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The magnetoresistance associated with electronic interference effects in antidot lattices with 
different periods is studied. The distribution of the areas S of the closed trajectories in an antidot 
lattice is calculated. Unlike "stadium" billiard systems, it exhibits a maximum at sld2- 1, 
where d is the lattice period. The interference of these trajectories makes it possible to describe the 
features of experimental plots of the magnetoresistance, including the nonmonotonic 
dependence of amplitude of the magnetoresistance oscillations on d. O 1996 American Institute 
of Physics. [S 1063-776 1 (96)02408-01 

1. INTRODUCTION 

Systems with ballistic electron transport have been ac- 
tively studied in recent years. Various types of electron bil- 
liards have been created on the basis of these systems. The 
distribution of the electron trajectories differs in billiards of 
different types. Chaotic stadium-shaped billiards are charac- 
terized by an exponential area distribution, while in circular 
billiards the areas of the closed trajectories are distributed 
according to a power law.' The interference of the electron 
trajectories makes it possible to experimentally determine 
features in the distribution of the trajectories according to 
area. Reproducible fluctuations of the conductance as a func- 
tion of the magnetic field have been discovered in samples 
with dimensions smaller than the phase coherence length 
L ,  (Ref. 2). The mean period and the correlation magnetic 
field PC of these oscillations are determined by the quantity 
Qo/S, where a o = h c l e  and S is the area of a characteristic 
trajectory. Thus, the distribution of areas of the trajectories 
can be extracted from the frequencies of the magnetoresis- 
tance  fluctuation^.^.^ The interference of trajectories running 
in the clockwise and counterclockwise directions leads to 
weak-localization effects, which cause a negative magnetore- 
sistance in macroscopic samples or magnetoresistance oscil- 
lations with period ao/2S in cylindrical samples and in two- 
dimensional networks of connected hexagonal loops.495 

One type of electron billiards is a lattice of antidots. 
Such a system can be obtained by etching holes (antidots) of 
submicron diameter in a GaAslAlGaAs heterostructure with 
a two-dimensional electron gas. The electrons move ballisti- 
cally in this antidot lattice. In a classically strong magnetic 
field, in which the cyclotron diameter of the electron is com- 
parable to the lattice period, regular electron orbits appear, 
and the transport of electrons in the lattice is altered signifi- 
cantly. This leads to the appearance of commensurate mag- 
netoresistance oscillations, which have been detected 
 experimental^^.^-^ However, transport in zero and weak 
magnetic fields has not been adequately studied. One of our 

previous papers9 describes the magnetoresistance features 
discovered in a sample containing 1 6  antidots, which were 
associated with interference of the trajectories with back- 
scattering (weak localization) and suppression of this inter- 
ference by a magnetic field (the Aharonov-Bohm effect). 
The present work is an experimental and theoretical investi- 
gation of the weak-localization effects in a two-dimensional 
electron gas with an antidot lattice, which is a variant of 
Sinai electron billiards. 

2. EXPERIMENTAL SAMPLES 

The experimental samples were Hall bridges fabricated 
on the basis of GaAsIAlGaAs heterostructures with a two- 
dimensional electron gas. The distance between the potential 
probes was 500 pm, and the bridge width was 200 pm. The 
electron density and mobility in the original heterostructures 
were equal to ns=4X 10" to 5X 10" and p = 2 X  lo5 to 
5 x 1 6  cm2/v  s, respectively. A square antidot lattice cre- 
ated by electron lithography and reactive plasma etching 
covered part of the sample between the potential contacts. 
Samples with lattice periods d=0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
and 1.3 p m  and geometric diameters of the antidots equal to 
0.1-0.15 p m  were studied. The effective antidot diameter 
a consists of the lithographic diameter and the thickness of 
the depletion region. In a previous study9 we estimated the 
effective diameter to be a = 0.3-0.35 pm using the approxi- 
mation that the mobility does not depend on the lattice pe- 
riod d. Several samples with identical periods, but different 
mobilities of the original two-dimensional gas were also pre- 
pared. After deposition of the antidot lattice, the electron 
mobilities in the samples became equal, even when the origi- 
nal mobilities differed by a factor of two. The magnetoresis- 
tance was measured by means of the four-point technique 
using an active ac bridge at 70-700 Hz in magnetic fields up 
to 8 T at 1.3-4.2 K. Commensurate oscillations, that give 
way to Shubnikov-de Haas oscillations at higher magnetic 
fields, were observed in all the samples. 
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FIG. 1. Magnetoconductance of a sample containing an antidot lattice with FIG. 2. Amplitude of the magnetoconductance minimum as a function of 
period d=0.6 pm. Dashed line - experimental curve at T =  1.7 K; solid line the lattice period. Circles - experimental values; squares - theoretical val- 
- curve calculated from Eq. (3) A = 0.75. ues. 

