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The equations of motion for the x ,  y ,  and z components of the total spin and for the secular part 
of the spin dipolar interactions under magnetic-resonance conditions are obtained using 
memory functions, and their stationary solution is presented. The results obtained supplement 
and expand the scope of the Provotorov and Bloch theories. O 1996 American Institute 
of Physics. [S 1063-776 1 (96)02508-51 

1. There is a fairly extensive class of magnetic- 
resonance problems in which a significant role is played by 
secular dipolar interactions. The successful solution of these 
problems became possible with the appearance of Provotor- 
ov's theory,' according to which the secular dipolar interac- 
tions are isolated in a separate subsystem and influence the 
redistribution of the energy of the variable magnetic field and 
other processes, determining the magnetic-resonance line- 
width (shape). The Provotorov theory, which has been con- 
firmed by numerous experiments:-4 was represented in the 
original paper' by two equations for the average values of 
the "Zeeman" operator 3-tz(t) and the part @ ( t )  of the 
dipolar interactions that is secular with respect to S ( t ) :  

where ol is the amplitude of the variable field, g ( A )  is the 
line shape for the resonant absorption of energy from the 
external variable magnetic field, E = A2/D2 ,  A = W O -  w is 
the detuning of the frequency o of the external variable mag- 
netic field relative to the central resonant Zeeman frequency 
wo , D2= ~ r ( @ ) ~ / ~ r ( l ~ ) ~ ,  and ZZ is the z component of the 
total spin. 

On the other hand, in the 1970s the work of Parker, 
Mehring, and Rado laid the foundation for the magnetic- 
resonance application of the so-called memory-function for- 
malism (see Refs. 3,5, and 6 and the literature cited therein). 
This formalism, being one of the methods of nonequilibrium 
statistical mechanics applied to certain magnetic-resonance 
problems, can probably also be related in a more general 
sense to the ideas of Liouville an von Neumann, who pro- 
posed the fundamental equations of motion for the distribu- 
tion function and the density matrix of a statistical operator, 
as well as Zwanzig, who first introduced the projection op- 
erator into nonequilibrium statistical mechanics and derived 
the fundamental kinetic equation for the statistical operator 
p( t )  [Eqs. (1) and (2) were obtained by just this method], 
and Mori, who proposed the method for constructing a pro- 
jection operator (superoperator) that leads to modified non- 
equilibrium dynamics.7-9 In particular, using the memory- 
function formalism the magnetic-resonance line shape g ( A )  

can be expressed in terms of the cosine and sine Fourier 
transforms of memory functions, k l ( A )  and k"(A) (Refs. 3 
and 5): 

It can be assumed that the quantity g ( A )  in (1) and (2) 
should have the form (3). As will be shown below, this as- 
sumption is correct and follows naturally from the main 
problem solved herein, in which an attempt is made to show 
that the memory-function formalism makes it possible to de- 
scribe the interrelated macroscopic dynamics of both the di- 
agonal operators (% and @), i.e., the "good" thermody- 
namic coordinates, and the off-diagonal operators, i.e., the 
x and y components of the total spin, IX and I", which, 
although they are not good (in the thermodynamic sense, 
since they do not commute with @), are still macroscopi- 
cally observable quantities (the inflow of energy from the 
variable magnetic field and the observation of the dispersion 
signal are provided "in terms of" IX,  and the resonant ab- 
sorption signal is attributed to l y ) .  This is also the purpose of 
the present work, i.e., the derivation and stationary solution 
of a system of equations that describe the dynamics of the 
spin system of a solid under magnetic-resonance conditions 
using components of the total spin together with secular di- 
polar interactions within the memory-function formalism. 
We note that a similar problem, but without consideration of 
the secular dipolar interactions and memory effects, i.e., the 
derivation of equations that describe the interrelated dynam- 
ics of the x, y, and z components of the magnetization (the 
phenomenological Bloch equations) by one of the methods 
of nonequilibrium statistical physics was solved in Refs. 10 
and 11, and in Refs. 12 and 13 these equations were modified 
with the consideration of memory effects. 

