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A boundary condition with dimensional parameter S simulating the penetration depth is studied 
in a model of a scalar field (D = 1 + 1 and 3 + 1 ) defined in a half-space. The boundary 
condition gives a canonical energy-momentum tensor which differs by a divergence from the 
standard tensor. The divergence determines the surface energy and makes it possible to 
obtain a conserved total energy. Quantization of the model leads to a corpuscular picture, but the 
scalar "photon" now describes an excitation of both the field and the boundary. The 
expressions found for the vacuum energy-momentum tensor reveal a new structure of boundary 
divergences and in special cases lead to known results. The transition to the Dirichlet 
boundary condition (in the sense 8-10) is nontrivial, a result of the fact that the model does not 
exist in the limit 8-t - 0. Specifically, it is found that not only does the divergence 
contribution to the vacuum energy-momentum tensor not vanish as 8-t +0, but it introduces 
additional boundary singularities. A procedure is proposed for interpreting the boundary 
divergences under ideal boundary conditions. This procedure, on the one hand, solves the problem 
of the divergence contribution and the finiteness of the vacuum energy and, on the other, 
admits extension to the case 0 0 ,  if a cutoff parameter is introduced into the theory. The 
magnitude and meaning of the cutoff parameter should be determined by the physical 
nature of the boundary. O 1996 American Institute of Physics. [S1063-7761(%)00109-61 

1. INTRODUCTION 

The local vacuum characteristics of a quantum field de- 
pend on the geometry and topology of the region where the 
field is defined. This dependence has been studied in differ- 
ent field models.'-5 These studies revealed a number of dif- 
ficulties of the theory which still have not been completely 
resolved. First, there is the problem of determining the 
vacuum energy: The vacuum energy density exhibits a non- 
integrable singularity on a (flat) boundary.'-5 This problem 
arises in conformally noninvariant models (in a space of di- 
mension D= 3 + 1). If the boundary is curved, the corre- 
sponding divergence also exists in conformally invariant 

This is applies to theories with the very simple 
Dirichlet or Neumann boundary conditions (in the latter case, 
generally speaking, there is no conformal invariance7). In the 
case of two dielectrics, the energy density of the electromag- 
netic field also acquires a nonintegrable singularity at the 
interface, even if the interface is flat. Despite the fact that the 
field in such a system is not a vacuum field, the procedure for 
obtaining the energy-momentum tensor from the photon 
Green's function is still the The photon Green's 
function satisfies more general boundary conditions than Di- 
richlet or Neumann conditions. This is important for under- 
standing the origin of surface divergences. 

There remains the problem of interpreting the sign of the 
energy density of the vacuum fluctuations of the electromag- 
netic field, for example, in the space between parallel 
plates.') The negativeness of the energy density was panicu- 
Iarly emphasized by ~ewit t ' . '  as an example of the break- 
down, in the quantum case, of the conditions of the 
Hawking-Penrose theorem "on the unavoidability of singu- 
larities" in the general theory of relativity. However, it has 

not been ruled out that the energy corresponding to this den- 
sity is the part of the total energy that depends on the dis- 
tance I between the conductors and determines the experi- 
mentally observed force. Deutsch and candelas6 have 
indicated the existence of corrections to this energy which do 
not depend on 1 but do depend on the details of the molecular 
structure of the boundary. 

The solution of the problem of surface divergences in an 
electromagnetic field in the presence of a conducting, infi- 
nitely thin sphere is also, in my opinion, not entirely satis- 
factory. Although a careful inve~t i~a t ion '~- '~  has shown that 
the sum of the vacuum energies inside and outside the sphere 
is finite, each energy is itself infinite. This infinity will show 
up if the thickness of the sphere is finite. 

It has been stated time and again2,3*6*7 in connection with 
the problems listed above that the boundary divergences of 
the energy-momentum tensor can be eliminated by weaken- 
ing the boundary conditions, taking account of the perme- 
ability of the boundaries at high frequencies. This makes it 
necessary to construct models of boundaries and to impose 
appropriate (more general) boundary conditions on the quan- 
tum field. 

In the present paper, the simplest scalar model (in di- 
mensions 1 + 1 and 3 + 1) is studied for a field defined in 
the half-space xS-0. The mixed boundary condition (~obin)*) 

corresponding to elastic clamping of the end of a "string" at 
the origin (the dependence on the time and the other coordi- 
nates, if they exist, is implied), is taken as the boundary 
condition. The parameter 8 models the penetration depth and 
is assumed to be constant. The scalar model on the segment 
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TABLE I. 

( T ~ ) 6 - + + o  (div)b+ + o ( G o ) a - t + o  

D = 2 ,  m # O  - m 2 ( 2 m ) - ' ~ , ( p )  - m 2 ( 2 m ) - ' K ; ( p )  m 2 ( 2 ~ p ) - ' K , ( P )  
D = 4 ,  m Z O  m 4 ( 2 r ) - 2 p - ' ~ ; ( p )  - m 4 ( 2 m ) - 2 ( ~ z ( ~ ) l ~ r )  m4(2mp) - 'KZ(P)  
D = 2 ,  m=O 0  118mx2 1  18vx2 

O S x S l  with the boundary condition (1) at one end was in the limit S++O the difference between the "renormal- 
studied in Ref. 13 in connection with the Casimir effect. As ized" vacuum averages of Too and Too satisfies 
will be shown below, however, the authors of this work ne- 
glected the existence of a surface energy. The surface en- lim [(Too(x))s-(~oo(x))s3>0 

6++0 
(4) 

ergy, arising as a divergence correction to the energy density 
Too(x), has no effect on the conservation law written in dif- (the index S indicates that the average is taken over the 
ferential form, vacuum of the field satisfying the boundary condition (I)), 

and the contribution, taken literally, of the divergence term 
1 

J,Tpv=o, T,,= ~ , 4 d & -  ; I g p , [ ( d 4 ) 2 - m 2 & l  (2) on the left-hand side of the inequality (4) to the total energy 
is not only different from zero, but infinite. Therefore, devia- 

(T,;: the "standard" energy-momentum tensor of a scalar tions of the divergence term are added to the surface diver- 

field ' ). At the same time, in integral form we have the in- gences of the density (Tw)s (for 6 3 0 ) ,  and on account of 
equality (4) there arises the new problem of the uniqueness of the 

theory for a= 0. 

