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When a NMR line of a solid narrows at the "magic" orientation of the effective field in the 
rotating frame, the linewidth is determined by a three-spin effective interaction, rather than by the 
original dipolar interaction. When the line is narrowed further by a second effective field 
acting in the doubly rotating reference frame, the spin dynamics are now determined by four- and 
five-spin effective interactions. The Hamiltonian for these interactions is found. An 
expression for the longitudinal nuclear spin-lattice relaxation time in the third effective field 
acting in the triply rotating reference frame is found. This expression consists of terms with 
two-, three-, four-, and five-particle correlation functions of products of the dipolar coupling 
constants modulated by the atomic and molecular motions. The dependence of this time on 
the correlation frequencies of the motions is calculated in the approximation of high-dimensionality 
lattices for different models of the motion and values of the rf field parameters. The high 
sensitivity of the spin-lattice relaxation time in the triply rotating frame to details of the ultraslow 
internal motions in the solid is demonstrated; measuring it can therefore provide an effective 
way to investigate such motions. A method is proposed for testing the correlation of the atomic 
motions directly by comparing experimental plots of the temperature dependence of two- 
and three-spin relaxations measured when the first and second effective fields, respectively, deviate 
from their "magic" orientations. O 1996 American Institute of Physics. 
[S 1063-776 1 (96)02008-21 

1. INTRODUCTION 

Investigating nuclear spin-lattice relaxation is a gener- 
ally accepted method for studying atomic and molecular mo- 
tions in solids.' The traditional nuclear magnetic resonance 
(NMR) methods measure the spin-lattice relaxation time of 
the magnetization in a strong constant field ( T , )  or in a 
radio-frequency (rf) field in a rotating reference frame 
( T I , ) .  Each motion appears in the expressions for these 
times in terms of the Fourier transform of the temporal two- 
particle correlation function of the dipolar coupling constants 
at the precession frequency in the corresponding field. The 
calculation of the relaxation times and the analysis of the 
relaxation curves are significantly simpler than the calcula- 
tion and analysis of the NMR line shape of the dense spin 
system in a solid. However, the line shape is more sensitive 
to details of the motions of atoms and molecules, since it is 
actually determined by many-particle correlation functions 
of products of the dipolar coupling constants of from two to 
an infinite number of particles. 

The modem methods of NMR s p e c t r o s c ~ ~ ~ ~ ~ ~  based on 
the effects of a pulsed or continuous strong rf field on the 
nuclear spin system make it possible to combine the simplic- 
ity of the relaxation methods with the informativeness of the 
spectral methods. In fact, under the action of an rf field that 
is strong compared with the dipolar interaction, the dynamics 
of the spin system is determined not by the original two-spin 

interaction, but by an effective multispin interaction?-4 the 
number of spins participating in an elementary event increas- 
ing as the form of the applied rf field becomes more compli- 
cated. Therefore, it becomes possible5-7 to selectively ob- 
serve the correlation functions of dipolar coupling constants 
with an assigned number of particles, viz., two, three, four, 
or more, using the spin-lattice relaxation time. An analysis of 
plots of the temperature dependence of such a multiple- 
frequency spin-lattice relaxation time permits determination 
not only of the rates, but also of the types of atomic and 
molecular motions. Also, since the effective interaction is 
many times weaker than the original interaction, it is specifi- 
cally the ultraslow motions characteristic of the solid phase 
that will be accessible to study. 

The method described has not attracted the attention it 
should from investigators. The amount of information ob- 
tained is increased by employing the modem methods of 
two-dimensional or multiple-quantum NMR spectroscopy~8 
in which active treatment of the spectrum simplifies its 
analysis. For example, such a fine characteristic of molecular 
motion as correlation was found from multiple-quantum 
spectra in Ref. 9. The analysis of a spectrum can be simpli- 
fied if the number of magnetic nuclei in the molecule or in 
the molecular group studied is not excessively large. Since 
this is not the case in the dense nuclear spin system of a 
crystal, the spectrum does not become simpler than the origi- 
nal one after it has been separated according to the chemical 
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shifts or when multiple-quantum transitions are observed.I0 
In such systems the method described above of measuring 
many-particle spin-lattice relaxation is the only way remain- 
ing to extract detailed information on the internal mobility. 

Spin-lattice relaxation caused by a three-spin effective 
interaction was observed experimentally in Ref. 11. Under 
the conditions of that experiment a strong continuous rf field 
that forms an effective field having the "magic" orientation 
in a rotating frame4 acted on the nuclear spin system of solid 
benzene. The shallow modulation of the rf field in a doubly 
rotating frame (the second rotation is about the effective 
field) created a second effective field. The relaxation time 
(TIP,) of the magnetization directed along this field was 
measured. The method employed of directly recording NMR 
in the rotating frame, which was developed by Mefed et 
a1.,I2-l4 has several advantages over the method of multiple- 
pulse sequences and ensured the success of the experiment. 
~ e f e d ' ~  recently showed how the longitudinal spin-lattice 
relaxation time (TI?,,) of the magnetization parallel to the 
third effective field in a triply rotating frame (the third rota- 
tion is about the second field) can be measured by direct 
recording. The time Tlppp is governed already by four- and 
five-spin effective interactions. 

The purpose of the present work is to develop the theory 
needed for the successful practical implementation of this 
method for studying motions on the basis of the multiple- 
particle spin-lattice relaxation time. General equations for 
TIP (Refs. 1 and 2) and TIP, (Refs. 6 and 7) are presently 
known. There are no equations for TIP,, ; they are derived in 
this paper. For this purpose in the third and fourth sections, 
respectively, four- and five-spin effective Hamiltonians are 
found and divided into parts that are nonsecular toward the 
third field, which are used to obtain the equations sought in 
second-order time-dependent perturbation theory. Then the 
dependence of TI,,, on the motional correlation frequency is 
calculated for various cases in the fifth section. The influence 
of the motion model, nonuniformity of the rf field, and de- 
viations of the first and second effective fields from their 
magic orientations is analyzed. Finally, the coefficients 
needed for the calculations in the approximation of lattices of 
large dimensionality are calculated in the Appendix. 

