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The behavior of electrons in quasi-one-dimensional curvilinear microstructures in a magnetic 
field is investigated. It is shown in the case of an elliptical ring that a variable curvature 
makes the energy spectrum fundamentally different from the cases of a linear quantum wire and 
a circular ring. Gaps appear in the magnetic-field dependence of the energy terms. When 
the Fermi level passes through the gap regions, the dependence of the magnetization of the system 
on the magnetic flux changes significantly. O 1996 American Institute of Physics. 
[S 1063-7761(96)02208-11 

1. INTRODUCTION 

The persistent current in quantum rings has attracted the 
attention of investigators for more than 10 years (see Refs. 1 
and 2). The phenomenon has several general features. For 
example, under certain conditions the expression for the per- 
sistent current does not depend on the electron-electron 
intera~tion.~'~ Furthermore, if the ring is assumed to be an 
ideal circle (the one-dimensional limit), the results of the 
following two versions of the problem coincide: 1) a point 
solenoid that carries a magnetic flux and passes within a 
ring perpendicularly to its plane (the Aharonov-Bohm geom- 
etry) and 2) a uniform magnetic field that provides the same 
flux through a ring. In both cases the persistent current is 
described by the same function of the flux (the spin effects 
are not taken into account), which oscillates with a period 
@o=2.rrficllel. 

The extent of this universality is an interesting question. 
In the present work we investigate the influence of the geo- 
metric shape, specifically, the ellipticity of the ring on the 
persistent current. It is shown that the a, periodicity of the 
current J as a function of the magnetic flux is maintained, 
but its magnitude and the form of the function J(@) differ 
from those in the case of a circular ring. We note in this 
connection that the model often used in the literature of a 
discrete series of sites with periodic boundary conditions 
clearly ignores the geometric shape of the ring, which, as we 
shall show, is significant. 

2. EFFECTIVE HAMILTONIAN OF A ONE-DIMENSIONAL 
RING 

We note first of all that if the shape of the ring differs 
from a circle, the transition to an effective one-dimensional 
Hamiltonian becomes nontrivial. 

Let us consider an electron moving in a narrow channel 
of elliptical shape. The uniform magnetic field is perpendicu- 
lar to the plane of the ring and is assigned by the vector 
potential 

A(r) = )[HX (1) 

The Schrodinger equation has the standard form 

where V(p) is the potential restricting electron motion and 
p is the two-dimensional radius vector of a point. In accord 
with our goal of going from (2) to a quasi-one-dimensional 
equation, we assume that V(p) ensures a significantly greater 
frequency for motion across the ellipse than along it. 

In the elliptical coordinates u and v (Ref. 5) 

x = h  C O S ~ U  cosv,  y=h  sinhu sinv 

(h is half of the distance between the foci of the ellipse) the 
vector potential (1) has the form 

Hh sin v cos v Hh sinh u cosh u 
A,= r A"= 

2 f i  2 G  ' 

where 

g(u,v) = sinh2u + sin2v. 

Now Eq. (2) becomes 

Here 

l e l ~ h ~  
ff= -='(q2, fit 2 lH 

where l H  is the magnetic length. 
Since the frequencies of the motion along the coordi- 

nates u and v differ markedly, we utilize the adiabatic ap- 
proximation. Now we must average Eq. (4) with respect to 
the ground-state wave function for transverse motion. We 
first consider the case of a rectangular well with infinitely 
high walls, i.e., we assume that V(u,v) goes to infinity on 
two contours, viz., u ,(v) and u2(v), which bound the.region 
of electron motion. Although in the limit u2 - u = 6+0 this 
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region shrinks to the ellipse u = uo (u, < uo< u2), the form 
of the resultant one-dimensional Hamiltonian is highly de- 
pendent on the way in which the limit is reached. For ex- 
ample, the results for the cases in which these contours are 
confocal ellipses and in which the region between them has 
the form of an elliptical ring of constant width (Figs. l a  and 
b) are different. 