I One way to overcome the difficulties is based on the 
d o H ~  do dxTm(x) # 0, (3) introduction of a cutoff in the integral over the modes, and is 

which results from the fact that the surface integrals cannot 
be neglected (the field exchanges energy with the boundary; 
for example, a packet incident on the boundary is elastically 
reflected with delay time 7=2 Slu,  where 8 4  A ,  v is the 
velocity of the packet, and A is the wavelength). 

In Sec. 2 below, the variational problem for a system 
satisfying a boundary condition of the type (1) is discussed - 
and the Lagrangian 2 and energy-momentum tensor T,, , 
which are modified by the boundary condition, are found. 
The tensor c, is identical to the metric tensor T(:l ( 6  is the 
conformal coupling parameter; see Refs. 2 and 3) for 
6= 114, and it is therefore different from T:;) in the confor- 
mal limit m=0, 6=0 (&=0 for D = 2  and [,= 116 for 
D = 4), in which ( T ~ ; ' ) ~ = ~ , ~ = ~ =  0 (see Refs. 1-3). Since 
for S>O there is no divergence arbitrariness, the passage to 
arbitrarily small S+ + 0 leads (in both the quantum and clas- 
sical theories) to a breaking, which is not proportional to 
S, of the conformal symmetry, which can be restored by the 
divergence transformation, but only for 6= 0. 

Section 3 is devoted to the canonical quantization of the 
model. Despite the absence of a field interaction, the canoni- 
cal quantization is not entirely trivial both because a second 
derivative in time appears in the Lagrangian and because the 
Lagrangian is degenerate. The results obtained in Secs. 2 and 
3 are general; they are not related to the specific form of the 
boundary and are valid when 6 depends on the (spatial) co- 
ordinates. 

Section 4 is devoted to calculations of the vacuum 
energy-momentum tensor for a flat boundary (dimension 
D = 2 and 4). Here, specifically, the values of the energy- 
momentum tensor in the limits 6 4 0  and S+a: are calcu- 
lated and compared with known results. It is also found that 

studied in detail in the concluding section, where other pub- 
lished  method^"-^.'^-'^ for solving the problem of boundary 
divergences are also briefly discussed. 

I have found a different, more formal, method for solv- 
ing these two problems. The method is based on a special 
interpretation of the singular contributions to the total en- 
ergy, and does not employ any assumptions about the struc- 
ture of the boundary. Although on account of the existence 
of additional singularities for 6>0 the method is only appli- 
cable to "ideal" boundary conditions (6=0 or S=a:), it 
turns out to be consistent with the cutoff procedure. I find for 
the vacuum energy of the half-space (for D = 4 the energy is 
taken per unit area of the boundary): 

The corresponding expressions for the Neumann boundary 
condition (&=a:) differ from these expressions by a sign. 
Note that (5a) and (5b) are respectively positive and nega- 
tive, despite the opposite being the case for the energy den- - 
sities (Too(~) ) s=O and (TOO(~) ) s=O;  see Table I .  

In the last section, the reasons why two different densi- 
ties differing by the singular term (4) appear for S=O are 
investigated. The theory with S=O is ill-defined because the 
model does not exist in the limit S+ -0. Formally, this lack 
of uniqueness stems from the fact that the passage to the 
limit S+ + 0 and the (improper) integral over modes cannot 
be interchanged when calculating the divergence contribu- 
tion to the total vacuum energy. One consequence of the 
proposed interpretation (5) is that this "nonuniqueness" is 
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eliminated. The technical details of the calculations pre- 
sented in Sec. 4 are assembled in the Appendix. 

2. VARIATIONAL PRINCIPLE AND THE 
ENERGY-MOMENTUM TENSOR 

Let +(x) be a scalar field over the domain 9= W , X B t  
with an arbitrary, sufficiently smooth, boundary dL2 in 
Minkowski spacetime. We assume that the boundary is sta- 
tionary (i.e., dY= R, X d P t  , where d9" is the spatial section 
of d B  and that the normal derivative 

where F(x) is a function prescribed on the boundary that 
does not depend on 4. At infinity the field q5 is assumed to 
satisfy reasonable boundary conditions, for example q5= 0. 

The Lagrangian density is usually chosen in the form293 

and is determined to within a total divergence. In our case, 
generally speaking, there is no such arbitrariness, since the 
field does not vanish on the boundary. Therefore, the action 

where O(4 )  is a model-dependent functional specified on 
the boundary JD. 

