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A perturbation-theoretic interpretation that makes it possible to derive an equation describing the 
evolution of a pair correlation function in classical turbulent wave fields with an a priori 
assigned accuracy is proposed. The calculation of this equation is an intermediate step involved 
in devising a kinetic description of a wave field. The possibilities of the proposed 
interpretation are demonstrated in the derivation of the equations of the Wyld diagram technique 
without the usual practice of introducing a random external force. O 1996 American 
Institute of Physics. [ S  1063-7761 (96)02908-31 

1. INTRODUCTION 

Classical turbulent wave fields are encountered in di- 
verse situations as physically real objects. They are observed 
especially often in plasmas, both in space and in the labora- 
tory. The parametric excitation of spin waves in ferromag- 
nets can be cited as a second example of a situation with a 
clearly expressed turbulent wave field. There are other ex- 
amples. 

From the practical standpoint, the spectrum of a turbu- 
lent wave field, i.e., the distribution of the energy density of 
the wave motion with respect to the spatial scales of motion, 
is a perfectly adequate characteristic for describing effects 
associated with such fields. Under certain restrictions, i.e., 
for so-called weak turbulence, its evolution can be described 
by kinetic equations. In this case the temporal derivative of 
the spectral wave density is expressed in terms of the values 
of the instantaneous spectral density using the so-called col- 
lision integral. The collision integral is calculated by expand- 
ing the expression in one or several parameters that are pro- 
portional to the energy density of the field. The lowest order 
of the collision integral is usually obtained by classical per- 
turbation theory after supplementing it with several hypoth- 
eses for expressing the higher correlation functions in terms 
of pair correlation functions (the "random phase approxima- 
tion" in plasma physics; see, for example, the review in Ref. 
1). When this approach is applied to the calculation of higher 
orders of the collision integral, disparities appear, which re- 
quire certain renormalizations. In this case the calculation 
can be performed using a diagram technique like the Wyld 
diagram technique? as was noted back in Ref. 3 and was 
clearly demonstrated for a very simple situation in Ref. 4. 

The Wyld diagram technique was originally devised for 
hydrodynamic equations. Zakharov and L'vov subsequently 
rewrote it in terms of canonical variables5 for the case of a 
wave field having a Hamiltonian. 

Both in the technique proposed by Wyld and in the in- 
terpretation of the technique proposed by L'vov and Za- 
kharov, the basic equations of the diagram technique are de- 
rived using a formal expansion with respect to an 
infinitesimal random external force (thermal noise), which is 
performed in an intermediate step. Equations relating a cor- 
relation function and a Green's function are obtained as a 

result, and in the case of a significantly superthermal wave 
field these equations are virtually independent of the external 
force. The latter circumstance raises the following question: 
how faithfully do the final equations of the Wyld technique 
describe the processes actually occurring in a turbulent field? 

In this paper we demonstrate some principles for imple- 
menting perturbation theory, which make it possible, in par- 
ticular, to derive the equations of the Wyld diagram tech- 
nique without introducing a random external force. 

2. BASIC EQUATIONS 

To make the theoretical development specific, we focus 
on the case of a scalar, weakly turbulent wave field with a 
single branch of oscillations that does not interact with the 
medium. Such a field has a Hamiltonian, and its evolution is 
described in canonical variables by the equation 

Here 2% is the Hamiltonian of the wave field. It depends on 
two field variables, viz., the amplitude of the waves a ( r , t )  
and its complex conjugate a * ( r , t ) .  The latter are labeled by 
the plus and minus signs in the superscript s .  

The Hamiltonian of the field is proportional to the vol- 
ume occupied by the medium, i.e., it formally diverges. 
However, even with consideration of the formal divergence 
of the Hamiltonian, Eq. (1) has a definite meaning, since its 
right-hand side is a sum of finite terms. 

For simplicity, we assume that the expansion of the 
Hamiltonian contains only two terms. The first, which is qua- 
dratic in the wave amplitude, describes the linear dispersion 
of the waves. 

and the second, which is cubic, describes three-wave pro- 
cesses, 
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- rl)asl(rl  ,t)as2(r2 ,t)as3(r3, t). (3) 

The coefficients U and V can be assumed symmetric with 
respect to interchange of the pairs (si ,ri). Reversal of the 
signs of all the si is equivalent to taking the complex conju- 
gate: 

VWS1 ,-SZ.-S3(rl ,r2) = [VSl s S 2  'S3(rl ,r2)]*. 

