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A model is used to show that the size of a bridge with Josephson properties is limited by the 
size of the vortex superconducting current, i.e., the magnetic-field penetration depth in 
the superconductor. Correspondingly, the size of a low-T, bridge is limited by that of an Abrikosov 
vortex, and the size of a high-Tc bridge by that of a hypervortex. The microscopic theory of 
the effect in a low-T, bridge smaller than the coherence length is developed with the necessary 
mathematical detail, and the physical meaning of the approximations and the results of 
solution are explained. O 1996 American Institute of Physics. [S1063-7761(96)02108-71 

1. INTRODUCTION creates a drop in electric voltage, V, which determines the 

Current steps induced by microwave irradiation have 
been observed on the current-voltage characteristic in ex- 
periments with high-T, bridges with sizes (- 100 pm) con- 
siderably greater than the London penetration depth for a 
magnetic field, hL , and the coherence length to (see Ref. 1). 
The vanishing of the step amplitude, which oscillates as the 
microwave-radiation power varies, suggests that the current- 
phase dependence is sinusoidal. With low-T, bridges such 
behavior has been observed only for bridge sizes comparable 
to to (see Refs. 2 and 3). For a high-T, ceramic interpreted 
as a system of superconducting granules joined by weak 
links, some researchers (see, e.g., Ref. 4) assume that only 
one intergranular Josephson link operates in a bridge. Ama- 
tuni et aL4 relate the appearance of current steps to the syn- 
chronization of vortex motion in the bridge by external mi- 
crowave radiation. The electrodynamic model developed in 
this paper explains the difference in the Josephson properties 
of low- and high-Tc bridge structures by the special way in 
which a magnetic field penetrates a high-T, superconductor. 
The model is used to construct a theory of the nonstationary 
Josephson effect in a low-T, bridge structure smaller than 
e 

2. MICROSCOPIC THEORY 

The theory is based on the well-established and experi- 
mentally corroborated ideas about penetration by a magnetic 
field of a superconductor in the form of domains or Abriko- 
sov vortices: i.e., the normal (N) and superconducting (S) 
phases of the electron Fermi liquid are spatially separated. At 
current densities higher than the critical density j, the super- 
conducting current begins to oscillate in the bridge, which 
means that inside the bridge the current cannot be closed by 
the induced magnetic field, i.e., for bridges smaller than a 
vortex. Consequently, the size of a bridge with Josephson 
properties is limited by the characteristic size of a vortex. In 
low-T, superconductors the vortex diameter is determined by 
the values of hL and to. When the Bose-condensate velocity 
reaches its critical value at the center of a bridge whose size 
is smaller than to, the order parameter drops to zero, as it 
does at the core of an Abrikosov vortex. Because of energy 
losses, the current flowing through the region with A=O 

- 
variable Josephson current through the normal region. Note 
that in a high-T, bridge whose size is comparable to the 
diameter of a hypervortex the normal region can be multi- 
layered and multiply connected and can exist in the absence 
of a current due to the inhomogeneity of the material. Al- 
though the electrons inside the normal region are unpaired, 
the phase coherence of the P function of the superconduct- 
ing condensate of the different sides of the bridge is retained, 
thanks to collisionless electron transfer through the normal 
region similar to tunneling through the I-layer in a SIS junc- 
tion. Analogous electrodynamic ideas were developed in 
Ref. 6, where [A1 varies on the scale of the bridge size. 

The model is used to formulate and solve the boundary- 
value problem for a bridge whose size is smaller than to by 
means of the mathematical tools of the microscopic super- 
conductivity theory. To simplify the reasoning we consider 
the bridge to be a circular hole of diameter d in an opaque 
flat screen between the two sides of a superconductor 
(k= 1,2). The region of voltage drop (Irl< lrkl) is limited by 
the surface determined from the condition 1 j(rk) 1 = jc , where 
r is measured from the center of the bridge. Because of free 
exchange across the bridge the electron Fermi liquid, being a 
thermodynamic system, is characterized by a single chemical 
potential7 p ( r )  =p:/2m = const and an order parameter 

For Irl> Irk[ the electric potential is U(r,t) = (-  l ) k ~ / 2 ,  
where V(t) is the voltage drop across the bridge slowly vary- 
ing with time t (on the A, ' scale), p ,  is the Fermi momen- 
tum, and e is the electron charge. 