Systems of the type (6)-(8) are systems with a 
"loaded" boundary.17 If the functional @ is known, then its 
variation with respect to 4 under the condition S@=O with 
S41da=0 yields the equations of motion (the Klein- 
Gordon-Fock equation in the present case). Assuming, next, 
that &$Id9 is arbitrary and 4 satisfies the equation of mo- 
tion, the field 4 is found to satisfy a boundary condition 
which for the "correct" choice of @(+) is identical to the 
condition (6).17 

Since the form of the functional O ( 4 )  is not known in 
advance in our case, we seek a functional @ that is and 
would be extremal on a class of functions that satisfy the 
known boundary condition (6). The only possible modifica- 
tion of 2 that leads to a linear boundary condition (i.e., a 
quadratic functional 0 ( 4 ) )  and does not change the equa- 
tions of motion has the form (c is a constant) 

We require that 

whereupon, together with Eq. (6), 

The conditions (6), (10). and (1 1) make it possible to deter- 
mine the constant 

(in this case the surface contribution to S f  can be expressed 
in terms of the Wronskian cpGcp,,- cp,,Scp, which vanishes 
on the boundary), and to rewrite 2 in the form 

The functional O(4 )  in Eq. (8) can now be written as a 
surface integral: 

where we have employed the constant (12). The Lagrangian 
5 contains second derivatives in time, and vanishes for the 
solutions of the equation of motion 

(m2+ d2) $(x) = 0. (15) 
- 

The energy-momentum tensor Tap for a system with the 
higher-order derivatives can be determined as follows (see 

- + -  

Ref. 18; 4,,=da$,da=da- a,): 

( 4  satisfies Eq. (15), c =  112). If we had assumed the con- 
stant c to be arbitrary, then instead of (16) we would have 
obtained (see Eq. (2)) for cp 

f apx =fpax 
or, using the relation 

da( 4ap4)  =dp( &a+), 

the simpler expression 

T . p = ~ a p + c d Y g a ~ 4 d i 4 - g a ~ 4 d p 4 ) .  (20) 

It is easy to show that by virtue of Eq. (15) and in accordance 
with Eq. (2), 

aar,,= aaTap= 0. (21) 

However, instead of Eq. (3) we now have 

where the first term vanishes identically by virtue of the 
boundary condition (6), and the second term equals zero only 
if Eq. (12) holds. Therefore for c =  112 
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Note that the interpretation of the two terms in 3 (9) as 
"standard" and "surface" terms is based on the correspon- 
dence principle. However, the divergence correction, gener- 
ally speaking, need not be Lorentz-invariant: to cancel the 
contribution of the surface integrals in Eq. (3), it is sufficient 
to add the term (1/2)dk(4dkf$) to 3, i.e., only the spatial 
part of the divergence correction in Eq. (9). The Lorentz 
symmetry is broken at the outset due to the presence of the 
boundary. Nonetheless, the form (9) is necessary when as- 
ymptotic regions exist sufficiently far from the boundary, 
since the system must possess Lorentz symmetry in these 
regions.') 

An important qualitative result of this section is the 
clarification of the fundamental role of self-consistency, as- 
sociated with the boundary condition (6), of the variational 
problem: the choice c= 112 not only modifies the initial La- 
grangian (7), but is also the only choice that conserves total 
energy. 

3. CANONICAL QUANTIZATION 

The canonical momentum defined by ~ s t r o ~ r a d s k i ~ ' ~ ~ ' ~  
is 

while the canonical momentum %, is 

indicating the special nature of the theory with the Lagrang- 
ian (13) as a theory with higher-order derivatives. Switching 
to an expanded Hamiltonian formalism, we obtain in the no- 
tation of Ref. 18 

where the potential energy density 

2 2 -  
V ( ~ I X ) =  ~ ( m  41, ~ I J ~ ~ I X ) .  (28) 

The auxiliary function 

and @:I) is a first-class constraint (25): 

The only second-class constraint is ({. , .) are Poisson brack- 
ets) 

so that the matrix of constraints 

is nondegenerate. Therefore, we have a system with second- 
class constraints, and the Dirac brackets determine the stan- 
dard commutation relations for and (see Eq. (26)): 

which makes it possible to reproduce, after quantization, the 
standard algebra of the creation and annihilation operators. 
The Hamiltonian H* on the surface of constraints @=O 
equals 

If 4 satisfies Eq. (15), it is identical to the Lagrangian energy 
K introduced in Eq. (3). 

Using the complete system of solutions of Eq. (15)~)  and 
the standard definition of the creation and annihilation 
operators2.' (a: and ak, respectively; k is a collective index 
representing the quantum numbers and labels the solutions of 
the problem (16) and (15)), we find for the energy K in Eq. 
(23) 

and, with the aid of the quantum analog of Eq. (33), 

we obtain for ak and a: in the corresponding normalization 

and the vacuum state is determined by the condition 

aklO)=O for all k. (37b) 

If we had left c # 112 (as in Eq. (20)), then the time- 
dependent correction 

would have appeared on the right-hand side of Eq. (35). 
Such a correction would make it impossible to interpret fi in 
terms of the occupation numbers of the states, and the 
"vacuum" vector (37b) would no longer be an eigenvector 
of k. The Hamiltonian H in Eq. (3) corresponds to the sum 
of the right-hand sides of (35) and (38) with c = 0. Hence, it 
follows that H cannot be used to determine the (stationary) 
vacuum state. The correction (38) (with c=O) prevented the 
authors of Ref. 13 from obtaining the usual sum of half- 
frequencies for the vacuum energy. The reason is not the 
approximate character of the boundary condition ( I )  (see 
Ref. 13 ), but the fact that the energy of the system has been 
improperly defined.5) 

In summary, the foregoing construction leads to a rather 
curious qualitative result: a scalar "photon" describes an 
excitation of both the field and the boundary, making the 
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separation of the total energy into "energy of the field" and 
"energy of the boundary" to some degree arbitrary. 