2. NUCLEAR SPIN SYSTEM IN A MODULATED rf FIELD 

Consider the system of nuclear spins ( I=  112) of a crys- 
tal in a strong constant magnetic field Ho and a strong trans- 
verse rf field with amplitude 2H1 and frequency w, which is 
close to the Larmor precession frequency oo= yHo and is 
modulated in the following man~~er : ' ~ . ' ~  

X cos(Q2t+ ~ z ) l ) *  (2.1) 

where { 6 q , S q l ) 4 d 2 .  
At first we set 6q=0.  In the reference frame rotating 

with the frequency w about the field Ho, an effective field4 of 
strength we (in frequency units), which forms an angle 0 
with the field Ho,  acts on the spins: 

When the rf field is nonuniform, H1 and o, are understood 
to be their transform-averaged values H ,  and 6, and the 
deviation is taken into account by a correction term in the 
Hamiltonian (here and in the following we measure the en- 
ergy in frequency units): 

where {I; ,If ,If) are the components of the spin vector op- 
erator at the site i in the reference frame with the z axis 
parallel to the effective field we , and vi = H I  16, - 1 . For 
example, under the experimental conditions in Refs. 1 1 - 16 
the degree of nonuniformity is estimated to be 0.15%. 

We write the Hamiltonian of the system in the rotating 
frame in the following manner: 

where, besides the Zeeman interaction in the effective field, 
we have separated the parts that satisfy the condition 

[I, , W ] = m W .  (2.4) 

The secular part is 

where bij= y2fi[1 - 3~os~( f3~~) ]12 r~~ ,  and Oij is the angle be- 
tween the internuclear vector r i j  and the constant magnetic 
field Ho. The contribution for the dipolar interaction to (2.5) 
vanishes at the magic angle f3= OM= 54.74O (Ref. 4). At that 
angle, for the nonsecular parts in (2.3) we obtain 

Under the action of the effective field the nonsecular 
parts W (m # 0) oscillate rapidly with time at the frequen- 
cies mw,. Their contribution to the slow relaxation pro- 
cesses in the spin system can be taken into account by means 
of the theory of averaging in terms of the effective 
~ami l ton i an~ '~  

where 
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are the first two terms of the series. The ratio of the local 
field to the effective field is actually a small parameter. 
Rather than the root-mean-square value of the local field 
(HL), it is more convenient to use the second moment of the 
NMR absorption line, which is related to it by the simple 
expression 

where N is the number of spins in the system and the small 
parameter is 

In turn, we characterize the effective interaction by the sec- 
ond moment of the NMR line in the rotating frame M2p 
(Refs. 12-14). 

We turn to the general case (2.1). Confining ourselves to 
the first order in the expansion of this expression in the small 
parameter Sq, in the rotating frame we obtain an additional 
term in the Hamiltonian: 

where H2= H SqI2. We now move on to the doubly rotating 
frame spinning with a frequency SZ about the effective field. 
For simplicity, let 6q1 = 0. Then a second effective field1'-l6 
of strength w2 (in frequency units), which forms an angle 
8' with the field we, acts on the spins in this reference 
frame: 

When the second field has sufficient strength 
(OJ~BM;;), it causes fast oscillations of the effective Hamil- 
tonian (2.7) and thereby leads to further weakening of the 
effective interaction. The greatest narrowing of the NMR 
line of a s o ~ i d ' ~ , ' ~  is achieved when the second effective field 
is orthogonal to the first. Under these conditions the parts of 
He:: given by (2.8) and the contribution from the nonuni- 
formity of the rf field to (2.5) that are secular in the second 
field vanish. Therefore, the dynamics of the spin system is 
determined by the weaker new effective interaction (Me;)) 
formed according to the same rule (2.8) (with the replace- 
ment of oe by 02) ,  but now from the parts of the effective 
Hamiltonian Me;) that are nonsecular and satisfy the prop- 
erty (2.4) with respect to the second field (Ref. 7) and Eq. 
(2.5): 

where 

and the z axis is directed along the second field. The Hamil- 
tonian @if' is second-order in E and will be found in the 
fourth section of this paper. The part of the effective Hamil- 
tonian that is of the same order E and secular in the second 
field is A#$ given by (2.9), which will be found in the third 
section of this paper. 

In addition, the Hamiltonian contains a term due to the 
nonuniformity of the second field in (2.10). Since the rf field 
scarcely varies on the scales of atomic and molecular mo- 
tions, this term does not make a contribution to the spin- 
lattice relaxation. However, it makes a contribution to the 
residual NMR linewidth14 that is quite appreciable in a liq- 
uid. It can be balanced14 by the contribution from the non- 
uniformity of the rf field to (2.5), if we take the angle 8' 
specified by equating the projections of the two contributions 
onto the second field: 

whence follows 01=rr/2+ yH2 /wesin26 for y H 2 4  o,sin28. 
Finally, when we have Sql  # 0 in (2. lo), going over to 

the triply rotating frame (the third rotation is about the sec- 
ond field with a frequency 02= w2), we obtain a third effec- 
tive of strength (in frequency units) 

which is orthogonal to the second. Note that to be specific 
we chose phase modulation of the rf above in (2.1). 
The results obtained in the present work are equally appli- 
cable to other types of modu~ation,"-'~ viz., amplitude and 
frequency modulation. Only the equations defining H2 and 
w3 change. 