The system of equations for the temporal causal Green's 
function of a superconductor in a field with a scalar potential 
U(r,t) and a vector potential A (see Refs. 8-11) can be 
reduced, after plugging in (I), to the following equation: 
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- p + ( -  l ) k e ~  s3(r-rf)8(t-  t') 1 

A similar equation can be written for 

In what follows we ignore the magnetic field A induced by 
the current and contributing a term rn d2 / l ?  to the current. By 
introducing the factor 

into the Green's function (a Fourier transformation) we ex- 
clude rapid spatial oscillations, and the remaining left-hand 
side of Eq. (2) in the d%-p,' approximation is a second- 
order linear equation in the spatial variable r. The rapid 
variation (on the scale of the bridge size) of the order param- 
eter caused by the decrease in the condensate velocity in the 
course of condensate flow ( j  rn d2/r2) is replaced by a dis- 
continuity: 

where B(x )  is the Heaviside function. The second term on 
the right-hand side of Eq. (2) contains the gradient of the 
order parameter, dA(r)/dr, varying over the size of the nar- 
row, and determines for d<  to the superconducting compo- 
nent of the field across the bridge. The equation is solved by 
an approximation method developed for layered boundary- 
value problems. The kernel of the inverse operator acting on 
the right-hand side of Eq. (2) (the second term) is the bound- 
ary Green's function Gb(r- rk), which is the solution of the 
corresponding homogeneous equation in the variable r- rk 
that becomes a linearly independent equation at the NS- 
boundary r-rk=O, where the coefficient of the equation, 
IA(r)l changes abruptly. The first derivative of the Green's 
function Gb(w,r-rk) experiences a jump at the NS- 
boundary equal to 

where nk is the normal to the NS-boundary. As a result, for 
( r (<( rk l ,  the solution for the component of the causal 
Green's function related to VA(r) has the form 

Xexp - iw(t- t f)+ip(r ' - r )  I 

where t=p2/2m- p ,  tk= (+(-  1 ) k e ~ / 2 ,  wk 
= w + i ~ ? ( - l ) ~ + ( - l ) ~ e ~ / 2 ,  and i s  is a small imaginary 
addition to w that defines the way in which the poles of the 
integrand are passed along the integration contour. The Fou- 
rier transform of the Gor'kov function ~ o + ~ ( r ~ ; r ' )  can be 
expressed in terms of Gop(rl;rk) by the same method of 
solving the equation for F + (rk , f ;  r' , t) in the variables r' 
and t. The arguments of Go,, lie within the normal region. 
The solution of the equation for the Green's function of the 
normal state of electrons (A = 0)  has the form 

Xexp i p(rl-rk)-w(tf-t) ( I  

where Gn(w,t)=2f((- 1)"+~w)[w+ii5(- ~ ) ~ - - t ] - ' ,  and 
f (w) = [ 1 + exp(ol~)]-I is the Fermi distribution function. 
The causal Green's function can be expressed as a linear 
combination of the advanced and retarded Green's functions, 
which are analytic in the lower and upper half-planes of the 
complex frequency w [see Eq. (17.22) in Ref. 81. Electron 
scattering in the bridge is taken into account in the Fourier 
spectrum 

which in the (r,t)-representation reduces [see formula (39.9) 
in Ref. 81 to multiplying the Green's function by 
exp(-lrl- rk)/21), where 1 is the mean free path of electrons 
in the bridge. If we employ the above method of solving Eq. 
(2), we can express the component F;(r,t;rf ,t '  ) in terms of 
the function F+ (rl ,t '  ;rk , t ) ,  which vanishes under the as- 
sumption A = 0 holds in the voltage-drop region. Hence the 
assumption A(0) = 0 contradicts nothing in the solution of 
the resulting boundary-value problem. In the zeroth approxi- 
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mation in the small parameter 21rkllto, the solution at the 
center of the bridge is independent of the position rk of the 
jump in IA(r)l, i.e., is independent of the size of the voltage- 
drop region. The error introduced by the fact that the con- 
tinuous variation of I A  (r)  1 is replaced by a jump (3) in the 
left-hand side of Eq. (2) contributes nothing to the amplitude 
of the superconducting current even in the first approxima- 
tion in d / t O .  The condition A ( 0 )  =0 follows from the phys- 
ics of the problem. The gap in the electron energy spectrum, 
I A(r)  1 ,  vanishes at the critical condensate velocity, 