As a technical aside, in contrast to Too, asymmetric bi- 
linear combinations of the field + and its derivatives appear 
in Fm. After quantization, the property (19), for example, no 
longer holds. However 

a,[ Aap+I+ = a,[ +J,4I+ (39) 

( [ a ,  a ] +  is an anticommutator), and analysis shows that the 
appropriate symmetrization of the operators eliminates the 
difficulties associated with noncommutativity. For example, 
defining F,, in the form 

yields a symmetric energy-momentum tensor, energy con- - 
sewation, To, = 0 on the boundary, and so on. Equation (39) 
makes it possible to simplify, similarly to Eq. (20), the last 
term in Eq. (40): 

4. FIELD IN A HALF-SPACE WITH AN ELASTIC WALL 

The complete orthonormal set of functions satisfying Eq. 
(15) and the boundary condition (1) has the form 

& l k - c ( ~ ) = ( 2 ~ & 4 - 1  e x p ( ? i ~ ~ t + i q x ~ ) + ~ ( x ) ,  (42) 

where ok= Jw. To simplify the formulas, the in- 
dex k replaces the complete set (q,  ,qz,k), and the eigen- 
functions of the boundary-value problem (1) on the half-axis 
(see Ref. 20 ) are 

sin kx 

x=x , ,  x, = (x2, x3), -m<q2,3<00, and k>O. The com- 
pleteness and orthogonality relations for the functions 
t,hk(x) have the standard form 

In Eqs. (44) and (45) k, x>O, and the normalization of the 
functions JkE from Eq. (42) (E  = + ) is 

We assume below that Fk+ = &k, and 

where the operators ak  and a: satisfy (37). 
In spacetime dimensions 1 + 1, there is no factor of 

( 2 ~ ) - '  in the functions Fk,(x) in Eq. (42) and no term 
iqx* in the argument of the exponential, and the frequency 
o k =  Jm. 

Before proceeding to specific calculations, consider the 
general properties of the vacuum energy-momentum tensor. 
The boundary condition (1) does not destroy the Poincari 
symmetry in the variables xo , x2, and x3, and therefore, just 
as in the case of ideal boundary  condition^,'^^ the corre- 
sponding components of the ("renormalized") vacuum 
energy-momentum tensor must be proportional to the metric 
tensor g,,, and (Ffiv)6 as a whole can depend only on 
x,=x. The boundary condition (I), though different from 
the Dirichlet condition, does not introduce anything new. In 
complete analogy with Refs. 3 and 5, we therefore have 

where n, is a vector normal to the plane of the boundary, 
and the functions f (x) and g(x) = (g -f)l f satisfy 

which follows from Eq. (21). Since the tensor (F,,(x = m)) 
must equal zero, we have fF=O, whence g=O, iff # 0. The 
fact that f is different from zero is due to the lack of confor- 
mal symmetry, which is broken on account of the presence 
of the two dimensional parameters (m f 0, S # 0). The pa- 
rameter 6 is not invariant under conformal  transformation^.^'* 

The structure of the vacuum averages of the two terms 
on the right-hand side of (40), taken separately, is also simi- 
lar to Eq. (48) (with a different function f and 0 instead of 
3. No subtractions need be performed in the divergence 
term on account of the presence of the total derivative (the 
local divergence in Minkowski space appears upon averag- - 
ing only in T,,, and therefore in T,,). 

For what follows, it is convenient to introduce the func- 
tions 

which appear in two-dimensional calculations, and their ana- 
logs for the four-dimensional case 
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In (50)-(53), the function t,hk(x) defined in Eq. (43) is em- 
ployed, and the following notation is introduced: 

where @ ( k  6 )  + 2 k x  is the phase difference between the re- 
flected and incident monochromatic waves at the point x .  

Using Eqs. (37), (40), and (41) we obtain for the renor- 
malized vacuum averages 

(the renormalized average ( . . . . . . ) y - ( . . . )M ; the 
subscript M signifies that the corresponding quantity is taken 
in Minkowski space, and the index u r  signifies that the quan- 
tum average over the vacuum (37b) is not renormalizable; 
regularization is performed by a modewise subtraction 
procedure2-4 (and does not present any difficulties). At the 
same time 

and ll(Tpv)d1D=4 has the more complicated form 

Using the relations (A1 1) and (A12) from the Appendix, the 
last expression can be rewritten in a form similar to Eq. (57): 

The properties of the functions Ai  and B i  and their rela- 
tionship to the important function IMT(,u,  p )  introduced in 
Ref. 14 are described in the Appendix. We analyze the lim- 
iting properties of the matrices (55)-(58) with respect to 
their arguments ,u and p.  

The functions 6- 'Ai ( ,u ,p )  and F i B i ( , u ,  p )  change sign 
on changing from 6= 0 to 6 =  m: 

the indicated limits being taken only at finite x ,  since all 
functions A 2 ,  . . . , B 4  are singular on the boundary. The 
equality (60) means that in the first quadrant of the ( x , S )  
plane there exist "lines of zero vacuum polarization" 
F=q 6 )  and x = x ( S )  where ( T p V ( ~ ) ) a  and ( T , , ( X ) ) ~  van- 
ish, respectively. 

Far from the boundary, all four functions are exponen- 
tially small ( x P r n -  I; see Eqs. (A1)-(A4) and (A19)). 

The asymptotic expressions of the functions 
6 - ' ~ ~ ( , u . p )  and 6-'Bi(,u, p )  on the boundary for ( D O )  

can be obtained on the basis of (Al), (A2) and (A27), (A28) 
for D=2:  

and (A3), (A4), (A27), and (A28) for D = 4: 

In yE=0.577.. . is Euler's constant, and IMT(,u-', O ) ,  de- 
fined in Eq. (A6), is finite. Comparing the leading terms of 
the 
asymptotic expansions (64) and (65), we can see that as 
x 4 O  the lines of zero polarization F(S)  and x ( S )  coincide: 
x= 3 614. The lines are also different in this range of x when 
D =2. 

The asymptotic formulas (62)-(65) have the following 
features in common: 1) the dominant singularities are inde- 
pendent of S; 2) the lowest-order singular contributions are 
proportional to inverse powers of 6; and, 3) the dominant - 
singularities in the tensors T,, and T,, have opposite signs. 
The lack of dependence on 6, however, is misleading: the 
conditions (61) make it possible to pass in the formulas 
(62)-(65) to the limit 6-a, but not the limit 8 4 0 ,  where, 
according to Eq. (60), the leading boundary divergence 
changes sign. 