We represent the wave function in Eq. (4) in the form 

where ~ ( u ,  v) corresponds to the "rapid" transverse motion 
and satisfies the equation 

in which v is regarded as a parameter and X(v) is the adia- 
batic value of the transverse energy at a given value of v. 

In the case of confocal ellipses (Fig. la) the potential in 
Eq. (6) has the form 

so that for the ground state of the transverse motion we ob- 
tain 

=exp[-ia(u-uo)sin vcos v] - sin -(up-u) , X [  ] 
here and in the following we use the abbreviated notation 

In the case of a ring of constant thickness (Fig. lb) the 
potential in Eq. (6) is explicitly dependent on the slow coor- 
dinate v, since the edges of the ring in (7) are no longer 
specified by a constant value of u, but are given by functions 
of v, whose form is found in the following manner. Let yl 
and 7 2  be the distances from points of the ellipse U =  u0 
measured along normals to it from outside and from inside. 
Assuming that y l  and y2 are small, we can identify these 
distances with the elements ds l  and ds2 of the length of the 

FIG. 1. Two types of elliptical rings: 
a-boundaries of the annular region in the fonn 
of confocal ellipses; &a ring of constant 
width. 

arc of the hyperbola v=const normal to the ellipse at the 
same point. Since the quantity g(u,v) introduced by Eq. (3) 
defines the diagonal components of a metric tensor, we eas- 
ily obtain y,,,= h J m d u  Hence we at once have 

Thus, we should substitute u2 = u2(v) from (10) into the ex- 
pression for the wave function (8) and replace the constant 
S in (8) by the function 

where y= y l  + y2 is the total width of the ring. 
Now, to obtain a one-dimensional equation for ~ ( v ) ,  we 

substitute the wave function $(u,v) in the form (5) into (4), 
multiply both sides of the equation by v*(u,v), and inte- 
grate over u. After some relatively simple transformations, in 
the case of a ring formed from confocal ellipses we obtain 

1 d2x i a  
-- ax 2mh2 

go(v) 27- goo sinh (2uo) - +X(V)X= -EX, 
dv h 

(12) 

and in the case of a ring of constant width we have 

1 d2x i a  
-- ax 

go(u> 27 - goo sinh (2u0) - +:(v)x 
au 

where X is defined by (8) with gfrom (1 1). 
The magnetic field is eliminated from Eqs. (12) and (13) 

by the gauge transformation 

~ ( v )  =r(v)exp(-iav sinh uo cosh uo). 

In addition, after the limiting transition to a one-dimensional 
elliptical ring, we can employ the standard properties of an 
ellipse, viz., the eccentricity E and the length of the major 
semiaxis a: 
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1 
&=- 

h 
a= -. 

cosh uo ' E 

Now, according to (9), for go we obtain 

Thus, the one-dimensional equation for y(v) takes on a 
compact form: 

a) for the case of confocal ellipses 

b) for a ring of constant width 

where the dimensionless energy A is defined as 

Now the significant difference between the two ways of 
going over to a one-dimensional elliptical ring is clearly vis- 
ible. Both equations [(14) and (15)] contain the infinite (in 
the limit) constants m2/ a2 and m2a21 y2 corresponding to the 
energies of the zero-point transverse-motion oscillations. 
However, in the case of a ring of constant width [Eq. (15)] 
this constant is calculated from the total energy. Conse- 
quently, the frequencies of electron motion along the ellipse 
are finite. In the case of confocal ellipses [Eq. (14)] these 
frequencies tend to infinity as S-+0, and a reasonable lirnit- 
ing transition to a one-dimensional ring is impossible. This is 
attributed to purely geometric factors: in the limit 8 4 0 ,  the 
electron is confined to the "pockets" near the regions of 
smallest curvature (see Fig. la), i.e., the motion along the 
coordinate v is also localized, the dimensions of this region 
of localization tending to zero together with S. 

