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Unlike previously used approximations, the model proposed in this paper takes into account the 
difference between the elastic components of the free energies for the solid and liquid 
phases around the melting point, as well as the so-called configurational energy of liquid, which 
is a measure of its disorder. Oscillations of atoms around their equilibrium positions in 
both solid and liquid phases are described in the Debye approximation. The general conditions of 
phase equilibrium are simplified using the smallness of the relative volume change and 
parameters of the triple point on the material phase diagram. If the solid phase volume is smaller 
than that of the liquid phase over the entire melting curve (normal melting), the Lindeman 
criterion derived by equating the derivatives of pressure with respect to volume at the the point 
where free energy isotherms intersect is valid. Probable causes of anomalous melting are 
discussed. Calculations are compared to experimental data on melting of sodium, cesium, and 
solidified noble gases. O 1996 American Institute of Physics. [S 1063-7761(96)02308-61 

1. INTRODUCTION 

It is well known that there is no detailed theory of melt- 
ing which is self-consistent and, moreover, there is no gen- 
erally accepted model adequately describing physical pro- 
cesses in melting even qualitatively.' In practice, 
independently derived empirical relations, such as Simon's 
relation for the melting curve and that derived from Linde- 
man's hypothesis, are widely used.'92 

For example, thermodynamic functions describing the 
melting process were derived from semiempirical expres- 
sions for the free energy containing thermal and elastic 
("cold") c ~ m ~ o n e n t s . ~ - ~  One way or another, this approach 
assumes that the free energies of solid and liquid phases have 
equal elastic components and very different thermal parts. 
This is the condition for the first-order phase transition be- 
tween the solid and liquid state of materials, i.e., melting. In 
both solid and liquid states, the thermal component is largely 
due to oscillations of atoms around their equilibrium posi- 
tions. Many years ago, however, ~ r e n k e l ~  noted that it would 
be incorrect to ascribe the entire change in the free energy in 
a crystal resulting from loss of long-range order and the tran- 
sition to the liquid state only to changes in frequencies of 
atomic oscillations around equilibrium positions. Some of 
the difference between the free energies of the phases is due 
to the so-called configurational component of the free en- 
ergy, and another part is controlled by the differences be- 
tween the elastic parameters of solids and liquids. The equa- 
tion of state for the liquid phase taking into account these 
effects was proposed in a previous publication.7 There the 
elastic oscillations of the atoms about their equilibrium po- 
sitions in both solid and liquid phases were described in 
terms of the Debye approximation modified so as to obtain 
the ideal-gas equation of state in the limit of high tempera- 
ture and low density.8 In contrast to the previously used 

the elastic component of the liquid free energy 
is not equal to that of the solid phase because the density and 
evaporation energy of the liquid phase extrapolated to zero 

temperature are slightly lower than those of the solid phase. 
In addition, the configurational entropy, which is a measure 
of its disorder, is introduced for the liquid phase. In this 
approach, the main contribution to the difference between 
the free energies of the solid and liquid phases around the 
melting point is due to the elastic components and configu- 
rational entropy. 

In this paper the model of solid and liquid states pro- 
posed in previous publications7*8 is used to describe melting. 
As in most other work concerning this topic, the smallness of 
the relative volume change is exploited to simplify the gen- 
eral conditions of phase equilibrium. Formally, this allows us 
to expand the thermodynamic functions of volume in the 
solid and liquid phases around the point at which the free 
energy isotherms cross. As is well known, in the case of 
normal melting, the solid phase volume is always smaller 
than that of the liquid phase, and this difference is nonzero 
even at very high temperatures.' This is possible if the nature 
of the free energy isotherms around the crossing point is the 
same along the entire melting curve. This paper demonstrates 
that this condition leads to conservation of a specific param- 
eter, namely the ratio of pressure derivatives at the crossing 
point, in the case of normal melting. Typically this ratio is 
slightly larger than unity. In anomalous melting, it is first 
larger than unity, then it may become smaller than unity. In 
the latter case the solid volume is larger than the liquid vol- 
ume. This allows us to specify for normal melting that the 
ratio of pressure derivatives at the isotherm crossing point be 
constant. This condition is equivalent to the Lindeman crite- 
rion, which naturally derives from the proposed model. 