The property (2) makes it possible to eliminate the lead- 
ing divergences in all expressions (62)-(65). For example, 
for D = 2 and 6> 0 ,  a finite result can be obtained (see (Al) 
and (A21)) by means of the following subtraction: 

(66) 
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(Too), differs by a factor of 2 from the vacuum energy den- 
sity of the scalar field (D = 1 + 1) interacting with a concen- 
trated potential V(x) = 2X S(x), if S in Eq. (66) is replaced 
by A - '  (X is the interaction constant, 1x1 <m; see Refs. 4 ahd 
14 ).7) Note that going from (T,)* to (Too), is the same as 
changing the zero point of total energy: the zero point is not 
half the "vacuum energy" in Minkowski space, but the 
vacuum energy of the half-space8) with Neumann boundary 
conditions for the field 4. (Too)* and (Too), vanish for 
S = a ,  and for S=O they are identical to the surface singu- - 
larities and with doubled coefficients; see 
Eq. (60). 

The subtraction procedure (66) corresponds to discard- 
ing the leading terms of the ultraviolet asymptotic expan- 
sions in the integrands of (50)-(53), so that the transition to 
quantities of the type (Too), is tantamount to taking account 
of the real dependence of the penetration depth on 
k: Sph,,(k)-+ + w as k+m. Despite its physical attractive- 
ness, this method does not completely eliminate the diver- 
gences (for D O ) :  the boundary singularities in (Too)* and 
(Too)*, which are proportional to inverse powers of S, re- 
main in (Too), and (Too)$. 

Using (55)-(59) and (A1)-(A4), (A29) and (A30) from 
the Appendix, it is easy to calculate the explicit form of the 
component of the vacuum energy-moment tensor 
in the limit S-t+O. The results are 
assembled in Table I, where for comparison the correspond- 
ing expressions in the massless limit are written out sepa- 
rately; (div)* denotes an average of the (0, 0) component of 
the last term in Eq. (40), and p=2mx. 

The formulas in the first column of the table have ap- 
peared in the literature (see Refs. 2-4 ) in a similar context, 
specifically in an analysis of a scalar model on the (ha1f)axis 
with the conformal coupling parameter 5=0  and zero 
boundary conditions at the origin. We can see that in accor- 
dance with Eq. (4) the transition to Dirichlet boundary con- 
ditions leaves nonzero (divergence) corrections to (Too)*, 
with a divergent integral over the half-space?) 

Despite their singular character, the expressions in the 
first two rows of Table I make a finite contribution to the 
total energy if Eq. 2.16.2(2) of Ref. 21 is used to interpret 
this contribution: 

The answer for the energies 

with S= 0 is presented in Eq. (5). As a result of the relations 
(60), the Neumann values of (H) and (fi) differ from Eq. (4) 
by a sign. 

We now demonstrate that the divergence contribution to 
the total energy vanishes, for example, for D = 4. To within a 
multiplicative factor, this contribution equals (see 
Table I): 

It is noteworthy that the boundary divergences are inter- 
preted in the integral characteristics of the field. This is con- 
sistent with the "nonlocalizability" of the scalar photon 
which described the excitation in the "field + boundary" 
system. Another important point is that the mass is different 
from zero ( p =  2mx in Eq. (67)!). Of course, after the inte- 
grations are performed according to the scheme (67), the 
mass can be set equal to zero, so that we obtain an answer 
which is characteristic for conformally symmetric theories: 
(fi) = 0. Unfortunately, the method presented here does not 
yield finite results for 6>0. In the concluding section, we 
return to a discussion of the problem of obtaining finite ex- 
pressions for the energy. 

5. 6 4 0  LIMIT: DETAILED ANALYSIS 

The results presented in Table I demonstrate the singular 
nature of the limit 8 4 0 .  This is seen from the fact that the 
theory with the Lagrangian (7) and Dirichlet boundary con- 
ditions "knows nothing" about the divergence transforma- 
tion (9), since the surface integral (14) vanishes, and there- 
fore after the theory with the Lagrangian (7) is quantized, the 
result presented in the first column of Table I, rather than the 
last, should be obtained for the vacuum energy-momentum 
tensor. 

It will be shown below that the local characteristics of 
the present model exhibit a strong singularity with respect to 
the parameter SIX (x>O) at S=O, and a square-root singu- 
larity with respect to p = m 8  at S= - llni, which for 
- llm< S<0 result in a breakdown of unitarity (if an addi- 
tional interaction, signifying a redefinition of the model, is 
not introduced into the Lagraqian). Accordingly, the expan- 
sion of the vacuum energy-momentum tensor in positive 
powers of S>0 at zero can only be asymptotic. 

Let us replace S in the boundary condition (1) by - S, 
(6,  >0)  and, for simplicity, let us study the two-dimensional 
case. The set of functions &(x) (43) assumes the form 

sin kx ) k>O. 
kSl ' 

Now, however, the functions qhk(x) do not form a complete 
set, since together with Eq. (69) there appears a bound 
(Tamm) mode (see Ref. 20) 
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p = m  SI . Instead of Eq. (47) we have (D = 2) 

where a and a+ are, once again, annihilation and creation 
operators, and the function #b is orthogonal to the continuum 
modes. The contribution of the bound mode to the vacuum 
characteristics of the field need not be renormalized, and it 
can easily be calculated using the expressions (40) and (41) 
( P I >  1): 