[see Eq. (2)], and is determined by the finite binding energy 
of an electron pair in the superconductor. The current density 
decreases as the distance from the center of the bridge grows, 
j ( r )  d21r2, and I A  (r)  1 varies accordingly over a distance of 
order d. The function I A(r)l is approximately described by 
the equation v 2 ~ ( r ) = 0  (see Ref. 6). Note that the electro- 
neutrality condition in the metal is satisfied exactly since 
G2(r,r;r ,r+O)=0.  

By definition, the current density at the center of the 
bridge is 

The final expression has the form 

For the amplitude of the Josephson current we have 

and, in particular, j , (0 )=8Ao/3eR at T=O, while for 
eV%Ao we have js (V)-  T ~ A ~ I ~ ~ R V .  The I-dependence cor- 
responds to the Chambers relation [see Eq. (5.97) in Ref. 121 
for the nonlocal relation between current and field. The curve 
of j, vs V for T=O (Fig. 1) has an inflection point at 
e V = 2 A o  instead of the Ridel logarithmic singularity. The 
second term on the right-hand side of the solution (6) (the 
excess current) can be calculated by the following formula: 

FIG. 1 .  The dependence of the amplitude of the Josephson current in a 
microbridge on the voltage, j , (V) ,  at T =  0. The dashed curve represents the 
dependence of Re j ,  vs V for a tunnel junction (Ref. 13). 

In contrast to the Josephson component, the excess supercon- 
ducting current is independent of the phase J 2 e V d t  for 
V(r) # 0. The value of j i (V)  is related (nonlocally) to the 
variation in the phase of the order parameter in the supercon- 
ducting sides of the bridge, and this variation cannot be ig- 
nored because of the high current density in the bridge. The 
current ji is a first-order quantity in d/tO, and the coefficient 
(9, - cp2) depends only on the size Irk - r21 of the normal 
region. The normal component of the current, j, , is deter- 
mined by the Green's function component related to the first 
term on the right-hand side of Eq. (2) and is nonzero (in the 
present theory) also for 2 A o > e V > 0  only if A = O  holds in 
the bridge. Equation (5) for the function G ,  yields 
j,= VIR, where 

is the resistance per unit area in the cross section of the 
bridge, and p is the specific resistance of the metal. The 
functions j ,(V) and j ,(V) differ from those for tunnel 
junctions,13 since a tunneling junction is a system of two 
independent thermodynamic subsystems with chemical po- 
tentials that differ by e V  (this independence arises because 
electron exchange is low in tunnel junctions). To within 
d 2 / t i  the current density at the bridge's center, the solution 
(6), depends on the voltage drop across the bridge, V(t),  and 
does not depend on the way in which the electric potential 
U depends on r. 

358 JETP 83 (2). August 1996 L. L. Malinovskii 358 



FIG. 2. The theoretical temperature dependence of the critical current 
I,(T)=I,(T)+Ii(O,T) for a microbridge (curve I) and a tunnel junction 
(curve 2). The dots designate the experimental data taken from Ref. 14. 

3. COMPARISON WITH EXPERIMENT 

According to the solution (6), the current-voltage char- 
acteristic of a bridge in fixed-current conditions under a con- 
stant voltage component V # 0 has the well-known hyper- 
bolic form 

I ( V ) = { J Z ~ ( V ) + ( ~ R ) ~ + I ~ ( V ) } ~ ~ ~  V ,  
where I= j S ,  where S is the cross-sectional area of the 
bridge. A detailed comparison over the entire range of volt- 
ages and currents of this theoretical dependence with the 
experimental current-voltage characteristics of high- 
resistance point contacts (R= 1-10 0)was made in Ref. 14. 
For T 4 Tc the temperature dependence of the critical current, 
determined from the solution (6) in the limit V j O ,  differs 
from Zc(T) of a tunnel junction (a comparison with the ex- 
perimental data of Ref. 14 is done in Fig. 2): 