Since the crossing point lies in the "nonphysical" re- 
gion, and the isotherms separating equilibrium volumes are 
purely interpolation lines, we have employed experimental 
parameters of the triple point. This has allowed us to elimi- 
nate the elastic components of the pressure, which are not 
easy to calculate, from the equations in both phases and to 
derive a relatively simple equation system for calculating 
pressure, temperature, and volume in both phases. It is re- 
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markable that the pressure as a function of temperature is 
controlled by the factor T(TIT,- l ) ,  where T and T, are the 
temperatures at the calculated and triple points, respectively. 
Given this function, one can understand the success of Si- 
mon's empirical formula, in which the pressure is propor- 
tional to TC, where c=  0.4-0.6. 

The paper reports on calculations for materials with nor- 
mal melting curves, such as solidified noble gases and so- 
dium, and compares them to experimental data. The agree- 
ment for pressure versus temperature is fairly good, but 
poorer for the phase volumes. Melting curves for cesium, 
which are anomalous,' are also discussed. The related prob- 
lems are considered. 

2. EQUATIONS OF STATE FOR SOLID AND LIQUID PHASES 

We express the free energy of the unit mass in the crys- 
talline state in the Debye approximation:2 

where D(OIT) is the Debye function, R is the universal gas 
constant, ,u is the molecular mass of the material, v is the 
specific volume, and O is the Debye temperature, which is 
described by the following function: 

O(v)=Oo exp(- l:oTd In v ) .  

where vo and O0 are the specific volume and Debye tem- 
perature at T=O, and T(v) is the Griineisen parameter. For 
most materials r is practically constant on the melting curve, 
so Eq. (2) can be simplified: 

O(v)= ~ o ( v o l v ) r .  (3) 

Here U ,(v) is the elastic component of the free energy sat- 
isfying the condition 

U,(vo)= -40, (4) 

where qo is the sublimation energy at T=O. 
The expressions for entropy and pressure derived from 

Eq. (1) have the forms 

where II '(v) = - dU ldv is the elastic component of pres- 
sure. Irrespective of its specific form, this should satisfy two 
general conditions. The first of these is 

n l (vo )=o .  (7) 

The second is the normalization condition in the form 

J;n,dv = qo.  (8) 

If v is close to vo, the derivative of the elastic pressure is 
related to the Debye temperature by the equation279 

After differentiating Eq. (9) with respect to v and taking into 
account Eq. (3), we obtain 

On the other hand, the Griineisen parameter is related to 
the parameters of the elastic component by the equation2 

The value m = O  corresponds to the Landau-Slater- 
Stanyukovich approximation,lO~l' in which the Poisson coef- 
ficient is assumed to be constant. The Dugdale-MacDonald 
model (m = 1 ) is obtained assuming that logarithmic deriva- 
tives of all force constants are equal,I2 and m = 2 corre- 
sponds to the free-volume theory of Vashchenko and 
zubarev,13 which suggests that atoms oscillate in a spheri- 
cally symmetrical field generated by their neighbors. Given 
Eq. (1 l), for v close to uo we can transform Eq. (10) to 

For m=O Eqs. (10) and (12) are identical, which justifies the 
Landau theory." 

In order to derive the equation of state for the liquid 
phase, we use the thermodynamic model of liquids devel- 
oped previously.7~8 According to this model, oscillations of 
atoms about their equilibrium positions are also described 
using the Debye approximation. The elastic components of 
the free energy and pressure for liquids are different from 
those for solids. In particular, the parameters vo and go in 
Eqs. (7) and (8) characterizing solids should be replaced with 
v; and q; typical of liquids. The latter parameters are 
slightly smaller than the former. They can be estimated, 
given the average number of atoms per vacancy in the solid 
(r) and liquid (r ' )  states: 

For noble gases, these parameters areI4 r = 6  and 
r r  =5.6. Furthermore, the liquid free energy contains the 
configurational component, which is a characteristic of dis- 
order and results in a nonzero entropy at zero temperature. 
As a result, the liquid free energy can be expressed as'' 

where s is the zero-temperature entropy of the liquid. The 
entropy and pressure are given by the equations 

where S1 is the Debye component of the entropy determined 
by Eq. ( 3 ,  and 
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3. CROSSING OF ISOTHERMAL CURVES. LINDEMAN'S 
MELTING CRITERION 