( Fm) Lb) = 8; 2 d f i e  - 2x181, (724 

The formulas (70) and (72) demonstrate the aforemen- 
tioned strong singularity with respect to S= - S, (for 
x>O) and a square-root singularity with respect to p, . For 
p l=  1 the density (Tm)Lb) vanishes, while (Tm)bb' and 
(div)Lb) diverge separately. It is also obvious from Eq. (70) 
that the values pl< 1 are inadmissible, since the frequency 
ub would be complex and the vacuum energy density would 
acquire an imaginary part (corresponding to the last term in 
Eq. (734) 

In Eq. (73b) the contribution of the surface mode exactly 
cancels the contribution of the pole appearing in the integra- 
tion path over k  after rotation of the contour k t i t m .  In 
(73a) there is no such cancellation, since for p1 < 1 the pole 
falls on the cut and does not contribute to the integral. We 
note also that for p, = 1 + 0  the pole and the square-root 
singularity in the integrand coincide, but (?m)-a, does not 
become infinite, due to the factor p:- 1 multiplying the in- 
tegral. 

Here, it is opportune to reconsider the analogy of a sca- 
lar field interacting with a singular potential 
V(x) = 2AS(x). For A < O  the potential admits one bound 
state, whose contribution to the vacuum energy-momentum 
tensor was found in Refs. 4 and 14, and which differs from 
Eq. (72b) by the fact that the S; is replaced by ]X I  and that 
there is a common factor of 1/2. The case O < p l  < l (i.e., 
- l < p < O  in the previous notations) corresponds to 
A <  -m examined in Refs. 4 and 14. Without repeating all 

the arguments presented there, I only point out that the ap- 
pearance of a stationary state localized in a region smaller 
than the Compton length results in instability of the vacuum 
state against pair creation. To properly take account of this, 
terms describing the self-action of the field q5 must be added 
to the Lagrangian (13). 

The analytic properties of the four-dimensional model 
with S<O are similar to those studied in the two-dimensional 
case and will not be discussed here. We note that boundary 
divergences result only from the contribution of the con- 
tinuum to the vacuum energy-momentum tensor 
(D= 2,4), while the surface mode makes a finite contribu- 
tion. 

The foregoing considerations explain the physical reason 
for the indeterminacy of the limit S= 0 - it is impossible to 
join the S>O and 6<0 theories at S=0  (in contrast to 
t 3 = ~ ) .  Formally, the appearance of two densities (Too(x)) 
and (Fm(x)) at S=O and of the corresponding vacuum en- 
ergies (H) and (&) (which are infinite, if Eq. (67) is not 
used) is a consequence of the fact that the integral over the 
modes and the passage to the limit S+ + 0 cannot be inter- 
changed when calculating the divergence contribution to the 
total vacuum energy. This contribution (see Eqs. ( I ) ,  (14), 
and (43)) is a surface energy and equals (D = 2, D O )  

This integral diverges for 0 - 0 ,  but if the limit S-+O is taken 
in the integrand, then it vanishes. 

6. CONCLUSIONS 

The interpretation proposed in Sec. 4 for the boundary 
divergences does not solve the problem of determining the 
vacuum energy, if 0 < S< m. In this regard, I shall briefly 
discuss a way, proposed in the literature, to solve this prob- 
lem. In Refs. 14-16, the boundary conditions were replaced 
by singular potentials simulating infinitely thin, semiperme- 
able walls (see footnote 7). In the case of two w a l ~ s ~ * ' ~  the 
singular contribution of each wall to the vacuum energy- 
momentum tensor was dropped completely, being indepen- 
dent of the distance between them. This approach makes it 
possible to determine the Casimir force between macro- 
scopic bodies, but it leaves open the question of the vacuum 
energy of the field. Since it depends on the parameter in the 
boundary condition, this latter energy cannot be regarded as 
an insignificant constant. The idea of eliminating the surface 
divergences by including them in the renormalization of the 
singular potential (Ref. 15, see also Ref. 4) encounters, in 
our opinion, a fundamental difficulty: the structure of the 
counterterms is different from that of the bare interaction. A 
similar idea was invoked somewhat earlier in Ref. 7: the 
geometric nature of the coefficients in the singular terms of 
the energy-momentum tensor of a scalar field (interacting 
with a background gravitational field) makes it possible to 
include these terms in the renormalization of the correspond- 
ing terms of the surface gravity (Gibbons-Hawking). A criti- 
cal discussion of this approach can be found in Ref. 6; see 
also Ref. 3. 
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The idea of eliminating the surface divergences by tak- 
ing account of boundary permeability at high frequencies is 
repeated in essentially all work on the problem of determin- 
ing the vacuum energy. This idea has been confirmed only in 
part. In Refs. 8 and 9 it was shown for the electromagnetic 
field that boundary permeability, which is associated with the 
asymptotic behavior of the dielectric constant 
( E ( o +  im) = 1 ), does not eliminate the boundary diver- 
gence, and reasonable results can be obtained only by intro- 
ducing a physical cutoff reflecting the discrete nature of 
matter.'') In spite of the fact that the cutoff is introduced 
manually, for a large number of materials the answers ob- 
tained for the vacuum energy are in semiquantitative agree- 
ment with the experimental data.8~~ This agreement can be 
interpreted as a qualitative solution of the vacuum-energy 
problem (in QED). 

In contrast to electrodynamics, in the model considered 
here the cutoff parameter (A in the momentum, xo in the 
position) is not defined internally. Nonetheless, a formal ap- 
plication of this idea gives reasonable answers - the total 
energy is finite, the energies (6j6 and (H)6 are equal at 
6=0  and m, and a new type of relation is obtained between 
the spatial (xo) and momentum (A) cutoffs. 