3. MAGNETORESISTANCE IN AN ANTIDOT LATTICE netoconductance can be associated only with the portion of 

Figure 1 shows how the magnetoconductance of a 
sample with period d=0.6 p m  depends on the magnetic 
field B .  The positive magnetoconductance (negative magne- 
toresistance) is marked by a minimum, whose position is 
given by the relation 

Similar minima were observed for the samples with 
d=0.5, 0.6, 0.7, 0.8, and 0.9 pm. Table I presents the posi- 
tions of the minima for all the periods and values of B ,  
calculated from Eq. (1). The experiment and the calculation 
are in good agreement. Figure 2 presents the dependence of 
the amplitude of the minimum on d after the monotonic 
component was subtracted. The oscillations observed can be 
associated with the Aharonov-Bohm effect, which appears 
in closed electron trajectories with back~ca t te r in~ .~ ,~  How- 
ever, our case is essentially different. The Aharonov-Bohm 
effect is usually considered for loops, where the electron 
trajectories can be divided into two groups: left-hand and 
right-hand trajectories. In a weak-localization process elec- 
trons moving in opposite directions interfere, and the period 
is determined by the relation B=@,, /~TR~,  where R is the 
mean radius of the loop. In our case, especially for d l a a  1, 
the electrons move chaotically, and the features of the mag- 

TABLE I. Positions of the magnetoconductance minima for samples with 
different periods. 

d ,  BCXP B,= Q0/2d2 
P"' mT mT 

0.5 8.4 8.24 
0.6 5.6 5.7 
0.7 3.9 4.2 
0.8 3.2 3.2 
0.9 2.2 2.5 

trajectories that embrace an area S-d2.  Since the trajecto- 
ries are distributed according to area in the general case, 
there is a nonzero probability of finding trajectories with any 
area. 

We assumed that the distribution of the trajectory areas 
in a billiard system with antidots is not described by the 
exponential law observed in the case of stadium billiards. To 
test this hypothesis, we performed a numerical calculation of 
the distribution of the trajectory areas. The ballistic motion 
of electrons in an infinite antidot lattice with random initial 
conditions was considered. The calculation was carried out 
for a zero magnetic field. We also assumed that the antidots 
have a circular shape and an infinite potential barrier, on 
which perfect scattering of the electrons occurs. This as- 
sumption was tested experimentally at higher magnetic 
fields, where commensurate oscillations are ob~erved.~ We 
computed the number of closed trajectories after ten colli- 
sions with antidots from the onset of motion. If a trajectory 
had the form of a closed loop with another smaller loop 
inside, we subtracted the area of the smaller loop, since the 
flux was reduced in that case." After performing this proce- 
dure, we took other initial conditions and performed the cal- 
culation again. The total number of closed trajectories was 
equal to lo5.  It is noteworthy that one of our previous 
investigations1' showed that the anomalous behavior of the 
mesoscopic conductance fluctuations in an antidot lattice 
with period d=0.5 p m  can be explained on the basis of the 
area distribution obtained. Figure 3 presents the distribution 
of the electron trajectories as a function of s l d 2 ,  where S is 
the area of the loop, for three different lattice periods. It is 
seen that for sld2<0.5 this distribution corresponds to the 
law 

with characteristic reciprocal area a,  which differs for dif- 
ferent trajectories due to the decrease in the area between 
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FIG. 3. Distribution of the areas of closed trajectories in lattices with dif- 
ferent periods d: a - 0.5; b - 0.7; c - 0.9 pm. 

antidots with decreasing d. At sld2=0.5 the distribution 
probability of the trajectories decreases, in contrast to the 
case of stadium billiards. This probability reaches a maxi- 
mum at s ld2= 1 and then decreases. At s ld2= 1.8 a second 
maximum appears for lattices with d = 0.7 and 0.9 pm. The 
probability for a closed trajectory with area s=d2  is one or 
two orders of magnitude higher than for a stadium billiard. 
We note that the capture of electrons with trajectory areas 
S-d2 by an antidot lattice can account for the observed 
decrease in mobility from the expected value. For example, 
in a simple model for the scattering of two-dimensional elec- 
trons on disks, the mean free path is 1=d2/a, which is ap- 
proximately three times greater than the measured value.9 
The dependence of the peak amplitude on d is nonmono- 
tonic: its value is approximately equal to for d = 0.5 
pm, then increases to 6 X  lop2 for d=0.7 pm, and finally 
decreases again for d= 0.9 pm. The magnetoconductance is 
specified by the Fourier transform of the distribution prob- 
ability of the traje~tories:'~,'~ 

FIG. 4. Magnetoconductance calculated from Eq. (3) for lattices with dif- 
ferent periods d: I - 0.5; 2 - 0.7; 3 - 0.9 pm. 