The main object in our theory is the pair correlation 
function 

In its definition the subscript R on the right-hand side sym- 
bolizes averaging over the volume. 

The pair correlation function has Hermitian self- 
conjugacy : 

When the temporal arguments of the pair function are 
equal, we obtain the matrix of the autocorrelation function 
~ ~ . ~ ' ( r , t , t ) .  The concept of a spectral wave density can be 
defined in terms of it. For example, the diagonal element 
N:.+(t,t) of the spatial Fourier transform of the latter, 
which is necessarily a positive real function, can be regarded 
as the spectral density. The evolution of the wave spectrum 
and the medium (the field influencing the medium in the 
general case) can be described in terms of this a spectral 
density, thereby stressing the significance of the pair corre- 
lation function as well. 

The final purpose of all the ensuing manipulations is the 
derivation of an approximate equation describing the evolu- 
tion of the pair correlation function in an a priori assigned 
range of accuracy of the expansion in the energy density of 
the wave field. We confine ourselves to the accuracy in 
which the cubic expansion terms are retained in the evolution 
equation. This approximation is fully illustrative and, at the 
same time, not excessive for describing the essence of the 
proposed approach. 

To achieve the stated purpose, we also need the bare 
Green's function O ~ S , S ' ( r , r ) ,  i.e., the Green's function of 
the linear problem. The latter is identically equal to zero at 
r<0, and at r > 0  it is the solution of the homogeneous 
integrodifferential equation 

with the initial condition 

We shall henceforth regard this matrix function with its de- 
pendence on the time and coordinates as a representation of a 
certain operator '6. 

Finally, the calculation is conveniently performed in a 
graphical formulation. The graphical symbols used here to 
represent the analytical calculations are the same as in Ref. 5. 

We denote the bare Green's function by a thin solid line, the 
correlation function matrix by a wavy line, and the matrix 
element of three-wave interactions by a vertex with three 
ends. A time t is assigned to the vertex, and the values of the 
indices si and the vectors ri matching the corresponding ar- 
guments of the functions attached to these ends are assigned 
to each end of the vertex. (Because of the uniformity of the 
problem, to make the diagrams more readable, we subtract 
the vector r at the entrance to a diagram is subtracted from 
the other two arguments ri). The integrations are carried out 
in the final integral expressions over the corresponding ra- 
dius vectors and the time. The problem of interpreting the 
final diagram relations will not be discussed in further detail. 
Where necessary, the reader can specify the interpretation 
principles independently, ignoring the rules for reading dia- 
grams described in Ref. 4. 

Before proceeding directly to a description of the calcu- 
lation method, we once again precisely define the concept of 
"homogeneous turbulence." In this paper a turbulent field in 
which the average ( a s ( r + ~ , t ) a - S ' ( ~ , t ' ) ) R  taken over a 
sufficiently large volume in the vicinity of an assigned point 
r is practically independent of the coordinates of the point r 
is considered homogeneous. This automatically means that 
the wave spectrum does not have a long-wavelength portion 
(with wavelengths equal to or exceeding the scale of the 
linear dimensions of the averaging volume). Homogeneity of 
a turbulent field in the sense indicated is realized only under 
such a condition. For simplicity, we assume that a nonlinear 
interaction between waves will likewise not lead to pumping 
of the long-wavelength portion of the spectrum. 

Under this restriction the wave field has a finite correla- 
tion radius R,, which is nothing but the characteristic decay 
length of the correlation function ~ ( r , t , t ' )  as Irl increases. 
The correlation radius is clearly determined by the dimen- 
sions of the region in the space of wave vectors occupied by 
the wave spectrum. 