Under the conditions of the experiment in Ref. 15 the 
phases q1 and q2 are chosen so that at t = O  the second field 
is orthogonal to Ho and the third field is parallel to H o .  The 
magnetization is captured by the third field (spin locking in 
the triply rotating reference frame) and follows it without 
significant losses, if the third field is sufficiently large rela- 
tive to the effective interaction in the triply rotating frame, 
whose magnitude will be characterized by the second mo- 
ment of the NMR line in the doubly rotating frame 
M2pp, 13,14 i.e., if w,> ~i62,. The conditions for spin locking 
in a triply rotating frame are similar to those in a doubly 
rotating frame, studied in Refs. 11, 14, and 16. In a rigid 
lattice the projection of the magnetization onto the third field 
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should not vary with time. When there is atomic and molecu- 
lar mobility, relaxation of this magnetization is observed un- ( b i k b k j b  jJjl jI;l;+ 
der the action of the parts of the effective Hamiltonian we 

se that are nonsecular in the third field and satisfy the 
condition (2.4) with respect to that field. For the longitudinal 

bi'bikbir 2 
( I l l ; +  l ~ I ~ ) ( I ; I ; +  1 ; q ) -  babi jb jr  

spin-lattice relaxation rate in the case under consideration, +-I 
from time-dependent perturbation theory235-7,'7 we obtain the 1 

I 
relation + - (bklbl ib i j+bi jb ikbir+ 2 blkbl jb l i )  

where Jm(w)  is the Fourier transform of the correlation func- 
tion 

in which the averaging is carried out over the random mo- 
tions of the atoms and molecules in the coordinate space. We 
note that if xe has a part ( e e )  that is conserved during 
motion and does not make a contribution to the spin-lattice 
relaxation, Tr { ( ~ e ) ( ~ / ) ) l ~ r { l ~ }  should be subtracted 
from the right-hand side of (2.15). 

3. CONTRIBUTION OF THE SECONPORDER EFFECTIVE 
HAMlLTONlAN &$ TO THE SPIN-LATTICE 
RELAXATION 

After calculating the commutators in (2.9), for the 
Hamiltonian sought we find 

where 

In (3.1) and in similar equations below the summation is 
carried out over all the lattice indices appearing in them un- 
der the condition that terms with two identical indices are 
excluded. 

To calculate the contribution of this Hamiltonian to the 
longitudinal spin-lattice relaxation in the third field (2.14), in 
(3.1) we isolate the part that is secular in the second field, 
from which we then isolate the parts that are nonsecular in 
the third field and satisfy the condition (2.4): 

rm l3-l 
X::2 = -24 t2  + 12 ( i j k l )  + 8( j ik l  ) - 8 ( k i  j l )  

Here the z axis is parallel to the third field, and the following symbolic notation is introduced for the products of the dipolar 
coefficients: 

( i j k l ) = b i j b j k b k l ,  Ii,jklI = bi jbikbi l .  (3.3) 

The joining of the lattice indices in the coefficients in (3.2) by lines schematically denotes their symmetrization with respect 
to the interchange of these indices in the products (3.3): 

rm 
1 2 ( i j k l )  = ( i j k l )  + ( i k j l )  + ( i k l j )  + ( i l j k )  + ( i l k j )  + ( i j l k )  

+ ( k l i j )  + ( k j i l )  + ( k i j l )  + ( k i l j )  + ( j i k l )  + ( j k i l )  , 

m hh 
4 ( j i k l  ) - 4 ( k i  j l )  = ( j i k l )  + ( j k i l )  + ( k l j i )  + ( k j l i )  

- (ki  j l )  - ( i k j l )  - (ka l j )  - ( i k l j )  

344 JETP 83 (2), August 1996 V. E. Zobov and M. A. Popov 344 



Such symmetrization enables us to obtain more compact ex- dashed lines]. For example, 
pressions and to simplify the calculations of the traces in 
(2.15). The Hermitian conjugate parts x: and ~2 of the 

4 
R(t) = - ( ~ g ~ ~ t ~ ~ , , , )  = z + 3 3  

Hamiltonian are obtained after the replacement of I +  by I- 
N ---- 

and of I -  by I+ in (3.2). = N- ' C {(bij(t)b;k(t)bi~(t)b,(o)bi,(0)bu(O>) 
The substitution of (3.2) into (2.15) gives correlation + 3 (bij(t)bi*(t)bir(t)bji(o)bjr(0)bjl(o))}. 

functions of products of the dipolar coefficients of different (3.5) 
kinds, which we shall represent using graphical expressions: 
the lattice sites (spins) are depicted by circles, and the inter- For the remaining correlation functions we confine our- 
actions (couplings) bij between them are represented by lines selves to the graphical expressions, since their explicit forms 
[the bij(t) are depicted by solid lines, and the bij(0) by are easily written out according to the rules indicated: 

The functions (2.15) are expressed in terms of the cor- 
relation functions (3.5) and (3.6) in the following manner: 

After the correlation functions (3.5) and (3.6) are found 
for a specific motion model, Eqs. (3.7), (2.14), and (2.15) 
make it possible to find the desired contribution 1/T(,4dpP of 
the interaction (2.9), which we divide into two parts corre- 
sponding to the two-spin and four-spin interactions in &$ 
(3.2): 

To analyze the relaxation process we take the two sim- 
plest models of the motion of atoms: 1) independent motion; 
2) correlated motion. In the former case each atom varies its 
coordinates independently of the other atoms, while in the 
latter case the coordinates of all the atoms vary simulta- 
neously. We describe the variation of the positions of the 
atoms by a Markovian random process with correlation time 
T,, for which we represent the correlation functions (3.5) 
and (3.6) in the form 
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In mode] (2) we have r= l = p =  f = a = 1. In model ( 1 )  we TABLE I. Coefficients in the equations for ~ 1 % ~ .  
take r = 1 = p = f = 4 and a = 2 for the calculations. In fact, 