Figure 4 presents plots of the dependence of the magne- 
toconductance on B calculated from Eq. (3) for three differ- 
ent periods. It is seen that a minimum appears at 
B = Qo/2d2 superposed on the positive magnetoconductance. 
The amplitude of this minimum depends monotonically on 
the period: it increases up to d= 0.7 p m  and then decreases 
again. The additional minima observed for the lattice with 
d=0.7 p m  at B=1.2Qold2 and 3@0/d2,  as well as for the 
lattice with d= 0.9 p m  at B=2Qo Id2,  are determined by 
features in the area distribution shown in Fig. 3. It is difficult 
to discern these minima experimentally, because the contri- 
bution of the commensurate oscillations, which lead to the 
appearance of a positive magnetoconductance, begins to 
dominate in this range of magnetic fields. The commensurate 
oscillations also influence the resistance at weaker magnetic 
fields. However, in the samples with a short period these 
oscillations, which are associated with electron trajectories 
that run along rows of the lattice? are smeared because of 
the disappearance of the corresponding trajectories due to 
obscuring by the antidots in other rows. In this case, in weak 
magnetic fields (up to =20 mT for the samples investigated) 
we can compare the experimental plot of the weak- 
localization magnetoconductance with our calculations. Fig- 
ure 1 shows experimental and theoretical plots for the sample 
with d = 0.6 pm. We see good agreement between these two 
curves with the fitting parameter A =0.7. The first minimum 
on the experimental curve has a smaller amplitude and a 
more symmetric shape in comparison to the calculation. In 
stronger magnetic fields no minimum is observed on the ex- 
perimental plot of the magnetoconductance. The coherence 
length L ,  was assumed to be infinite in our calculations. The 
form of the magnetoconductance curve, excluding the 
Aharonov-Bohm minimum, is described by a Lorentzian de- 
pendence 
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e 1 
A u = A  - 

h 1 + ( B I ( Y G ~ ) ~ '  (4) 

which can be obtained by substituting the relation (2) for the 
area distribution in stadium into (3). Figure 2 
shows the amplitudes of the minima as a function of d ,  
which were obtained by subtracting the Lorentzian plots 
from curves 1 ,2 ,  and 3 (Fig. 4). We also see good agreement 
between theory and experiment for the antidot lattices with 
d <  0.7 p m  when A = 0.45. This parameter is smaller than 
the value obtained from fitting the complete magnetoconduc- 
tance curves in the theory and the experiment (Fig. 1). This 
means that the distinctive closed trajectories with area 
S= d2 are more sensitive to nonideal conditions than are the 
other chaotic paths. We did not calculate A, because such a 
calculation requires knowledge of the transmission probabil- 
ity in our system. (Such a problem has been solved only for 
a cavity with two 

The calculated amplitudes for lattices with d>0.7 p m  
decrease, but more slowly than do the experimentally ob- 
tained values. This can be explained by the following argu- 
ments. First, a finite coherence length must be introduced 
into the calculations, since we assumed that in our case con- 
tributions to the interference are made by trajectories with a 
length less than the ballistic phase coherence length UFT,, 
where u F  is the Fermi velocity. However, in Ref. 14 the 
phase coherence time r, was measured in stadium billiards 
in samples with the same mobility. Even if we postulate the 
dependence 7, T - ' ,  using the data in Ref. 14 we obtain 
L,= 5 - 10 pm %d at T =  1.7 K. Second, we neglected the 
finiteness of the elastic mean free path I .  In our case it is 
1= 5 pm, and the electrons in a lattice with d>0.8 p m  can 
undergo scattering by an impurity after 10-15 collisions 
with antidots, which can alter the area distribution. The dif- 
fuse nature of the scattering on the surface of an antidot must 
also be taken into account. Finally, A depends on the period, 
since the probability of transmission through the lattice var- 
ies. It is also shown in Fig. 4 that the slope of the magneto- 
conductance curve increases with the period and reaches 
saturation in weak magnetic fields. This means that the criti- 
cal magnetic field Bo= a G O ,  which is determined from the 
Lorentzian dependence of the magnetoconductance curve, 
decreases as the period increases. The value of the critical 
field Bo is determined by the characteristic area of a billiard. 
We note that to study the transition from a billiard system on 
antidots to the geometry of connected hexagonal loops, the 
period must be decreased further at the same antidot diam- 
eter. 

4. CONCLUSIONS 

Thus, it has been shown in this work that the distribution 
of the closed trajectories in a lattice of artificial scatterers 
depends on the shape of the scatterers and the ratio between 
their diameter and the lattice period. The negative magne- 
toresistance caused by weak-localization effects is described 
by a Lorentzian curve, in agreement with experiments on 
antidot lattices with small periods. As the period increases, a 
maximum appears on the area distribution at s1d2= 1. The 
probability of the appearance of a trajectory with such an 
area is one to two orders of magnitude greater than in the 
case of stadium billiards. The interference of these closed 
trajectories produces features of the electron transport that 
are in good agreement with our measurements of the nega- 
tive magnetoresistance in antidot lattices with different peri- 
ods. 
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