3. DESCRIPTION OF THE CALCULATION METHOD 

Equation ( 1 )  for the pair correlation function can be used 
to obtain the equation 

FIG. 1 .  "Sixfold" correlation function. 
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i.e., the evolution equation of the pair correlation function 
contains the triple correlation function 

The evolution equation of the triple correlation function, in 
turn, contains a quadruple correlation function, etc. There is, 
thus, an infinite hierarchical sequence of evolution equations. 
In the case of weak turbulence this sequence can be trun- 
cated. In particular, in the situation under consideration we 
can stop at the "sixfold" correlation function and totally 
neglect the term containing the "sevenfold" correlation 
function. In fact, the sixfold correlation function itself is al- 
ready cubic in the energy density of the wave field. It can be 
split into a product of three pair correlation functions (more 
precisely, into a sum of all the possible products of pair 
functions) with a sufficient degree of accuracy: 

x aS4(r4+R,t4)aS5(R,ts))R. (7) 

One of the terms is NS~-S4(r-r4,t,t4)NS5'-S2(-r2,t5,t2) 
X NS3' -$ l ( r3  - r, , t3  , t l) .  To be convinced of its existence, it 
is sufficient to consider the sixfold correlation function (4) in 
the range of arguments 

Ir-r3l,lr3-r21,1r-r2)%Rc. 

The difference between the true correlation function and 
the sum of the threefold products of the pair functions is of 
the order of the fourth power of the energy density of the 
wave field and can consequently be neglected. 

The sixfold correlation function is represented in the 
graphical formulation in Fig. 1 as the sum of all the possible 

NG. 3. Lowest order of the quadruple correlation function. 

products of the pair correlation functions. This figure con- 
tains three wavy lines, i.e., three independent pair correlation 
functions. They have six free ends, which are completely 
equivalent. Any of the spatial variables and any of the times 
can be assigned to each of these ends, and all these variables 
can be interchanged in all possible ways. 

Attaching a straight line, i.e., a Green's function, to one 
end of a vertex and any two free ends of the wavy lines of 
the sixfold correlator (Fig. 1) to the other two ends, with 
consideration of the factor 112 for the vertex we obtain the 
expression for the "fivefold" correlation function (see Fig. 
2). In the resulting graph all the free ends are once again 
equivalent. The only new restriction is that the straight line, 
i.e., the bare Green's function, must be read from its free end 
to the interior of the corresponding fragment. 

Using the drawing of the quintuple correlation function, 
we can also express the quadruple correlation function in 
terms of pair correlation functions. It can clearly be repre- 
sented in lowest order by the diagrams in Fig. 3. Joining any 
two free ends in Fig. 2 to exits of a vertex and attaching a 
solid line to its entrance, we obtain corrections to the qua- 
druple function. They are shown in Fig. 4. The first and last 
terms in this figure have been purposely crossed out. The 
upper parts of these terms are fragments with two free ends, 
which, according to their meaning, cannot be anything but 
components of a pair correlation function. The correspond- 
ing terms have already been taken into account by the dia- 
grams in Fig. 3 and should, therefore, be discarded. (Actu- 
ally, these fragments are formally a complete integral 
representation of a pair correlation function with an accuracy 
specified by the lowest order of the kinetic equation.) 

It is noteworthy that this figure contains two coefficients 
equal to 112, which are not shown in all the diagrams. The 
presence or absence of such coefficients in a specific diagram 
can be understood by studying the possible interchange of 

FIG. 2. Quintuple correlation function. FIG. 4. Corrections to the quadruple correlation function. 
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+ 
FIG. 5. Triple correlation function. 

the pairs of times and spatial vectors ( t i  ,ri) at the respective 
free ends of the diagrams. We shall not give a detailed de- 
scription of the principles used to determine the power of the 
coefficient 112 corresponding to a particular diagram. The 
conclusion, however, is that the power of the coefficient 112 
is determined by the number of elements in the symmetry 
group of the diagram when one of the Green's functions with 
a free entrance end is detached from it. 

Beginning with the expressions represented in Figs. 3 
and 4, we can obtain diagrams of the triple correlation func- 
tion by splicing. These diagrams are shown in Fig. 5. For 
convenience, they are numbered from 1 to 9. Diagram 1 is 
obtained from the lowest-order diagram of the quadruple 
correlation function (Fig. 3), diagrams 2-5 are obtained from 
diagram 1 in Fig. 4, and diagrams 6-9 are obtained from 
diagram 2 in Fig. 4. Diagrams 5, 6, and 9 have been crossed 
out: they should be discarded. Diagrams 5 and 6 correspond 
to corrections that have already been automatically ad- 
equately taken into account by diagram 1. Correction 9 sim- 
ply duplicates correction 4. These two corrections differ only 
with respect to the order in which their Green's functions 
with free ends were attached to them. To some extent, an 
analogy to a second-order differential in higher mathematics 
would be appropriate here. 