We also note the nontrivial character of the limiting tran- 
sition in the case of a ring of constant width. The resultant 
effective potential in (15) depends on the ratio y l  1 yz, i.e., on 
the way in which the limit is reached (to be specific, we shall 
henceforth assume that y, = y2 = y12). 

The results obtained above are not specified by the de- 
tails of the rectangular-well potential. Bounding the one- 
dimensional motion along the ellipse using the parabolic- 
trough potential 

when Cl(v) = Clo= const, we obtain the following equation 
in the adiabatic limit for the gauge-transformed wave func- 
tion of longitudinal motion: 

This equation is similar in its physical meaning to (14), i.e., 
it also corresponds to confinement of the longitudinal elec- 
tron motion to the points of smallest curvature of the ellipse 
following the limiting transition Q,-+m. Similarity to the 
case of a rectangular trough of constant width will clearly be 
achieved when we choose a function n ( v )  such that the 
energy is independent of the transverse-motion levels on v 
i.e., when 

This choice leads to an equation similar to (14): 

To conclude this section, we mention more ways to ob- 
tain an elliptical ring, which is apparently highly conducive 
to experimental implementation. Let there initially be a cir- 
cular ring on the xy plane in the form of a rectangular trough 
between concentric circles of radii R, and R2. We now con- 
sider a uniaxial deformation of the plane (x '  = x ,  y  ' = a y ,  
a s 1. AS a result of this transformation, the circles R, and 
R2 become ellipses that have the same eccentricity 
E = d m ,  but are not confocal. Performing the procedure 
of the adiabatic approximation in this case (R2 - R I 4 R I) ,  
we obtain the following equation for the longitudinal wave 
function in the elliptical coordinate system associated with 
the inner contour: 

Equation (17) resembles Eq. (14) for the case of confocal 
ellipses in the sense that the frequencies of longitudinal mo- 
tion tend to infinity as the width of the ring decreases. One 
significant difference from (14), however, is that now the 
electron is trapped in the region of greatest curvature of the 
ellipse. 

Summarizing the content of this section, we can make 
the following statements. When we go from a circular ring to 
an elliptical ring, there are two factors that modulate electron 
motion along the ring: the variations of the width and curva- 
ture of the latter. When the elliptical ring is assigned in dif- 
ferent ways, these factors combine differently and can lead to 
qualitatively different types of electron motion along the 
ring. 

3. ELECTRON ENERGY SPECTRUM: GENERAL 
PROPERTIES 

As we know, the magnetic-field dependence of the per- 
sistent current is determined by the dependence of the energy 
levels of the orbiting motion of the electrons in the ring on 
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the magnetic field. In this context we shall ascertain which 
features of the energy spectrum vary significantly when we 
pass from a circular to an elliptical ring. Our analysis is 
limited to the situation in which the librational character of 
the electron motion is maintained in the elliptical ring and 
there is no longitudinal confinement. Therefore, we must 
consider the case of a ring of constant width [Eq. (15)]. 
When the results are extended to the case of confocal ellipses 
[Eq. (14)], we shall have to require that the ratio &IS be finite 
(and sufficiently small). 

Formally, Eq. (15) is the Hill equation,6 and it can be 
written in the standard form 

where in our case 

Here the cf, are binomial coefficients, and the following ab- 
breviated notation is used: 

According to the general theory of the Hill equation: its 
solution has the form 

where p(v) is a periodic function with period T, and the 
characteristic exponent p is specified in terms of the coeffi- 
cients Oi by the equation 

where M is an infinite matrix with the elements 

In our case the requirement of uniqueness imposed on the 
elliptical contour of the wave function ~ ( u )  leads to the 
following condition for f (u ) :  

i ( v  +27r) = exp(27ria sinh uo cosh uo)f(v), 

which, together with (19), specifies ,u in the form 

h 
27rp= 27ra sinh uo cosh uo+ 2 m  = 7r-r sinh uo cosh uo 

1, 

FIG. 2. Qualitative form of the dependence of the librational energy t e n s  
on the magnetic flux through the ring in the reduced-zone scheme. 

where S, is the area of the ellipse, 5 is the magnetic flux 
through this area measured in units of the magnetic flux 
quantum Qo= 27rhcllel, and n is an integer. 