It is noteworthy that the isothermal curves of free energy 
versus specific volume for the solid and liquid phases de- 
scribed by Eqs. (1) and (14) in the melting region curve 
downward curvature and cross at some point. The position of 
the crossing point can be easily determined in terms of tem- 
perature as a function of specific volume by equating the 
solid and liquid free energies given by Eqs. (1) and (14): 

If two downward curving curves have a crossing point, 
they also have a common tangent with a negative slope pass- 
ing through the points at v l  and v 2 .  These points are de- 
scribed by the condition of phase equilibrium, 

where F and F2 are the free energies of the phases, v  and 
v 2  are their specific volumes, and p is the pressure at the 
phase-transition point. The pressures at the points v l  and 
v 2  satisfy 

The qualitative behavior of the isothermal curves is 
shown in Fig. 1. Note that the point v  is always between the 
points v  and v 2 .  In the melting region, the isothermal curves 
1 and 2 always curve downward, so 

Moreover, at the crossing point in Fig. l a  the following in- 
equalities hold: 

For some parameters of the elastic components in Eqs. (1) 
and (14), two crossing patterns different from that in Fig. l a  
are possible (Fig. lb,c). The pattern of Fig. l b  corresponds to 
the tangency of the isothermal curves, when the phase tran- 
sition is degenerate. In this case p  = p l ( v )  = p 2 ( v ) ,  and the 
specific volumes in both phases at the transition point are 
equal, u I = u2= v .  But unlike the critical point, the deriva- 
tives p' and p" are nonzero in this case. Figure lc shows 
behavior opposite to that in Fig. la. In this case 
p 2 ( v ) < p I ( v )  and the volume v 2  is smaller than v l .  In this 
model, the melting mode is considered   nor ma^"^ if the pat- 
tern of isothermal curves at the crossing point corresponds to 
Fig. l a  on the entire melting curve. The case when the cross- 
ing pattern changes from that of Fig. l a  through 
Fig. l b  to Fig. l c  is defined as "anomalous" melting,' i.e., 
the solid-phase volume is smaller than that of the liquid 
phase in some region of thermodynamic parameters, but 
larger in another region. Note that the crossing point corre- 
sponds to a thermodynamically nonequilibrium state and be- 
longs to the "nonphysical" region. Here the isothermal 
curves described by Eqs. (1) and (14) are mere interpolations 
of physical curves. Mathematically, however, they are 
smooth without any singularities. 

FIG. 1. Behavior of the free-energy isothermal curves for (1) solid and (2) 
liquid phases around the melting point versus volume there. v denotes the 
crossing point. The tangent determine the equilibrium pressure and phase 
volumes v , and v2. 

It is known from experimental data that the relative vol- 
ume change due to melting is small but nonzero even at very 
high temperatures.' Thus the following conditions are satis- 
fied: 

Therefore the functions F ( v  ,), F 2 ( v 2 ) ,  p  1 ( ~  I ) ,  and 
p2(u2)  can be represented as power series around the point 
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v .  By retaining only derivatives of pressure through first or- 
der and substituting the resulting expressions into Eqs. (18) 
and (19), we obtain 

After some transformations, we derive the following formu- 
las for the pressure and the volumes of the phases from Eqs. 
(23) and (24): 

where 

From Eqs. (26) and (27) we derive 

which should tend to a constant as T 4 w .  The pressures of 
the phases, p  and p2, and the derivative p  ; increase with the 
temperature. Assuming p  I # p 2  and eliminating the indeter- 
minacy on the right-hand side of Eq. (29), we obtain in the 
limit of high temperature 

Note that the dominant contributions to the first and 
higher-order derivatives of pressure are due to the elastic 
component of the free energy determined by the repulsion 
branch of the potential curve. If it is described by a power 
function, the parameter vp','lpi is constant. Then the func- 
tion in Eq. (30) tends to a constant if 

5 4  const, (3 1) 

where 5 is, according to Eq. (28), the ratio of the derivatives 
of phase pressures. Note that the condition for ( v 2  - v  l ) / v  to 
be small is that 5 should be close to unity. Hence the param- 
eter 5 may be slightly larger than unity on the initial part of 
the melting curve in the case of "normal" melting, and then 
it should drop and tend to a constant, but remain larger than 
unity. This means that the parameter 5 should vary little on 
the melting curve. 