[I001 [I 101 r1111 d=  ca for the correlation function A(?)  the displacements of atoms 
i and j and of atoms k are inequivalent. When the latter A 0.5 1 0.36 0.52 1 

move over a lattice with equivalent sites, the sum in the V 2  100 124 132 121 

definition of the Ai j  remains unchanged. V4 7.0 11.6 11.9 7 

When the foregoing statements are taken into account 
and (3.8) has been substituted into (3.7), from (2.14) and 
(2.15) we obtain 

1 1 ~ ( ~ ) = 2 - * .  9 - 2 ~ 2 d & 4 { 2 5 ~ 4 g 4 ( 4 0 3 )  + v ~ ~ ~ ( ~ w ~ ) ) ,  When we calculated Mfj above from the second-order 
(3'10) equation (2.9). we omitted the contribution from the varia- 

tion of the rf field in (2.6), since it leads to corrections of the 
where next order. A contribution of comparable magnitude is ob- 

tained in first order after (2.6) is substituted into (2.8). It 
takes into account the spread of the magnitude of the secular 

A = A ( O ) / B ~ ,  B=N-'2 b;,= 4 ~ ~ ~ 1 9 ,  part of the dipolar interaction in (2.5) over the sample be- 
cause of the orientation of the effective field differs from the 

v ~ { ~ ~ R ( o )  + 2 8 ~ ( 0 )  + 8 ~ ( 0 )  - 2 4 ~ ( 0 ) ) l B ~ ,  average. This correction has an operator part, as in the case 
of in (3.2); therefore, it results in a change in A i j  
amounting to 

~ ~ = { 3 ~ ( 0 ) + 4 ~ ( 0 ) + 2 4 ~ ( 0 ) ) 1 ~ ~ ,  

is a Lorentzian function with a parameter that depends on the and a change in the correlation function A ( t )  amounting to 
motion model 

7, In - independent motion, 

7, - correlated motion. 

The coefficients in (3.10) are expressed in terms of lat- 
tice sums, whose structure is clear from the diagrams (3.5) 
and (3.6). These sums were calculated for a simple cubic 
lattice in Refs. 18-20 and three orientations of the magnetic 
field relative to the crystallographic axes (to match the accu- 
racy the sums from Ref. 18 were recalculated for a large 
number of lattice sites). The calculated values of the coeffi- 
cients are presented in Table I. The last column in Table I 
contains the values of these coefficients in the limit of an 
infinite ~at t ice '~.~ '  keeping only the lattice sums not contain- 
ing loops of couplings, which have the following structures 

where B ( t ) = N - ' ~ ( b ~ ~ ( t ) b ~ ~ ( o ) )  and 7 7 2 = ~ - 1 1 :  
x ( H ~ ~ - ( H , ) ) ~ / ( H ~ ) ~  is the mean square of the relative 
nonuniformity of the rf field. In deriving (3.13) we took into 
account that the averaging with respect to the motion and the 
averaging with respect to the nonuniformity of the rf field are 
carried out independently and that ( vi) = 0 .  

4. CONTRIBUTION OF THE EFFECTIVE HAMlLTONlAN &a 
INDUCED BY THE SECOND FIELD TO THE SPIN- 
LATTICE RELAXATION 

Substituting (2.12) into (2.8) and calculating the commu- 
tators, we find 

+ If I; I2 I: I: (i jkql)  , 1 (4.1) 
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where we have introduced the following compact notation 
for the coefficients: 

According to (4.2), the three-spin interaction in (4.1) consists 
of a correction due to the doubly averaged dipolar interaction 
and a correction due to the variation of the strength of the 
effective field over the sample, primarily because of the non- 
uniformity of the rf field. The presence of the detuning Ai 
makes the second effective field deviate from its "magic" 
orientation 8' = ?r/2 and consequently leads to incomplete 
averaging of the first-order effective Hamiltonian A&:;. 

In (4.1) the z axis is parallel to the second field. To 
calculate the spin-lattice relaxation of the magnetization par- 
allel to the third field, we move over to a new reference 
frame with the z axis of that field perpendicular to the second 
field, and we divide the Hamiltonian into the nonsecular 
parts Ke (m = t 1,+ 3,+ 5),  which satisfy the condition 
(2.4) for the third field. Each such part, in turn, consists of 
the terms X C ( p ) ,  which differ with respect to the form of 
the operator expressions Gmp(i jkql), 

where the summation is performed over the lattice indices 
(one, three, or five) present in the respective part. The index 
p labels the different contributions for an assigned m, whose 
sum gives xe. The results obtained for the operator ex- 
pressions and the coefficients in front of them are presented 
in Table 11. 

After ee has been substituted into (2.15) and the traces 
of the matrices have been calculated, we obtain 

where 

is the correlation function of the coefficients listed in the 
fourth column of Table I1 with summation over five, three, or 
one lattice index, depending on the coefficient. On the basis 
of Table 11, Eqs. (4.2) and (2.13), and the symmetrization 
rules, we can calculate the correlation functions (4.4) for an 
assigned motion (at least numerically) and then find the cor- 
responding contribution to l/Tlppp, which we write in the 
form 

separating the contributions from the one-, three-, and five- 
spin interactions to He:J. The expressions for the coeffi- 
cients Cmp(ijkql) directly in terms of products of the dipolar 
coupling constants bij are given in the Appendix. 