Figure 3 depicts the dependence of the excess current on 
voltage and temperature, Ii=Ii(V,T). The experimental 
points, taken from Ref. 14, are marked according to the data 
of the current-voltage characteristic of a Nb-Nb point con- 
tact with a resistance Rn( 11 K) = 7.50. The value of the re- 
sistance of a single bridge, Rn= 16p1/3~d2, implies that 
d< 100 A<&, holds at pl= 4X 10-120 cm2 for Nb. Since 
Ii(0) is finite at V =  0 ,  over a broad interval (- 21,(O)R) the 
current-voltage characteristic of a bridge exhibitsi5 (in con- 

FIG. 3. The dependence of the excess current on voltage, l i ( V )  at different 
reduced temperatures TIT,: curve I,  0;  curve 2.0.44; curve 3.0.64, curve 
4.0.77; and curve 5.0.91. The solid curves represent the theoretical results, 
while the , 0,  + , and 0 designate the experimental data taken from Ref. 
14. 

trast to that of a SIS junction) a group of current steps of 
approximately equal height in the maximum-voltage region 
and at fixed microwave-radiation power. A characteristic fea- 
ture of the solution (6) is the sinusoidal dependence of the 
nonstationary Josephson current, in view of which the am- 
plitude of the induced current steps vanishes at certain values 
of the microwave-radiation power.i5 If we ignore Ii(0), the 
Nth step vanishes at an amplitude I of the microwave- 
induced current given by the root of the Bessel function, 
~ ~ ( 2 e l ~ l h w ) = 0 ,  where wo is the frequency of the 
microwave-induced current. The vanishing of the current- 
step amplitude, which varies with the microwave-radiation 
power, was observed in experiments involving tin whiskers3 
and Pb- and Nb-film bridges of  hem.^ When the theoreti- 
cal dependence of the time-dependent current across a bridge 
of any size or a point contact is not sinusoidal, the current 
steps oscillate but remain finite in amplitude.i5 A rigorous 
proof of this assertion based on the fact that the roots of the 
Bessel function are not multiple can be found in Ref. 16. 
This criterion is crucial in an experimental verification of the 
theory. 

4. CONCLUSION 

Since the surface of high-T, superconductors is pen- 
etrated by a magnetic field along the grain boundaries, a 
closed superconducting current generates a hypervortex (in- 
stead of an Abrikosov vortex in low-Tc superconductors) 
whose size is determined by the Josephson penetration depth 
X J  11 & (see Ref. 17). A high-T, superconducting junction 
constitutes a series-parallel electrical circuit consisting of 
Josephson SIS and SNS junctions with the addition of paral- 
lel currents and serial voltages until a quantum magnetic flux 
induced by the flowing current is trapped, which closes the 
current circuit inside the junction and leads to a marked re- 
duction in the total Josephson current, just as it does in a 
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tunnel junction with a width exceeding A J .  Thus, when the 
high-T, superconducting junction is smaller than the hyper- 
vortex, it has the same characteristics as a single Josephson 
junction with the total current and voltage. This model ex- 
plains the experimental data of Ref. 18. Noge et al.19 ob- 
served current-step oscillations, accompanying the variation 
of the microwave-radiation power, in experiments that in- 
volved YBa2C~307-6 bridges of micrometer dimensions at 
77 K and at current densities 1 0 4 - l d ~  c ~ - ~ ( A J = ~ -  
1 pm). With larger bridges (d+A ,) no oscillations were 
ob~erved.'~ Golovashkin and ~ ~ k o v ~ '  explained the presence 
of current steps by the coherent motion of vortex chains in 
the bridge. 

Thus, the proposed electrodynamic model of the time- 
dependent Josephson effect, which naturally follows from 
the ideas about a magnetic field penetrating the surface of a 
superconductor, explains the observed values of the charac- 
teristics of Josephson bridges and point contacts made from 
low-T, and high-Tc superconductors and can help in practi- 
cal work by determining the characteristic size of a Joseph- 
son junction. 
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