It should be specially stressed that the analytical analog 

of the diagram expression obtained for the triple correlation 
function is a fairly exact approximation of the true triple 
correlation function. During the calculation of this correla- 
tion function, we accurately calculated all the higher correla- 
tors needed, by adequately utilizing the corresponding evo- 
lution equations. 

After substituting the expression obtained for the triple 
correlation function into the evolution equation (6), we de- 
termine the form of the latter in terms of the pair correlation 
function. It is represented in Fig. 6 in the graphical formula- 
tion. In it the left-hand side has the form of a diagram ex- 
pression attached to the wavy line of the paired correlation 
function, and on the right-hand side one diagram expression 
is attached to another. (All three diagram expressions in the 
figure are enclosed in square brackets.) In addition, the self- 
evident graphical symbol for the operator '&-' has been 
introduced in the diagram expression on the left-hand side. 
We note that when we write the analytical analogs of the 
diagrams in this expression, as well as in the first diagram 
expression on the right-hand side, there is no integration over 
the temporal and spatial variables at the entrances to the 
diagrams. 

The second expression on the right-hand side (in which 
each diagram should be read from right to left!) is nothing 
but a first corrected approximation of the renormalized 
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FIG. 6. Evolution equation of the pair 
correlation function. 

Green's function of the Wyld diagram technique. This ap- 
proximation has sufficient accuracy for calculating the cubic 
collision integral. We recall that we are dealing with a tem- 
poral, rather than a frequency, representation of all the func- 
tions; therefore, there is no problem with the singularity of 
the correction to the bare Green's function when we work 
with its evolution equation. 

With consideration of the approximation of the renor- 
malized Green's function indicated, the diagram expression 
on the left-hand side of the equation takes on the meaning of 
a graphical form of the inverse operator of the renormalized 
Green's function (see Ref. 4). In other words, the diagrams 
following the minus signs in it are the first terms of the 
expansion of the self-energy function 2 [see Eq. (16) in Ref. 
5; the first two of our diagrams of this function have been 
combined in the first diagram of 2 in the reference just cited, 
particularly with consideration of the expansion of the renor- 
malized Green's function]. 

The first diagram expression on the right-hand side of 
the evolution equation (Fig. 6) is an expansion of the com- 
pact part of the correlation function 6 [compare the expan- 
sion (15) in Ref. 51. 

Thus, the evolution equation obtained coincides to 
within the prescribed accuracy with the operator relation of 
the Wyld diagram technique: 

&-1&&6+. 

Here & is the renormalized Green's function, is the pair 
correlation function, 6 is the compact part of the correlation 
function, and the plus sign denotes Hermitian conjugation 
(see Ref. 4). 

It is easy to understand that when calculations are per- 
formed with greater accuracy, the evolution equation of a 
pair correlation function that is the approximation corre- 
sponding to the last operator relation will ultimately always 
be obtained. On one hand, increasing the accuracy of the 
calculation (taking into account a larger number of equations 

in the hierarchy of evolution equations of the correlation 
functions) will give rise to new compact diagrams of the 
self-energy functions 6 and 3 with correct weights. On the 
other hand, it will be manifested by the appearance of more 
and more new additions to the bare Green's function, which 
always combine with sufficient accuracy to form the appro- 
priate approximation of the renormalized Green's function. 

4. CONCLUSIONS 

In this paper we have demonstrated some basic prin- 
ciples for devising a perturbation scheme that makes it pos- 
sible to obtain the evolution equation of a pair correlation 
function with an a priori assigned accuracy of the expansion 
in the energy density of a turbulent field. The range of ap- 
plication of the approach illustrated here is not confined to 
the area of substantiating the Wyld diagram. The idea pro- 
posed in this paper can also be applied in more realistic 
problems with nonconservative classical fields, particularly, 
for verifying the soundness of the existing machinery of the 
kinetic description of a turbulent plasma. 
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