As an example, let us now examine the two-dimensional 
case. A finite expression, which vanishes if S= 0 or 6= m, is 
obtained for the surface energy: 

The total energy is 

A remarkable property of the representation (76) is that the 
limits S=O ( A S e l ,  m&l )  and 6=m (AS%+l ,mSz>l)  
agree with the result ( 9 ,  which was obtained with the aid of 
Eq. (67). Similar statements also hold for the four- 
dimensional case. There expressions of the type (76) can be 
viewed as a "continuation" of the interpretation procedure 
(67) to the case 0 < S< w . 

It is somewhat more difficult to see the same correspon- 
dence in the case of the spatial cutoff (po =2nrxo). With the 
aid of Eqs. (A2), (A25), and (67) we find (xo4m-I) 

where J(p)=$~dpIM, and KO is a modified Bessel func- 
tion; see Eq. (A.16). The limit 6 4 m  does not present a 
problem (and yields +m/8), but in the limit S-+ + O  we 
have 

The last term vanishes only if 2 yExo= 8. This nontrivial 
limitation (which is mass independent!) can be understood as 

follows. Let the mass rn approach zero (in which case Eq. 
(78) is exact). Then, comparing Eq. (75) or (76)") to Eq. 
(78), it can be concluded that12) 

Hence, it is evident that the correspondence xo- A - ' , which 
is standard in a quantum field theory with no boundaries, 
holds only for A 8%- 1. In the opposite limit xo- S. 

In closing, I list the basic results of this work. First, it 
was found that the surface energy of the scalar field plays a 
nontrivial role. Taking account of this energy secures con- 
servation of the total energy, and it is necessary to do so in 
order to quantize the theory correctly. This example is in- 
structive in that, among other things, it demonstrates that the 
prescription for obtaining the vacuum energy-momentum 
tensor from the Green's function depends on the boundary 
condition satisfied by the Green's function. It is easy to show 
that together with the well-known expression 

we also have 

( c v ( x ) ) s =  - i?,,[~,(x, x') - Go(x, x')], (82) 

where the operator (see Refs. 3 and 4 ) 

and ?,, is given by 

which follows from Eqs. (40) and (41). The causal Green's 
function G,(x,xl) can be obtained in the standard manner 
from Eqs. (37), (42), and (43) and Go is the causal Green's 
function of the scalar field for Minkowski space; (see Refs. 
2-4). 

A comparison of Eqs. (62) with (63) and (64) with (65) 
demonstrates the difference in the boundary divergences (for 
D O )  for the tensors (F,,(X))~ and (T,,,(x))~. The exist- 
ence of a point Y(i3) where the vacuum polarization vanishes 
is also of interest (see text after Eq. (60)). The special role of 
the Dirichlet condition in the model considered is manifested 
by the model's not existing in the limit S-+ - 0 (Sec. 5), and 
by an additional constraint xo- S on the cutoff parameter, 
which is necessary for an adequate interpretation of the sur- 
face divergences. The interpretation procedure proposed in 
the case of ideal boundary conditions (see Eqs. (67) and 
(68)) is apparently new, and is consistent with the previously 
described regularization procedure. However, the use of an 
additional dimensional parameter (cutoff parameter) for 
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S>O leaves the question of its physical meaning open, since 
(in contrast to QED) the nature of the boundary is unknown 
here. 
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ported in part by the International Science Foundation and 
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7. APPENDIX 

The functions Ai and B i ,  i=2 ,  4, introduced in Eqs. 
(50)-(53) can be represented in the form 

Here Kv(p) are modified Bessel functions, primes denote 
derivatives of the corresponding order with respect to 
p=2mx, the function IMT,  introduced in Ref. 14, is given 
by 

where F=xl S and in the last equality the contour of integra- 
tion has been rotated. In contrast to the functions A 2 ,  . . . , 
B4, the function IMT (but not its derivatives with respect to 
p) is finite on the boundary (p=O): 

Therefore, the boundary singularities of the tensors 
( G , ( X ) ) ~  and (T ( x ) ) ~  are determined by the asymptotic 

/"Y 
behavior of the modrfied Bessel functions and the derivatives 
of IMT(p-' ,  p) with respect to p in the limit p4O.  

In deriving the formulas (A3) and (A4) from the defining 
integral representations (52) and (53), the integrals over the 
transverse momentum q were calculated first. These formally 
diverge, but they admit an interpretation in the sense of ana- 
lytic continuation in the arguments of the B-function 

(see Eq. 1.5.1(12) in Ref. 23). 
The functions Ai  and Bi are related to one another. This 

can be shown by using their integral representations, the 
properties of the modified Bessel  function^:^ and the equal- 
ity (A13) given below. For example, B4(p, p) and 
B2(p,  p) are related by the dispersion relation 

as well as the formula (here and below d,r  dldp) 

which was used to derive Eq. (59) from Eq. (58). A disper- 
sion relation of the form (A8) also relates the function 
A4(p, p) to A2(p, p). The cross relations have the form 

B~(cL ,P )  = - (d;- 1 )A~(ILL,P), (A1 1) 

and the relation, similar to Eq. (A9), between A 4  and A2 is 

The differential equation 

~JMT(P- ' ,P)=P- '[IMT(P-',P)-Ko( PI], (A131 

plays a fundamental role in determining the asymptotic prop- 
erties of IMT(pP ', p). Applying this relation recursively we 
obtain the asymptotic series 

m 

IMT(P-',P)= C pnKt) (p) .  
n = O  

(A 1 4) 

The domain of applicability of this expansion are the values 
of p and p determined by the pairs of inequalities 

p e p ,  p e l .  (A1 5b) 

Under the conditions given by (A15), the asymptotic proper- 
ties of the functions ~ ? ) ( p )  for p* 1 and p 4  1 make it 
possible to obtain both the well-known14 asymptotic formu- 
las for I,, for pe 1 and the corrections to these formulas. 
The corresponding expressions can be easily obtained using 
the following formulas (see Ref. 22): 

Ko(P)= - In( y ~ p f l ) ,  p e  1, 6416) 

(n- l)!p-", n a  1, p e  1, (A 17a) 
~ t ) (~ ) - - ( -  1)" 

6 e e - ~ ,  nzo, p*l, (A17b) 

In yE=0.577.. . is Euler's constant. The asymptotic charac- 
ter of the expansion (A14) (for p< 1 )  is apparent from the 
factorial growth of the coefficient of (plp)"; see Eq. (A17a), 
whence it is also seen, in accordance with Eq. (A15b), that 
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the expansion (A14) does not enable one to determine the 
character of the boundary divergences for finite p. 