Let us consider the same two motion models as in the 
preceding section, for which 

The coefficient fmp in the exponent is equal to unity in the 
case of correlated motion and to the number of summation 
indices in (4.4) in the case of independent motion. Since the 
spins move between equivalent sites in the system under 
consideration, the contribution of the dipolar interaction to 
Cll(t)  will not vary with time, and the coefficients {jk,i) 
and [ijk] defined in (4.2) will not vary with the position of 
the atom having index 1, over which the summation over all 
the sites is performed. Moveover, the temporal variation of 
the contribution due to nonuniformity of the rf field can be 
neglected in Cll(t). In fact, it is a macroscopic quantity, 
while the motion is microscopic. The mean part of A; does 
not make a contribution to the longitudinal relaxation, and it 
is understood to be included in we. Therefore, the pre- 
exponential factor Cll(0) in (4.5) vanishes. 

The remaining pre-exponential factors in (4.5) are calcu- 
lated in the Appendix in the approximation of lattices of 
large dimensionality. [As we saw in the preceding section in 
the example of lattice sums with four summation indices for 
a simple cubic lattice (Table I), this approximation faithfully 
conveys the relationship between the different contributions 
to the relaxation rate.] After substituting (4.5) into (4.3) and 
then into (2.14), we obtain 

where the function g,(w) is defined in (3.11) and the 
M2(m,n) are the contributions of the corresponding parts of 
the effective interaction to the second moment MZpp. The 
values of these contributions in the d = w approximation are 
presented in the last column of Table 11. 
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5. DISCUSSION 

The expressions (3.9), (3.10), and (4.6) describe the 
spin-lattice relaxation of the magnetization parallel to the 
third field in a triply rotating reference frame for ultraslow 
motions with correlation frequencies 7, w3<c w2. Accord- 
ing to the theory of averaging, when there are random 

with 7, - w2, the mean Harniltonian for the sec- 
ond field 24$2 does not form, and relaxation takes place in 
the doubly rotating frame, being caused directly by the ef- 
fective Hamiltonian 24$e:f), which varies rapidly with time 
under the action of the motions and the field o 2 .  For the 
contribution to the relaxation rate of the magnetization that is 
orthogonal to the second field from the parts of the effective 
Hamiltonian that are nonsecular in the second field, we find 

TABLE 11. Operator expressions and coefficients for the parts of the effective Hamiltonian -%@ that are 

where J i jk ,pql (~)  and J i (o )  are the Fourier transforms of the 
correlation functions (bij(t)bik(t)b,,(O)bPl(O)) and 
(~~b:,(t)~,b:,(~)),  respectively. The same correlation 
functions, but preceded by different coefficients, appear in 
the expression for Tlpp (Ref. 6). The presence of the weak 
third field parallel to the magnetization has scarcely any in- 
fluence on the size of the contribution (5.1). At the same 
time, the contribution to the relaxation from the parts of the 
effective Hamiltonian that are secular in the second field is 
influenced by the third field, as is reflected in the equations 

, ~ ~ ( m p ) ~ ~ ( 3 2 W ~ ) ~  B - ~  

18496 

2'.3553/9+ 
+$. 44.(&,)4 8 - 2  

2' 675+ 
+r12. 1 1 . ( ~ W , ) ~ B - '  

198827/18 

814407/(9.4) 

1390063/(9 . 16) 

2' 8281+ 
+ t 1 2 . 2 1 2 . ( ~ e ) 4 ~ - 2  

400477/4 

2694559/32 

16506875/(9 - 32) 

for TIppp - 
In addition, when 7i1-w2, the relaxation rate varies 

and their corresponding contributions to M2,, . 

C,,(ijkqO 

C I I ( ~ )  

n 
{ j k ,  a }  

rn I l l  n 
3 [ i j k ] + 3 { i k 3  j }  - 2 { j k , i }  

m 
{ q W ,  a }  

r5-a l5-A m 
6{q l , j k ,  i } - 4 { q l , j k ,  i } + 8 { q j , l k , i }  - A?, 

u 
r n  n 

- l ~ { ~ j , l k , i } + 3 [ i j k , l ~ ]  
L-U 

rn rm m 
lO{ql, ki ,  j  } -8 {q l ,  j 3 } + 1 0  ( i k j q i )  

m rnn r n  
- l o [ i j l ,  k l ] + 2 [ j l q , i k ) + 6 [ i k j , q l ]  

LU 
m m 

{ j k ,  i }  - [ i jk]  

hh hh m n  
4{q l ,  j k , i } - 2 { q j , l k , i } + [ i k l ,  j q ]  
u LU 

m rn r r l l l  
2 { q l , j k , i } - s { q l , j k ,  i } + 5 [ i j l ,  kg] 

m rrrn 
- 4 [ k j l ,  iq]  + ~ ( i j k q l )  

U m m m  
{q l ,  j k ,  i) + [ i j l ,  k g ]  + ( i jkql )  

m 

1 1  

1 

1 3  

1 

3  

3 

3 

5  

under the action of the second-order effective Hamiltonian 
He$ because of the additional contribution from the parts 
that are nonsecular in w,. We shall not take them into ac- 
count in view of the smallness of the contribution from the 
second-order terms in this range of motions. 

When the intensity of the motions increases further 
(7;'- w,), an effective Hamiltonian does not develop?17 
and the relaxation is governed by the dipolar interaction 
(2.6), which varies with time under the action of the rf field 
and the thermal motions. When the rotation of the magneti- 
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in the third field 

6 m p ( i j k q 0  

Z;/2 
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1; z;z; - 
4  

I;zfI;I;z; 

+ +  q l  j k i  

4  

I; 1; 1; Z; I,+ 
16 

1; 1; z; 
T- 4  

Z; Z;Z; I,+ 1; 2 -  
4  

; I  
16 

z; I; 1;z;z; 
16 



zation about the second field is taken into account, for the 
relaxation rate we obtain 

where rip and r are the well k n o ~ n ' . ~ . ~ . ~  longitudinal and 
2!' 

transverse relaxation times in a rotating frame. 
The relaxation mechanisms (5.1) and (5.2) operate when 

there are ultraslow motions, although they are less dominant 
than the contributions considered in the preceding sections. 
When they are taken into account, for the spin-lattice relax- 
ation rate in the triply rotating frame we obtain 

As the intensity of the atomic and molecular motions in- 
creases, the last four terms should be eliminated first from 
(5.3), and then l/T;,, should be removed. However, we shall 
use Eq. (5.3) in the calculations over the entire range, since 
in the region of fast motion these contributions are so small 
that retaining them has practically no effect on the result. 