The anomalous melting is quite a different case. Initially, 
the factor 5 should be higher than unity, then it should drop 
and tend to a constant smaller than unity. Concurrently the 
pattern of isothermal curves around the crossing point should 
sequentially change from that of Fig. l a  to Fig. lc. 

Let us differentiate Eqs. (6) and (16) with respect to v  
and substitute into Eq. (28), neglecting the zero-temperature 
entropy and the weak dependence of r and D on v  . Then the 
parameter 6 is determined by the equation 

It follows from Eq. (32) that 6 is constant if the parameters 

n;rnv2 n ; m v 2  
3 r D k T  

and - 
3TDkT 

are constant. After substituting II  from Eq. (9) and the simi- 
lar expression for I I ;  into Eq. (33), we obtain 

m(mv)21302 
3TDkT 

= const. 

On the melting curve the product TD depends weakly on v  
since the Griineisen parameter is constant and the function 
D is close to saturation. In this case Eq. (34) is fully identical 
to the Lindeman criterion. 

Note that since the elastic component of the pressure is a 
steep function of the volume, the parameters in Eq. (33) are 
much larger than unity, which implies a simple formula for 
5: 

For noble gases the average values are r-2.7 and 
5=1.18. We see that if the volumes or the numbers of va- 
cancies per atom in the solid and liquid phases are equal, the 
parameter 5 is constant on the melting curve, which corre- 
sponds to the case of normal melting. In contrast, if r 1  or r  
changes on the melting curve, the pattern of isothermal 
curves around the crossing point also changes, and the melt- 
ing is anomalous. The parameter r  may change in the solid 
or liquid phase as a result of a phase transition without a 
change in the material structure. In cesium, for example, a 
gradual phase transition is assumed to take place in the liquid 
state at a pressure of about lo4 atm.' It is ascribed to a 
transition of the valence electron from the s- to d-shell. 

stishov1 proved that, in systems whose potential energy 
is a homogeneous function of coordinates, the Lindeman re- 
lation is a direct consequence of the self-similar nature of the 
nonideal part of the partition function. In this case, it is 
equivalent to the condition that the ratio of potential to ther- 
mal energy on the melting curve should be constant. This 
assertion is also valid for the ratio of the derivatives of these 
energies. In our discussion, we have not exploited the as- 
sumption that the potential is described by a homogeneous 
function. One can see that Eq. (32) contains the ratio of the 
derivatives of potential and thermal components in pressure. 
On the melting curve, the derivative of the potential pressure 
component is largely determined by the repulsive branch of 
the potential (which cannot be said about the potential com- 
ponent proper that is determined by an accurate balance be- 
tween attractive and repulsive forces). In this context, the 
potential may be considered as a quasi-homogeneous func- 
tion, as concerns the derivatives of the potential pressure 
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component. Hence the ratio of the potential to thermal pres- 
sure component is not constant on the melting curve. The ( ,  l ) [ l +  attractive forces, however, are less significant for the deriva- 

P = P ' +  pv , (1+5)  T,- 
tives of the pressure components, and the results obtained for 

(37) 

systems with a uniform potential can be applied to approxi- v l = ~ - ( v ~ - v l , ) + ( 5 -  l ) ( ~ t - ~ ) ,  (38) 
mately describe our system. In this sense, our results are 
consistent with the conclusions reached by ~tishov.' 5-  1 

~ ~ = v + ( v ~ ~ - v , ) -  - ( u , - u ) ,  5 (39) 