The regular asymptotic expansion of I,, for p a 0  can 
be obtained by writing the solution of Eq. (A1 3) in the form 

so that the asymptotic expansion of Ko(p) (Eq. 7.13.1(7) in 
Ref. 22) for p* 1 gives (!P(a,b,c) is the confluent hyper- 
geometric function)23: 

The first term of the expansion in square brackets in Eq. 
(A19) was obtained in Ref. 14. 

The structure of the boundary divergences of the tensors 
(? -pV(~))G and (T,,(X))~ is determined by the asymptotic 
properties of the functions Ai and Bi under the conditions 

An expansion which is an obvious analog of Eq. (A14) is 
obtained for I M T  with the aid of Eq. (A5): 

where 

and the integration operator D;' has the form 

In contrast to Eq. (A14), the series Eq. (A21) is also mean- 
ingful on the boundary. This is attributable to the finiteness 
of Kb-") for p=O and n. > 1. Note that the second and fourth 
p derivatives of I , , ,  which appear in Eqs. (A2)-(A4), give 
rise to boundary divergences in the first few terms of the 
series (A21) as soon as 2 -n -130  or 4-n- 1 3 0 ,  respec- 
tively. Since 

Kh-")(p)-(- 1)-" ge-P (A241 

for p a  1 (by induction), the result obtained in Eq. (A19) can 
be checked. The latter agreement is not surprising, despite 
the fact that for p a  1 the condition (A28) breaks down, 
merely by virtue of the existence of Eq. (A19) for arbitrary 
,ti and the convergence of the series (A21). 

Differentiating Eq. (A21) term by term with respect to 
p, we obtain 

so that using the well-known expansion of Ko(p) at zero 
(Eqs. 7.2.5(38) in Ref. 22), we finally find the nonvanishing 
terms I b T  and I;, in the expansions under the conditions 
(A20): 

The asymptotic series (A14) leads to the limiting ( S t  +0)  
expressions for the functions 6-'Ai(p,p) and S - ' B , ( ~ ,  
p), i = 2, 4. For example, 

since 

After some straightforward calculations based on the rela- 
tions between the modified Bessel f~nct ions?~ the expres- 
sions of the type (A29) acquire the compact form presented 
in Table I. Equations (A27) and (A28), as well as the asymp- 
totic properties of the functions K, in Eqs. (A1)-(A4), lead 
to the main result of Sec. 4 - Eqs. (62)-(65). 

*)E-mail address: lebedev@td.lpi.ac.m; permanent address: Chuvash State 
Pedagogical Institute, 428000 Cheboksary. 

"A. I. Nikishov drew my attention to this problem. 
')The system of units in which c= 1, fi = 1, a= e2/4nfic is used; the metric 

possesses the signature (+ , -, - ,-)= diagllg,,(l; and, d,~dldx".  
3)There is also a purely technical eawback to the proposed unsymmetgc 

modification of 2 The tensor Tap will no longer be symmetric (Toi 
# c.o, dm%, # d p ~ , B  , and so on). 

4)The existence of sucha system is guaranteed by the self-adjointness of the 
boundary-value problem associated with Eq. (15) and the boundary condi- 
tion (6) if the function F ( x )  in the boundary condition is real. 

 ow ow ever, this did not affect the answer, since the authors discarded at the 
appropriate point the contribution of the correction (38). 

 oreov over, as shown above (see Eqs. (20)-(23)), the requirement that en- 
ergy be conserved fixes the value of the constant c= 112 in Eq. (20). while 
a conformal energy-momentum tensor i"(II:) discussed in the Introduction, 

7 - 
corresponds to, for example, c = 113 in case D =  3 + 1 ,2.3 since even for 
m = ~ , ~ = ~ w e h a v e ( ~ , , )  f 0. 

7)This is no mere coincidence. The presence of a 8(x) interaction leads to a 
boundary conditioni4 for the field &x) at the origin. This boundary con- 
dition actually has the same form as the boundary condition (I) with 
A =  118. 
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- 
')1t will be shown below that the densities ( T r n ( ~ ) ) ~ = ~  and ( T r n ( ~ ) ) ~ = ~  

lead to an identical (and finite) shift of the zero point for the energy. 
' )~ote  that the second and fourth formulas in the last column of the table are 

present implicitly in Eq. (3.81) of Ref. 2 and they can be obtained from it 
with (= 114 (see Introduction) after simple transformations. If course, the 
value (= 114 in Ref. 2, just as in other works on this subject, was not 
distinguished in any way. 

'')The momentum cutoff for the metal-vacuum interface is 
Aphys= op /vFf i ,  where o, is the plasma frequency and vF is the Fermi 
velocity of the valence electrons? I h e  frequency corresponding to Aphys 
is two orders of magnitude higher than o, . 

 or m =O we have (H)6= 0 (D = 2). 
'')The right-hand side of Eq. (79) does not agree with the expression 

(2~7s)-'[(I +As)ln(l+A6)-As], presented in Eq. (21) of Ref. 13. It 
can be shown that the discrepancy comes from the improper application 
of certain operations in Ref. 13 to the divergent integral that respresents 
the vacuum energy. 
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