The full expression (5.3) is composed of contributions 
from correlation functions with different numbers of atoms 
(spins). The separation of these contributions can be greatly 
furthered by studying the dependence of Tlppp on the param- 
eters of the rf field. Besides the parameters already intro- 
duced in (5.3), the orientations of the fields can also be var- 
ied. When the angles 8 and 8' deviate from their magic 
values, new terms, which cause an abrupt increase in 
l/Tlppp, appear in the effective ~ami1tonian.'~-l4 The slow 
dependence of the terms already taken into account on 8 and 
8' can be neglected on their background. In this approxima- 
tion the spin-lattice relaxation can be described by the former 
equations, in which the coefficients (A5), (A6), and (3.12) 
should be altered by including the contributions from the 
following new terms in them: 

When everything stated above is taken into account, we 
obtain the following final expressions for the different con- 
tributions to Eq. (5.3) for the spin-lattice relaxation time: 

+0.83g5(w3)), (5.4) 

where we have written K;=MZd/w; and the remaining pa- 
rameters have already been defined above. 

To select the values of the parameters in Eqs. (5.4), we 
take solid benzene, CaF,, and PbF2. Reorientation of the 
molecules in benzene can be regarded as an example of cor- 
related m ~ t i o n ? ~ ' . ~ ~  while diffusion in CaF2 and PbF2 (Ref. 
23) can be regarded as an example of independent motions. 
Taking published values of the second moments MZd of the 
NMR absorption line and the effective frequency 
we/2rr= 100 kHz used in  experiment^,"-'^ we obtain the 
following values of E :  in benzene, 0.125 for stationary mol- 
ecules and 0.051 for rapidly rotating molecules; in CaF2, 
0.06 in the [ I l l ]  orientation and 0.144 in the [loo] orienta- 
tion; in PbF2, 0.048 and 0.1 15 in the same orientations, re- 
spectively. 

The choice of the field strengths o2 and 0 3  in Eqs. (5.4) 
is not entirely arbitrary, since a field strength 
w2+ ~ ~ ~ - 0 . 4 5 ~ M i ~  must be achieved to effect secondary 
averaging. In turn, the conditions for spin locking in the third 
field require w3 to exceed the mean local field in the doubly 
rotating reference frame. Since the mean square of the local 
field is significantly smaller than the second moment in the 
doubly rotating frame M2,, , it is more convenient for us to 
take the value of as the lower bound for w3. We obtain 
an estimate for MZpp in the approximation under consider- 
ation by assembling the coefficients in (5.4): 

- M(2) + M(3) + M(4) + M(5) 
M2pp- 2pp 2pp 2pp 2ppr  (5.5) 

where M$\ is the contribution from the n-spin effective 
interaction: 

The dependence of TIP,, on 7, was calculated from Eqs. 
(5.3) and (5.4) for various values of the parameters of the rf 
field. Several characteristic curves are shown in the figures. 
To simplify the analysis, all the frequencies are assigned in 
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lo-' to0 10' lo2 I 0' 10' 

Tr  

FIG. 1 .  Plots of the dependence of T,,,, on T, for independent (solid lines) 
and correlated (dashed line) motions for magic-angle-spinning conditions, 
p= 1 X lo-', and various values of the fields: 1) 0,=20,  o , =  1 ,  
w3=0.72X lo-'; 2) we=20, w2=0.5, w3= 1.16X 3) we=20, 
w,=0.2, w3=2.68X 4) me= 10, w,= 1 ,  0 3 =  1.86X lo-'; 5)  
oe=20/3, o , =  1 ,  03=4.02X lo-'. 

units of M;: (the times are given in units of and 
rr , which is equal to r, for independent motions and 2 r, for 
correlated motions. With this a choice we achieve juxtaposi- 
tion of the curves in the region of the principal minimum at 
7,=2/we from l/T1, in (5.3) expressed in terms of two- 
particle correlation functions. Besides the principal mini- 
mum, the curves in Fig. 1 exhibit a step at rr=2/w, from 
1/T2,, and, finally, a minimum or a step at 7,- l/w3. Sin- 
cethe latter minimum becomes deeper as w3 decreases (com- 
pare the upper curves in Figs. 1 and 2), the curves in Fig. 1 
were constructed for w3=M:b2, In the slow-motion limit 
r,+w the curves approach the asymptotic dependence 

which corresponds to straight lines in the figures. The coef- 
ficient Mlpp differs from MZpp in that the coefficient in front 
of gn(pw3) in (5.4) appears with the multiplier p-2 for cor- 
related motions and with n/2p2 for independent motions. 
Since Ma ,-M?,, holds, these curves follow asymptotic 
behavior 6.7) w~th a coefficient close to unity at the values 
of w3 = selected for the curves in Fig. 1. At the same 
time, the right-hand limb of the principal minimum has the 
dependence 

Thus, the corresponding parts of the curves have the form of 
two segments of the indicated straight lines joined by a seg- 
ment with the inverse dependence 

FIG. 2. Plots of the dependence of TI,,, on T, in the slow-motion region 
(solid lines - independent motions; dashed lines - correlated motions) in 
systems with a weak dipolar interaction for e=0.05, w , = l ,  
0 3 =  3.14X and the following values of the remaining parameters: 1) 
O= O M ,  O'=90°, p= 1 X lo-'; 2) O= OM , 0'=90°, p= 1.5X 3) 
O=54.6, O'=9O0, p= 1.5X lo-'; 4) O=OM, 01=85", p= 1.5X 

Hence it follows, first, that the distance between these 
straight lines increases and the minimum at 7,- 1/u3 deep- 
ens as E decreases. Conversely, as E increases, the straight 
lines approach, and the minimum degenerates into a step. 
Second, as the remaining parameters of the rf field vary, the 
portion of the plot of (5.8) between the straight lines (the 
left-hand wing of the minimum or the step) moves upward or 
downward, following the variation of M2,, (see Fig. 3). 