Thus, Eq. (20) defines the dependence of the energy of 
the quantized levels of longitudinal electron motion in an 
elliptical ring (this energy ;I: appears in the coefficients Bo 
and 81) on the magnetic flux through the ring. Since the flux 
appears in (20) only in the form 

COS(T,U) = C O S [ ~ ( ~ +  n)], (21) 

it can be asserted at once that the desired terms are even 
periodic functions of 5 with a period equal to 2. In addition, 
according to (21), the terms can be classified according to 
whether n in this equation is even or odd. However, since the 
shift &A&+ 1 is equivalent to the replacement n ~n + 1, 
the energy of an "even" term for a given 6 is equal to the 
energy of the "odd" term for $2 1, and the even and odd 
terms cross at the points 5 = k +  112 (where k is an integer). 

As a result, we can expect a qualitative picture of a 
spectrum that is reduced to the "Brillouin zone" & 
E (- 112,112) depicted in Fig. 2 with energy gaps in the 
center of the zone and "conical" points on its edges. 

4. ENERGY GAP 

Since the presence of energy gaps is the main special 
feature distinguishing the spectrum of an elliptical ring from 
the spectrum of a circular ring, let us consider the nature of 
these gaps in greater detail. We restrict ourselves here to 
small values of E ,  in which each gap is still fairly narrow and 
can be investigated analytically in an approximation. 
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The existing methods for an approximate solution of Eq. 
(20)~ do not have any special advantages over ordinary per- 
turbation theory, which can be applied directly to Eq. (15). 
Therefore, we shall focus on the latter, more graphic method. 
To construct the correct perturbative scheme based on the 
smallness of E' in (15), we should transform this equation 
somewhat. First of all, we rewrite it using the notation (18) 
in the form 

We note that the one-dimensional Hamiltonian (22) [like the 
original equation (15)] is formally non-Hermitian and calls 
for the use of the weight function 1 - /3 cos(2v), which itself 
depends on the perturbation parameter, to calculate the ma- 
trix elements. To circumvent this problem, in (22) we seek 
the wave function F(v) in the form 

Here the function gc(u) is defined by the equation 

which already enables us to treat the P-containing terms 
within ordinary perturbation theory. 

In the zeroth approximation 

The matrix elements (6H),tn of the perturbation operator 
between the states (24) are calculated in the Appendix. These 
matrix elements are nonzero only if n - n ' = 2m is an even 
number. Their order of magnitude is specified in the princi- 
pal approximation as pm. Restricting ourselves to an accu- 
racy -p ,  we obtain the basic matrix elements in the form 

In the reduced-zone scheme used in the preceding sec- 
tion the matrix elements (25) correspond to removal of the 
degeneracy between - the terms Li0)(&) and A!!),(&) at their 
crossing point for @=0, i.e., the lowest of the gaps in Fig. 2. 
The behavior of the terms near this gap is determined in the 
standard manner8 and is expressed by the equation 

Within the approximation used, precisely the same result 
is observed for the case of a parabolic trough (16). For the 
cases of rings of variable width [(14) and (17)] the form of 
(26) is maintained with the following changes within the 

proviso regarding the smallness of E made at the beginning 
of Sec. 3. In the case of confocal ellipses (14), instead of (18) 
we should set 

and multiply the second term under the radical sign in (26) 
by 1 + .rr2/ 8'. In the case of uniaxial compression of the ring 

and the same term is multiplied by 
1 - 4.rr2Rf(1 + E ~ / ~ ) / ( R ; - R ; ) ~ .  In both cases the added 
terms will naturally be dominant. For the higher gaps the 
second term under the radical sign in the equations like (26) 
is a significantly different function of the number of the gap 
in different variants. 