v t =  
vlt+v2tS 

4. THERMODYNAMIC FUNCTIONS ON THE MELTING CURVE 1 + 5  ' 

The approximate system of equations (17), (25)-(27) de- 
scribes the parameters T, p ,  v ', and v 2  on the melting curve 
as functions of the parameter v ,  which is defined as the po- 
sition where the isothermal curves intersect and, generally 
speaking, belongs to the "nonphysical" region of param- 
eters. Besides, a calculation using these equations demands 
information about the elastic components of the energy and 
pressure in the liquid and solid phases, and the parameters 
v ;  and qL of the liquid phase, which cannot be easily calcu- 
lated. All these difficulties, as well as doubts about whether 
the thermodynamic functions can be expanded in powers 
around the point v ,  can be largely eliminated if one exploits 
experimental data on the thermodynamic functions at the 
triple point. For most materials, the pressure p , ,  temperature 
T , ,  specific volumes of the phases v l ,  and v 2 , ,  and the 
entropy jump AS, at the triple point are available. Let us take 
advantage of the fact that the volumes v l  and v2 on the 
melting curve are quite close to v , ,  and v 2 , .  Assuming 
[=const, we expand the elastic components of energy and 
pressure around the point v = v ,  , where we have p = p ,  and 
T = T,  , in powers of small parameters v I - u and v 2 - v Z, 
and retain the terms with derivatives of pressure up to the 
first order. After this procedure and simple algebra, we ob- 
tain the following equations valid in the case of normal melt- 
ing: 

The factor L, in Eq. (36) is, in fact, the Lindeman parameter 
derived from the Debye temperature and volume at the triple 
point. It is defined as 

All the thermodynamic functions in Eqs. (36)-(41) are func- 
tions of v .  At v = v ,  they equal their values at the triple point. 
The pressure varies slowly with v (via the factor C), and its 
dependence on the temperature is determined by the product 
T(TIT,- I ) ,  so for T a T ,  it satisfies p cc T .  In the high- 
temperature limit we have p cc T ~ .  At intermediate tempera- 
tures it behaves as p = TC, where 1 < c< 2 .  The latter condi- 
tion is consistent with Simon's empirical law, according to 
which the parameter c of some materials ranges between 0.4 
and 0 . 6 . ~ ~ ~  

One can see that Eqs. (38) and (39) for the volumes of 
phases contain only terms linear in the volume deviation 
u - v ,  with the proportionality factor 5 -  1. From Eqs. (38) 
and (39), we derive 

I + L , ( v , - v ) ( v 2 , - v l , ) -  (36) Formally, the difference v 2 -  v may drop to zero as v 
decreases, which would contradict the initial assumption. 

FIG. 2. Reduced (a) pressure and (b) 
volumes of  solid ( v ,  Iv, ,  upper 
curve) and liquid ( v , / u , ,  lower 
curves) phases versus reduced tem- 
perature TIT, for noble gases on the 
melting curve. The symbols corre- 
spond to the following materials: 1 )  
Ne; 2) Ar; 3) Kr; 4) Xe. Solid curves 
show calculations of this work. 
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TABLE I. 

PI. TI 9 V I I .  V21. v 0 v;, 00, 

atm K cm31g cm3/g cm3/g cm31g s K l- 5 L, 5' L : 

This determines the application domain of the expansions in 
Eqs. (39) and (40). These equations are valid until the fol- 
lowing condition is satisfied: 

For argon at 5= 1.18, the right-hand side of Eq. (44) equals 
0.43 cm3tg. 

In addition to the thermodynamic functions at the triple 
point, the calculation according to Eqs. (36)-(39) requires 
the parameters e O ,  vo, and r of the solid phase at zero 
temperature (these data are available for most materials), and 
the parameters uh and s of the liquid phase. By equating the 
difference between the entropies in the liquid [Eq. (15)] and 
solid [Eq. (5)] phases at the triple point to the entropy jump 
AS, , we obtain 

The parameter s follows from this equation. 
The parameters 8 and L, can be calculated using Eqs. 

(35) and (42). These equations, however, have been derived 
with some assumptions and simplifications. Given sufficient 
experimental data, one can select the parameters 5' and L' to 
obtain the best fit of the calculations using Eqs. (36)-(39) to 
measurements. In the next section both these methods will be 
used to determine 5 and L,. 

5. COMPARISON TO EXPERIMENTAL DATA 

We take solidified noble gases, whose melting mode is 
normal and measurements of melting parameters are abun- 

p, ~d atm 

dant, as the first object for verifying our model. In addition, 
the law of corresponding states is valid in these materials. 
All the thermodynamic functions can be expressed in terms 
of three parameters,15 namely, the potential well depth De, 
the equilibrium separation Re between nuclei, and the atomic 
mass m. In particular,16 the Debye frequency is 

where C is a constant. It is calculated in Ref. 16. The average 
value for noble gases is C-25.7. The triple-point tempera- 
ture is TI= 0.58De, the specific volume is uo= R:/&. For 
noble gases we have uo /ut=0.85,F- 2.73, and s = 0.7. Sub- 
stituting these values into Eq. (42) we calculate Lr=27.3. 
Table 1 lists triple-point parameters for argon, sodium, and 
cesium. 