2. Before preceding to the solution of the problem posed, 
we note the following. In one of the productive methods of 
nonequilibrium mechanics, viz., the Zwanzig projection op- 
erator method, a nonequilibrium process is treated in a 
closed (isolated) system of weakly interacting particles.7-9 
Therefore, it is natural that the diagonal part of the total 
statistical operator p is taken as the relevant (quasiequilibri- 
um) statistical operator p l  [accordingly, the projection opera- 
tor P O  isolates the diagonal part from p, i.e., pl = pop,  and 
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the operator 1 - P o  isolates the off-diagonal part from p,  i.e., 
p2= ( 1 -  PO)^]. There is usually interest specifically in the 
diagonal or so-called slowly varying operators, and the off- 
diagonal (rapidly varying) operators are considered insignifi- 
cant. The diagonal and off-diagonal variables then develop 
with time completely independently. 

A different situation arises when an open system, in 
which the external conditions are maintained constant for a 
long time, is considered. In our case we have the continuous 
action of a weak resonant variable magnetic field aligned 
parallel to the x axis and perpendicularly to a strong constant 
magnetic field on a spin system. This situation, which is 
standard in magnetic resonance, corresponds to what is char- 
acterized in nonequilibrium statistical mechanics as an 
"equilibrium" in a nonequilibrium state (a steady nonequi- 
librium process). In this case the variable field creates con- 
stant fluxes that maintain a nonequilibrium state, in which 
the macroscopic state does not vary, while the microscopic 
states undergo rapid reversible changes? Such a nonequilib- 
rium state can be described within the memory-function for- 
malism using observable macroscopic diagonal and off- 
diagonal operators, since this formalism makes it possible to 
replace the terms like IZIT2 in the equations of motion by 
integrals with relaxation kernels, i.e., memory functions, as 
was done a priori in Refs. 12 and 13 [a similar integrodif- 
ferential equation for IX makes it possible to define the 
magnetic-resonance line shape in terms of memory functions 
like (3)]. Here T ,  is the spin-spin relaxation time. 

Thus, to investigate the nonequilibrium states described 
above using memory functions, along with the obvious 
choice of the average values ( H ( t ) )  and (&( t ) )  of the 
diagonal operators, we can choose the average values 
( I X ( t ) )  and ( I Y ( t ) )  of the off-diagonal operators as relevant 
functions, and we can select the operator P ,  which is com- 
posed of all those operators simultaneously, as the Mori pro- 
jection superoperator. The condition that the production of 
entropy1)) in the stationary nonequilibrium process under 
consideration be minimal is satisfied, although the off- 
diagonal operators ( ( I X ( t ) )  and ( I Y ( t ) ) ) ,  which are associ- 
ated with the source of the variable field, are not constants of 
motion, since the conjugate thermodynamic parameter is 
minimal (the inverse temperature of the source of the vari- 
able field tends to zero). 

Attempting to generalize the foregoing statements, we 
note that here we are actually following Ref. 9, where the use 
of the diagonal operators as conserved quantities was pro- 
posed to characterize an arbitrary nonequilibrium state, and 
some off-diagonal operators can be regarded as relevant, or, 
according to the terminology in Refs. 3 and 5,  operators of 
interest for a particular nonequilibrium state. According to 
Ref. 9, there are no general criteria for choosing the relevant 
set of operators in modem nonequilibrium statistical me- 
chanics, and while a surplus of operators causes no harm, a 
shortage can lead to errors. If, for example, in the well- 
known problem of cross relaxation between two spin sys- 
tems with similar frequencies only the operators of the Zee- 
man subsystem are chosen as the operators of interest, 
incorrect results are ~btained,~ whereas if the Hamiltonian of 
the dipolar interaction, which commutes with both Zeeman 

operators, is added as a relevant operator, the correct results 
presented in Ref. 4 can be obtained. 

Thus, we must next investigate the interrelated dynamics 
of the macroscopic, observable diagonal ( ( I Z ( t ) )  and 
( @ ( t ) ) )  and off-diagonal ( ( I X ( t ) )  and ( I Y ( t ) ) )  parts of the 
Hamiltonian when energy is absorbed from the variable 
magnetic field by the spin system. For this purpose, we in- 
troduce a projection operator containing all these operators: 

P = P O + P ' ,  (4) 

where 

~ Q J )  is an operator in Liouville space, ( Q ~ ~ Q ~ ) = T ~ ( Q ~ ) ~ ,  
and I' = IX? i lY.  Thus, the operator P  isolates the part of 
p  that is significant in our problem, while 1 - P  isolates the 
insignificant direct and indirect interactions. In addition, 
P 2 =  P .  