- We note that at sufficiently large values of the energy 
(A 2 1 /P) the perturbative scheme in (23) becomes inappli- 
cable even for small P. However, we are then in the region 
where the quasiclassical approximation is valid, and we can 
say, in analogy to Ref. 9, that the width of the gaps lying in 
this distant energy range is exponentially small: in the limit 
p< 1 it is of order exp[-(1//3)($/2)], and for P- 1 it is of 
order exp(- &2). 

5. MAGNETIC-FIELD DEPENDENCE OF THE PERSISTENT 
CURRENT 

In this section we study how the persistent current de- 
pendence on the magnetic flux 0 for an elliptical ring. The 
persistent current J (@)  is a thermodynamic characteristic, 
and knowledge of only the energy spectrum of the system is 
needed to calculate it. In the case of noninteracting electrons, 
J(@) is given by the following expression: 

where f(E) is a Fermi distribution function. 
In Ref. 10 the persistent current in a circular ring with an 

impurity was expressed in terms of the transmission coeffi- 
cient T(E) of the corresponding scattering problem at an 
energy equal to the Fermi energy. Our situation differs from 
Ref. 10 in that the coefficient in front of the term with the 
kinetic energy in the wave equation depends on the position, 
or, stated differently, the mass of the particle depends on the 
position. This raises the question of correctly determining the 
transmission (and reflection) coefficient for this case. This 
can be accomplished fairly simply in the quasiclassical ap- 
proximation or by perturbation theory, within which Eq. (26) 
is applicable. However, the calculation of T(E) itself is not a 
bit easier than finding the corrections A, to the spectrum, 
which determine the persistent current. In addition, the deri- 
vation of the equations in Ref. 10 made extensive use of an 
expansion in 1/L (L is the perimeter of the ring), i.e., one 
more small parameter is required in perturbation theory. The 
calculation method used in the present work is based only on 
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the smallness of the eccentricity of the ellipse. Of course, for 
E - 1 both approaches require the use of numerical methods. 

We restrict ourselves to consideration of the situation in 
which the chemical potential of the electronic system is de- 
termined by external conditions (extrapolation of the results 
to the case of a fixed number of electrons in the ring is fairly 
obvious). It was shown in Sec. 3 that in the expressions for 
the energy spectrum the shift @-+a + Qo is equivalent to 
the replacement n-+ n + 1. Since the current is determined by 
the sum over all the quantum states n ,  it can be concluded at 
once that J ( @ )  is a periodic function of @ with period ao. 
The oddness of the current follows immediately from the 
evenness of the spectrum with respect to a. Thus, ellipticity 
does not alter the period of the function J ( @ ) :  just as in a 
circular ring, it is equal to the flux quantum. At the same 
time, the electron energy spectrum in an elliptical ring near 
the gaps differs significantly from the spectrum in a circular 
ring. Therefore, considerable changes can be expected in the 
dependence of the persistent current on @ when the chemical 
potential is in a gap region. 

We performed some numerical calculations of plots of 
J ( @ )  for the case of an elliptical ring of constant width with 
neglect of the scattering and at a temperature equal to zero. 
The energy spectrum given by Eq. (26) was used in the cal- 
culations. Figure 3 shows the variation of the plots of J ( 8 )  
when the Fermi level EF passes through the lowest gap (the 
middle of this gap corresponds to a value of the dimension- 
less energy equal to unity). The curves were obtained for 
an eccentricity E = 112, the gap width being equal to 118. 