Note that for noble gases the Debye function at the triple 
point is considerably smaller than unity. For neon we have 
T,=24.55 K and @,=0.75 K, so D(OolT,)--0.42. 

Figure 2 shows  measurement^'^ of the reduced pressure 
plp, and reduced phase volumes v, Iv, and v2/u, as func- 
tions of the reduced temperature TIT,, where the index c 
denotes the critical point. In these variables, the points cor- 
responding to different elements fall on the same curves. The 
best fit to experimental data is achieved at 5' = 1.18, which 
conforms to the calculations, whereas the parameter L,! = 19 

? atm + 

FIG. 3. Melting curves of (a) sodium 
and (b) cesium. Experimental data 
are taken from Ref. 1 ,  solid lines are 
calculations of this work. 
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is considerably smaller than the calculated value of 27.3. The 
calculations these parameters are shown by solid curves. The 
parameters of noble gases at the triple point were also taken 
from Ref. 15. One can see that the calculated pressure coin- 
cides with experimental data. The calculated phase volumes 
differ from measurements much more, especially at high 
temperatures. This may be caused by the insufficient accu- 
racy of power expansions used in calculations of these pa- 
rameters. It seems, in particular, that the calculation of v l  
and v 2  [Eqs. (38) and (39)] taking into account only the 
terms linear in v - v, is inaccurate. The deviation of the cal- 
culations from the measurements may also be ascribed to the 
approximate nature of the theory. 

The theory was also tested on the alkali metals Na and 
Cs. Kozhevnikov et al.17 determined the specific volume of 
the cesium liquid phase by formally extrapolating it to zero 
temperature. Their result was vh=0.5 cm31g. The specific 
volume of solid Cs at T =  0 was v o =  0.451 cm31g. The Griin- 
eisen parameter for alkali metals is T= 1 . I8  Given these data, 
Eq. (36) yields ,$= 1.05. Other parameters of Na and Cs used 
in the calculation are given in Table I. 

Figures 3 and 4 show the pressure and specific volumes 
of the phases for Na and Cs. Experimental measurements 
were taken from Ref. 1. One can see that the agreement 
between measurements and calculations of pressure and vol- 
ume for sodium is quite satisfactory. 

As is well known, cesium is classified as a material with 
an anomalous melting mode.' The experimental data shown 
in Fig. 3b indicate that at lower pressures the melting tem- 
perature of cesium increases with the pressure, achieves a 
maximum, and then drops. At temperatures higher than 470 
K the phase volumes drop abruptly, and the liquid-phase 
volume becomes smaller than that of the solid phase (Fig. 
4b). ~tishov' suggested that such a behavior may be due to a 
restructuring of the liquid phase, which is a gradual process 
taking place under a pressure of about lo4 atm. Consistently 
with the concept underlying the present work, the factor ,$ in 
this case should be smaller then unity, whereas on the low- 
pressure section of the melting curve the melting proceeds in 
the normal mode, so this section of the experimental curve 
can be compared with the calculation based on the proposed 
model. For Cs the limiting value of v calculated by Eq. (45), 

HG. 4. Volumes of solid (v,) and 
liquid (v2) phases versus tempera- 
ture for (a) sodium and (b) cesium. 
Experimental data are taken from 
Ref. 1; I )  solid phase; 2 )  liquid 
phase. Solid lines show calculations 
of this work. The dashed line defines 
the application domain of the model. 

which determines the applicability of Eqs. (39) and (40), is 
0.43 cm31g. The calculations are shown in Figs. 3b and 4b by 
solid lines. As expected, the low-pressure section of the 
melting curve is in good agreement with the experimental 
data, and at higher pressures the calculations deviate from 
the measurements. The low-pressure sections of the phase 
volume curves are also in satisfactory agreement with experi- 
mental data. 
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