Following the memory-function formalism in the form 
in which it was presented in the Appendix to Mehring's 
monograph: we obtain a system of equations for the opera- 
tors of interest ( Q k ( t ) )  = ( I X ( t ) ) ,  ( I y ( t ) ) ,  ( I Z ( t ) ) ,  and 
( .@( t> ) :  

where 

K =  -i(Qkl%Plp)= - i x  Q k Q '  ( Q ) ) ,  (8) , <e'leJ> 

The expressions (7)-(11) coincide exactly in form with the 
analogous equations from Refs. 3 and 5; however, there is a 
significant difference associated with the form of the projec- 
tion operator (4). In deriving Eqs. (7)-(1 l), it was assumed 
that the Hamiltonian %does not depend on time and that the 
relevant operators of interest ( Q k ( t ) ) ,  from which the pro- 
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jection operator P is composed, are not the complete set, 
since we would otherwise have M = 0, because 1 - P = 0, 
and the system would have no "memory." 

To be specific, we consider the system of nuclear spins 
of a nonmagnetic solid under magnetic-resonance conditions, 
whose Hamiltonian in a reference frame rotating with the 
frequency o of the variable magnetic field has the standard 
form 

since 

and this is just as inadmissible in the equations for .W and 
3@ from (7), as the absence of the term with #(t) on the 
right-hand sides of Eqs. (1) and (2). In addition, substituting 
the remaining three terms from (13) into (7), neglecting the 
perturbation V in the argument of the exponential, and ex- 

The variable field V =  ollX is treated as a small perturbation. panding the corresponding memory functions, we can easily 

In addition, for the sake of convenience and unity regarding see that in the equation for (*(r)) the terms with memory 

the dimensions in (7)-(1 I), the operators IX, IY, and Iz are vanish completely, i.e., roughly speaking, the term 

replaced by w- = 1'm1/2 and #, so that we have the fol- - (* ( t ) ) l~~  vanishes. In the equation for ( K ( t ) )  the 

lowing set as the operators of interest: terms with memory for (K (t')) and (#(tl)) remain. In 
the equation for d ( s ( t ) ) l d t ,  in addition to the term with 

Let us now turn to Eqs. (7)-(11). When only operators 
that commute with one another (for example .W and &) or 
the one single operator I* are chosen as relevant operators, 
the term K, which represents a trivial contribution to the 
evolution of (Qk(t)), is found to vanish?.5 while in our case 
it is obvious that it is nonzero for (IX(t)), (IY(t)), and 
(IZ(t)) [it is equal to zero for (&(t)), because 
Tr[Q',Qk]3@=0 holds] and gives trivial (drift) terms that 
correspond to Hamilton dynamics. The term L can be set 
equal to zero on the basis of arguments that can be found, for 
example, in several As for the third term, M, it 
is non-Markovian-it has memory, i.e., the temporal varia- 
tion of (Qk(t)) is determined not only by the particular state, 
but also by the macroscopic states of the system in all the 
preceding moments in time t' 6 t: the integration is carried 
out over the past time, and the corresponding kernel, which 
is a tensor in the general case, is called the memory function 
or the relaxation kernel. 

Before proceeding to specific calculations involving the 
identification of memory functions (there are 16 in our case) 
and solving Eqs. (7), we make the following remark. The 
multiplier 

(.=(if)) that vanishes because of (14), the nontrivial term 
with memory for (3@(t1)) also vanishes. Finally, in the 
equation for (&( t ) )  all the nontrivial terms, except the 
term just mentioned with (%(t1)), remain. It is seen that 
the presence of the projection operator P in the memory 
functions leads to obviously incorrect equations, although 
the "energy conservation law" 

formally remains in force. Therefore, to retain the significant 
terms in (10) we must replace P by Po. It is noteworthy that 
the above arguments are not the basis for the replacement of 
P with Po, which relies on general physical principles or 
internal mathematical logic. The replacement, which is per- 
formed a priori, takes into account the results of the Provo- 
torov theory and restores the traditional, classical form3.5-9 
of the integral kernels, i.e., the memory functions. 