When the Fermi level ,u ( , u = ~ , 2 r n a ~ / f i ~ )  is suffi- 
ciently far from the lower and upper edges of the gap, the 
plots of J ( @ )  have a saw-tooth shape and do not differ from 
those for the case of a circular ring. However, when p is in 
a gap region, the situation changes radically (Figs. 3a, b, and 
c): smoothing of the "teeth" occurs at the sites of the dis- 
continuities, and when ,u is within a gap, the current passes 
through zero at @ = 0 ,  and the slope changes sign, i-e., the 
sign of the magnetic susceptibility changes, near cD = 0 .  In 
other words, all other conditions being equal (i.e., at the 
same values of ,u and cD) a circular ring can be diamagnetic, 
and an elliptical ring can be paramagnetic (see Fig. 3b). 
Physically, this is attributed to the fact that for specified val- 
ues of ,u and @ (and at zero temperature) the number of 
particles depends on the eccentricity of the ring. 

The picture obtained of smooth teeth on the plots of 
J ( @ )  outwardly resembles the variation of the persistent cur- 
rent in a circular ring as a result of the effects of randomly 
arranged impurities and/or a finite temperature. We note, 
however, a qualitative difference in our situation. In an ideal 
elliptical ring the gaps in the spectrum and, accordingly, the 
smoothed teeth are observed only at the center of the Bril- 
louin zone. This is due to the invariance of the effective 
potential under the transformation v -t v + T. Since this po- 
tential is determined purely geometrically, the gap width can 
be controlled and varied by external forces (for example, 
uniaxial compression, see Sec. 1). In an elliptical ring with 
impurities these gaps can differ from the impurity gaps, 
which also appear along the zone edges. Thus, an experimen- 
tal investigation of the persistent current in nonideal ellipti- 

cal rings can provide additional information on the character 
of the action of the impurity potential. 

FIG. 3. Persistent current in an elliptical ring of constant width as a function 
of the magnetic flux for various positions of the Fermi level 
( ~ , = e h / 2 ~ m a ~ ) .  The dotted lines correspond to the situation of a circular 
ring ( E = O ) .  

366 JETP 83 (2), August 1996 Magarill et a/. 366 



6. CONCLUSIONS 

In the present work we have considered the quantum- 
mechanical properties of quasi-one-dimensional curvilinear 
electronic systems. From the standpoint of pure mathematics 
a curve does not have an internal geometry, and in this sense 
any curved line is equivalent to a straight line. However, it is 
physically clear that we are dealing with narrow waveguides 
in the ultraquantum limit: the ground state for transverse 
motion. In this case only a circle is equivalent to a straight 
line, since its curvature is constant. The variable curvature of 
an ellipse (and, obviously, any other curve) leads to a Schrii- 
dinger equation with variable coefficients, which describes 
the motion of a particle with a mass that depends on the 
coordinates in a certain potential. Of course, this causes sig- 
nificant changes in the energy spectrum and, consequently, 
in the magnetic-field dependence of the persistent current 
(for the case of closed curves). The periodicity (with period 
cPo)  of the persistent current as a function of the magnetic 
flux through the contour, however, remains universal. Only 
in the quasiclassical limit Xe<L (where the electron wave- 
length is much smaller than the distance over which the ra- 
dius of curvature varies significantly) does the influence of 
the variable curvature vanish, and under quantization condi- 
tions it is simply necessary to replace 2 .rra ( a  is the radius of 
the circle) by the length of the contour. The error committed 
here is equivalent to the neglect of superbarrier reflection in 
quasiclassical scattering, i.e., in the case of smooth curves it 
corresponds to ignoring the exponentially narrow gaps in the 
energy spectrum. If there are singularities on the contour, the 
effects not taken into account by the quasiclassical approxi- 
mation are small as a certain power of he l L .  

This work was carried out with joint support from the 
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19-058a) as well as the "Physics of Solid-State Nanostruc- 
tures' ' State Program. 

APPENDIX A: 

We find the matrix elements of the perturbation operator 

between the wave functions (24). We note, first of all, that 
for any two functions X ,  ( v )  and x 2 ( u )  

Therefore, the deired matrix element is written in the form 

After integration by parts and some other relatively simple 
transformations, it can be reduced to the form 

This expression is nonzero, only if n - n' is an even number 
and, using the notation 

can be written as 

This yields Eq. (25) to leading order in p. 
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