Figure 1 shows that TIP,, is most sensitive to the motion 
model in the region rr2 1/w3, while in the region of the 
principal minimum at r,we = 2 the curves for the two motion 
models merge under the definition of rr chosen in the equa- 
tions. Figures 2 and 3 show plots of the dependence of 
TIP,, on rr in the slow-motion region for various values of 
the parameters. Not only the depth of the corresponding 
minimum and its position, but also the roles of the different 
terms in (5.4) in the relaxation process vary with the param- 
eters. For example, when we take ~ = 0 . 0 5  and the angles 
have the magic values, i.e., when there is strong narrowing, 
the main contribution is made by the terms in 1/T(2) and 
l/T(,) induced by the nonuniformity of the rf field. As ?,I 

varies from 1 X to 1.5X a shift corresponding to a 
1.6-fold decrease in T,,,, , which is close to a 2.25-fold 
increase in ? , I ~ ,  occurs on the upper curves in Fig. 2. 

When 6 deviates from the magic value 8= OM 
=54.74", there is a rapid increase in the contribution of 
11T(2) in (5.4), which is expressed, like 11T2,, in terms of 
two-particle correlation functions and is, therefore, insensi- 
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FIG. 3. Plots of the dependence of T,,,, on T, in the slow-motional region 
(solid lines - independent motions; dashed lines - correlated motions) in 
systems with a strong dipolar interaction for ~ = 0 . 1 . 2 5 ,  w,=0.5, 
v =  1.5X and the following values of the remaining parameters: I) 
e = e M ,  e ' = 9 1 . 2 ~ ,  w , = ~ . I I x I o - ~ ;  2) e = e M ,  e'=90°,  
w3=4.44x 3) 8 =  O M ,  ~ 9 ' = 8 6 ~ ,  w3=9.32x lo-'; 4) 8 =  BM , 
8'=8S0, w3=9.32X 5) 8=54", 8'=90°,  w , = ~ : 6 2 , = 9 . 3 2 ~  

tive to the motion model (under the definition of 7, chosen). 
This property is clearly seen from the corresponding curves 
in Figs. 2 and 3. 

When the deviation of 8' from the magic value of 90" is 
sufficiently great, the contribution of l/T(,, , which is ex- 
pressed in terms of three-spin correlation functions that have 
a dependence on the motion model different from that of the 
two-particle functions, increases. Consequently, the minima 
on the curves for 8' = 85" in Fig. 2 for correlated and inde- 
pendent motions move in opposite directions away from the 
minimum of the curve for 8=54.6". This property of the 
curves enables us, in principle, to draw a qualitative conclu- 
sion regarding the motion model from the positions of the 
minima on the corresponding experimental plots of the tem- 
perature dependence. 

Conversely, when the deviation of 8' from 90" is small, 
the contribution of l/T(3, can decrease, as is demonstrated by 
the upper curve in Fig. 3. The value 8' = 91.2" was taken for 
it, since under the conditions selected the contribution of 

reaches its minimum value at this value of the angle. 
The degree of narrowing of the line decreases (E in- 

creases) in substances with a large value of M2d. In such 
cases, as is seen in Fig. 1 and Fig. 3, the minimum becomes 
indistinct and resembles a step. Motion can also be studied 
on the basis of such curves. In addition, as E increases, the 
sensitivity to the motion model increases due to the increase 
in the contributions of l/T(,) and l/T(,, , which are ex- 

pressed in terms of four- and five-particle correlation func- 
tions. For example, while the ratio between the values of 
l/T(3, for correlated and independent motion equals 1.5 in 
the limit rr+w, the ratios for 1/T(4) and 1/T(5) are equal to 
2 and 2.5. On the calculated curves with the magic values of 
8 and 8' this ratio equals 1.4 at rr= lo4 in the case of 
~ = 0 . 0 5  (Fig. 2). At ~ = 0 . 1 2 5  (Fig. 3), it equals 2.01, and at 
8' =91.2", it even increases to 2.1 1 because of the decrease 
in the contribution of l/T(3). As in the preceding case of Fig. 
2, qualitative conclusions regarding the motion model can be 
drawn in Fig. 3 by comparing the curves for 8 # 8, and 8' 
# 90°, although the comparison procedure changes. For this 
purpose we plotted a curve for 8= 54" and w3 = Mi:, in Fig. 
3. Then the values of 8' were determined separately for cor- 
related and independent motions from the condition that the 
values of Tlppp coincide at rr= lo4. Good agreement was 
obtained (as is seen in Fig. 3) for 8' = 85" and 8' = 86". The 
curves diverge as rr decreases. The curve for independent 
motions is appreciably higher than the curve for 8= 54", and 
the curve for correlated motions practically coincides with 
the latter, except in a small neighborhood about the mini- 
mum. This behavior of the curves for correlated motion 
arises because we have I / T ~ , , , - ~ M ~ ~ ~ ~ w ~ ~ ~  for the three- 
spin contribution in the limit rr--+w, and on the edge of the 
step we have l / ~ ~ , , , - ~ ~ ~ d , r ~ / 2 .  In the case of independent 
motions we have 3 Mi'pbl w:rr and Mi"pbrr/3, respectively. 
Therefore, when we achieve coincidence between the right- 
hand portions of the curves by varying Mi:, the steps di- 
verge by a factor of (312)~. The ratio for the five-spin con- 
tribution l/T(,) would be (512)~ for independent motions, as 
opposed to 1 for correlated motions. The ratios for the cal- 
culated curves are smaller than these values due to the pres- 
ence of other contributions in Eqs. (5.7) and (5.8). However, 
these differences are large enough to determine the type of 
motions by comparing calculated and experimental curves 
even when there are only rough estimates of the lattice sums 
and correlation functions. 