Thus, the following system of equations can be obtained 
from (7): 

(Qkl* exp[- i(1- P~)%T]( 1 - P 0 ) 4 Q j )  
X 

(13) (e'l Q') 

is common to all four equations (7)-(10). It is easy to see 
x(Q'(tl>). (15) 

that or, in the Hilbert notation, 
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f, for simplicity, we now replace (Qi(t)) by Qi(t) from (15), 
we obtain the following system of "exact" equations: 

where 

i.e., the Bloch equations with memory,6.12 from which it is 
easy to obtain the phenomenological Bloch equations," if 
the upper limit in (20) is replaced by a, &(t) is taken out 
of the integral sign, and the remaining integral is denoted by 
T ,  [the term describing spin-lattice relaxation, i.e., the ten- 
dency of #(t) to attain its equilibrium value flo with the 
time Tz , was introduced phenomenologically into (21), al- 
though it can be taken into account rigorously in the 
memory-function formalism3]: 

i.e., the equations from which, following Ref. 3 exactly, we 
can obtain the generalized Provotorov equations. 

The system of equations (17)-(19), whose derivation is 
the main purpose of the present work, describes the coupled 
trivial and nontrivial (specified by memory functions) dy- 
namics of the operators of interest IX, I Y ,  IZ, and @. We 
stress that this system of equations simultaneously includes 
both the Bloch equations with memory and the generalized 
Provotorov equations in the form of Eqs. (20) and (21) and 
Eqs. (22) and (23), respectively. If the spin-lattice relaxation 
is not taken into account, from (17)-(19) it is easy to find 
that 

i.e., the energy is conserved. Finally, we note that in (17) we 
discarded the term 

since, if the perturbation V is discarded in the exponential 
(which will be done below), the corresponding integral ker- 
nel, i.e., memory function, vanishes, and, in addition, the 
terms proportional to dVldt in (17) cancel out exactly. 

3. Let us now move on to the solution of the system of 
equations (17)-(19) in the stationary case. We neglect the 
perturbation V everywhere in the exponential. While this is a 
generally accepted assumption for the last four integrals in 
Eqs. (17)-(19), i-e., for the integrals from (22) and (23), 
since the corresponding integral kernels already contain mul- 
tipliers that are second-order with respect to the 
perturbati~n,~.~ it is a somewhat stronger requirement for the 
remaining memory functions, which is still acceptable, since 
V is small. Then, from (17)-(19) we obtain 

X /;dtfg(r) cos ~ d ~ ( t ' )  + E.2@(ft)], 

382 JETP 83 (2), August 1996 E. Kh. Khalvashi 382 



- o: jdd t 'g (T)  cos A I I S ( t l )  

+&&(t f ) l ,  (27) 

where 

g ( r )  = T r ( 3 @ ( r ) S ) l T r ( 3 @ S ) .  (28) 

In obtaining Eqs. (25)-(27) we introduced new notation 
and performed several transformations, some of which are 
presented below as examples: 

etc. Adding the spin-lattice term [&(t)-&]ITd to (27), 
utilizing the analogous term from (21) in (26) [& is the 
equilibrium value of the "energy" of the dipolar subsystem, 
Td is the spin-lattice relaxation time, and T i  ' - 2 T ;  to 
3TL1 (Ref. 4)],  and employing the Laplace transformation 
while utilizing the convolution and displacement theorems, 
we readily obtain the following system of algebraic equa- 
tions 

where S is the Laplace transformation variable. We note that 
the multiplier 11s permits finding the stationary solution 
without any hypotheses regarding the form of the correlation 
function g ( r ) .  After the simple calculations of the determi- 
nants written on the basis of Eqs. (29)-(31), for the station- 
ary values of the operators of interest we ultimately obtain 

where g ( A )  and g l ( A )  are the cosine and sine Fourier trans- et = (I:t* i I ~ , ) o , I Z , ~ , =  AIit ,  
forms of the correlation function (28), and 
W ( A )  = .rrw;g(d) is the probability of transitions caused by 
the variable magnetic field. 

