) space (an example is provided, of course, by 
the isotopic Minkowski space considered in this 
paper).13.18.19 Given an n-dimensional metric or pseudomet- 
ric space M(x,g,F), where x are the elements of M (local 
coordinates), g is the metric tenso!, and is the field over 
which M is defined, its isotopy M(x,g,F) is a (metric or 
pseudometric) space with the same dimension n and the 
same elements x of M, with isotopic metric tensor given by 

and defined on the isotopic field k: 

Further mathematical details on the application of the 
Lie-isotopic formalism to BE correlation can be found in 
Ref. 17. 

APPENDIX B 

Classical model of an incoherent source with correlated 
detection 

We now illustrate by a classical model, involving plane 
waves incident on a double slit, how it is possible, at least in 
principle, to build an incoherent source that nevertheless 
gives rise to correlated detection. 

Let us consider the source to be formed by the two slits, 
and state the following detector-source duality: a source con- 
sisting of a double slit is detected by a screen (the detector), 
and this is analogous to two detectors measuring the emis- 
sion of a source of unknown structure. 

The analogy is carried out in four steps, corresponding to 
the four cases pictured in Fig. 7. 

Case 1. The source consists of two slits in an opaque 
screen, on which a single monochromatic wave is incident 
(Fig. 7a). The detecting screen shows a correlated detection 
(spatial correlation), i.e. (on the basis of the detector-source 
duality) we have a second-order correlation.' In this case, we 
have to symmetrize the wavefunction (here regarded as a 
collection of bosons) both inside the source and outside the 
source (in the space between source and detector). 

Case 2. The source consists of two slits in a screen, 
which are now separated by a diaphragm. The different 
monochromatic waves are now incident on each slit (see Fig. 
7b). The detecting screen exhibits uncorrelated detection. In 
this case, the two waves are different, and therefore speaking 
about symmetry of the source does not make sense. 

Case 3. The source consists of two slits in a screen, still 
separated by a diaphragm, but a monochromatic wave is in- 
cident on only one of the slits (Fig. 7c). The detecting screen 
shows correlated detection (first-order correlation). 

Case 4. This case is obtained by "summing" cases 1 
and 3 (or, what is the same, cases 1 and 2). The source 
consists of two slits separated by a diaphragm. A monochro- 
matic wave common to both slits is incident on the slit 
screen, while a second, different, monochromatic wave is 
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incident on only one of the slits (see Fig. 7d). The detecting 
screen shows a correlated but perturbed detection. In this 
case there is no need to symmetrize the wavefunction outside 
the source, in the space between source and detector. 

In our opinion, this simple classical model can provide 
an intuitive picture of the logical process we followed in our 
analysis of the birth of correlation at the detectors for an 
incoherent source. 

However it is impossible to establish a full analogy be- 
tween this model and the interpretation of BE correlation, 
because we can "look" neither inside the fireball (total 
source) nor inside the subsources (or, in other words, it is 
impossible to know on which of the two slits a wave other 
than the common one incident on both slits falls). 

 ereaft after, we shall consider, to be concrete, that the particles involved in 
correlation are pions; however, it is easy to see that the whole treatment 
holds true for any particles obeying BE statistics. 

')other contributions to nonlocality may come, for instance, from possible 
nonlocal tenns of standard (electroweak) interactions at high energies, and 
from the fact that for hadrons, the de Broglie wavelength is, at the high 
energies we are going to deal with, of the order of the range of strong 
interactions. 

3 ) ~ e  recall that for practical purposes it is possible to consider the product 
of numbersin an isotopic Minkowski space (i.e., the elements of the iso- 
topic field R) to be the usual product of real numbers. See Appendix A for 
further details. 

4)From a mathematical point of view, this is due to the local isomorphism 
between the stand* rotation group in three dimensions, 0(3), and the 
Lie-isotopic gmup O(3) (which, roughly speaking, is the group of isome- 
tries of an ellipsoid). See Ref. 19. 

')we acknowledge that the term "towing effect" is not ideal, and it would 
be more appropriate to use "leading effect." However, this last name Ilas 

FIG. 7. Illustration of the classical model cornpond- 
ing to: a) case 1-a coherent source (CS) and correlated 
detection (second-order correlation); b) case 
2-incoherent source (IS) and uncorrelated detection; 
c) case 3-a coherent source and correlated detection 
(first-order correlation); d) case Gincoherent source 
and correlated (but perturbed) detection (second-order 
comlation). Here DS is a detecting screen, W is a 
monochmmatic wave (WIJ are the first (common for 
Fig. 7d) and second monochromatic waves); D is a dia- 
p'"%m. 

been already used to denote another effect in high-energy collisions among 
particles, and we wish to avoid confusion. 

   ow ever, strictly speaking, one ought to compare this value with that 
provided by the fit of the usual correlation function without the parameter 
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