Above we discussed the qualitative aspect of the depen- 
dence of TIP,,, on the parameters of the rf field and the 
temperature. Quantitative separation of the various contribu- 
tions to Tlppp at each temperature can be accomplished by 
solving the system of equations obtained from (5.3) and (5.4) 
after plugging in the value of TIP,, measured for several 
values of the parameters. 

Thus, the foregoing analysis of the theoretical expres- 
sions obtained for the spin-lattice relaxation time in a triply 
rotating reference frame shows that the two-, three-, four-, 
and five-particle correlation functions can actually be studied 
on the basis of the temperature dependence of the effect of 
the rf field when its parameters are varied, and new detailed 
information regarding atomic and molecular mobility in the 
sample under investigation can ultimately be extracted. 
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APPENDIX A: 

We obtain explicit expressions for the coefficients of xe, which are listed briefly in Table 11. We introduce symbolic 
representations of the coefficients (2.13) in the form of triangles of three numbers: 

(All 

The correspondence rules are clear from a comparison with (2.13): the number at vertex q is equal to the coefficient in front 
of the terms bqrbqf. The coefficients (4.2) of have the following diagrammatic representations: 
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where an asterisk at one of the vertices denotes multiplication by A with the corresponding index. It is easy to symmetrize the 
coefficients and sum them in such diagrammatic representations. As a result, for the coefficients with five indices we obtain 

+ + 

+ + + + 
C33(i, jkql )  = -- 56 3 1 1 1>+4-;5 1 + : 1 ::;-$-< 1, 

+ - + + 
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Here, at the vertices we indicate the form of the operator, 
viz., I +  IF or If corresponding to the respective vertex in 
the operator expression instead of the lattice indices, since 
after symmetrization the indices referring to the same opera- 
tors can be positioned arbitrarily. The explicit forms of the 
coefficients in terms of the diagrams are written out accord- 
ing to the same rules as in (Al). However, now we have a 
product of two sums for two triangles, and this product has 
been symmetrized with respect to lattice indices referring to 
identical operators. The coefficients for 3F&"'(p)  are distin- 
guished by the replacement of each plus sign by a minus sign 
and of each minus sign by a plus sign in the diagrams. 

When the trace is taken in (2.15), the vertices with con- 
jugate operators should be joined in pairs in all possible 
ways in the coefficients (A3) for x e ( p )  and q , " ( p )  (we 
multiply the coefficients at the vertices) and divide by the 
number of such ways. This gives the sum of all the possible 
products of the eight coefficients bij  (just as the sum of the 
products of six such coefficients was formed in Sec. 3). In 
the approximation of infinite-dimensional ~ a t t i c e s ' ~ ~ ~ ~  we re- 
tain only the ones which do not contain coupling loops. They 
are: 

Loop formation can be avoided only if the vertices com- 
mon to two triangles are joined to one another in the coeffi- 
cients for m and -m. Furthermore, operators belonging to 
identical triangles should be paired (triangle to triangle) to 
find the "W" and "F" contributions, while the "X" con- 
tribution forms when all the operators are paired indepen- 
dently of their assignment to triangles. 

After summation over the lattice indices, each diagram 
(A4) gives a multiplier B ~ ,  since in the approximation of 
infinite-dimensional lattices, we neglect the sums with a 
small number of summations appearing because of the need 
in (A4) to eliminate the terms with coinciding lattice indices. 

The expression for M2(m,n) presented in Table I1 is ob- 
tained after summing the numerical coefficients in the form 
of the diagrams (A4) found according to the rules described 
and multiplying by the numerical coefficient appearing in 
(4.3) in front of the corresponding correlation function. 

Let us move on to coefficients with three lattice indices. 
In the case of { j k , i }  in (A2) the triangles touch along one 
side, on which one of the vertices has no operator (the free 
vertex I ) .  The three other vertices with operators should be 
joined in pairs to calculate the trace of (2.15). The formation 
of coupling loops on the lattice can be avoided only if a 
product, for example, bI ib i j ,  with a free vertex at an end and 
with one coupling (b i l )  along the common side of the tri- 
angle is taken in each triangle. Then the summation over the 
free vertex gives the multiplier B, and the coefficients take 
on the simple form 

where 

We note that in the contributions from the nonuniformity of 
the rf field we took vi= q , since the qi vary over macro- 
scopic distances. The frequency shift, which is identical for 
all spins, is assumed to be included in w e .  

The first two terms in the coefficient [ i j k ]  (A2) have 
one less summation over the lattice indices and should be 
omitted in the limit d 4 ~ .  For the other two we find, as in 
the preceding case, 

where 
B 77i D = - - -  

32w2w$ 202' 
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After forming the combinations of (A5) and (A6) listed 
in Table I1 and substituting them into (4.4), we find 

These expressions should be averaged over the nonunifor- 
mity of the rf field. The term that is linear in vi vanishes. 
Only the quadratic expression appearing in Eqs. (A7) in the 
form of a separate term remains. After multiplying through 
by the coefficients in (4.3), we obtain the result presented in 
the last column of Table 11. 
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