Neglecting % in comparison with Ho and taking into for the stationary values of the components of the total spin 

account that and the secular dipolar interactions we ultimately have 
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where 

is the probability of transitions with "memory," in which 
for greater familiarity, i.e., for correspondence with (3), we 
introduced the symbols K1(A) = 4.rrA2&A) and 
K"(A) = 4.rrA2g1(~). It is seen that Eqs. (35)-(38) simulta- 
neously describe phenomena which can be explained both by 
the Provotorov theory and by the Bloch theory with memory. 
In particular, the term - .rro;g(~, + e Td) and the multiplier 
- W ,  point to the narrowing of the magnetic-resonance ab- 
sorption line with increasing W ,  and the nontrivial ("non- 
Gaussian" and "non-Lorentzian") character of its shape, 
which are characteristic of both the Provotorov theory and 
the theory of the line shape in the memory-function formal- 
ism. 

Thus, the result of the Provotorov theory pertaining to 
the magnetic-resonance line shape and apparently the Provo- 
torov theory as a whole can be combined with the results in 
Refs. 3, 5,6,  12, and 13 within the memory-function formal- 
ism, which is actually the Zwanzig projection-operator tech- 
nique used in the Provotorov theory plus the method of con- 
structing projection superoperators proposed by Mori. Stated 
differently, the addition of Mori's method to the Zwanzig 
approach, i.e., the memory-function formalism, stipulates a 
corresponding addition and expansion of the scope of the 
Provotorov and Bloch theories. 

4. Let us now test the hypothesis regarding the replace- 
ment of g(A) by the expression (3) in (1) and (2). The va- 
lidity of this hypothesis can be seen at once from Eqs. (33) 
and (34) and Eqs. (37) and (38), which are stationary solu- 
tions of Eqs. (1) and (2) with spin-lattice terms, in which 
W is replaced by W ,  . However, we utilize the principle of 
~ubordination,'~ i.e., we set d9@(t)ldt=O in Eqs. (25)- 
(27). Then, determining * ( S )  from (27), substituting the 
result into (30), and performing the inverse Laplace transfor- 
mation, we easily obtain 

which would be expected in view of (24). Thus, the subor- 
dination of the "secondary" quantities with respect to 
the primary quantities 3 F  and @ in the present case en- 
ables us only to take into account the slowness of = and 

&, to eliminate the trivial term from (26), and to thereby 
symmetrize this equation relative to (27), while the same 
principle makes it possible to obtain the Bloembergen- 
Purcell-Pound equation from the phenomenological Bloch 
equations.'' 

Now treating the off-diagonal operators as stationary op- 
erators, i.e., setting S=O in Eqs. (29)-(31) only for the off- 
diagonal operators, obtaining the expressions for the station- 
ary values of % (0) = %, from (29), and substituting the 
latter into (31) and the Laplace transform of Eq. (40), after 
some lengthy, but simple transformation we can obtain 

i.e., Eqs. (1) and (2), in which g(A) is represented by (3). 
Q.E.D. 

5. Thus, using the memory-function formalism, we have 
obtained equations describing the interrelated dynamics of 
the components of the total spin and the secular dipolar in- 
teractions, from which the Bloch equations with memory can 
easily be obtained, if the role of the secular dipolar interac- 
tions is not taken into account. It has been shown that the 
Provotorov equations, which are distinguished from the 
original equations (I) and (2) by the specific form of the 
absorption line shape (3), follow from the equations obtained 
when the subordination principle is employed. 

Stationary solutions, from which the stationary solutions 
of both the Bloch and Provotorov equations are obtained 
under appropriate assumptions, have been obtained. 

The results obtained can be detected when magnetic 
resonance is observed using a detection device with a decay 
time far shorter than T2. It is also noteworthy that, in prin- 
ciple, the equations for the spin degrees of freedom can be 
supplemented by Maxwell's equations, particularly by the 
equations for the field in the cavity.15 
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')we use the definition of  the entropy of a nonequilibrium state adopted in 
Refs. 7 and 9. 
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