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1. INTRODUCTION tems, to our knowledge, has yet to be studied. 
In this paper we use a simple model to examine solitons 

Recently there has been steady interest in theoretical and and the specifically soliton contribution to the thermody- 
experimental investigations of various physical properties of namic characteristics in a one-dimensional model system 
systems close in their magnetic properties to one- with a noncollinear spin structure. 
dimensional systems. The interest in low-dimensional ob- 
jects can be explained by the fact that the physical properties 
of such systems differ dramatically in some respects from the 2- THE MODEL 

corresponding properties of three-dimensional magnetic ma- 
terials. One of the most interesting differences between 
quasi-one-dimensional (ID) or quasi-two-dimensional sys- 
tems and three-dimensional systems is that in describing 
their low-temperature thermodynamic properties we must al- 
low not only for linear excitations (magnons) but also for 
essentially nonlinear excitations: magnetic solitons, kinks 
(domain walls), and vortices. Although the density of non- 
linear excitations at low temperatures is low compared to the 
magnon density, occasionally the contribution of these exci- 
tations to the thermodynamic characteristics can dominate. 

Nonlinear excitations and their contribution to the ther- 
modynamic characteristics of one-dimensional systems have 
now been investigated for a number of scalar models of mag- 
netic materials (of the sine-Gordon type; see, e.g., Izyumov's 
review1), ferromagnets described by a three-dimensional unit 
vector, and collinear antiferromagnets described by the 
a - m o d e ~ . ~ - ~  Soliton solutions have also been studied for 
more complicated magnetic structures: amorphous magnetic 
material of the spin glass type?-7 multiple-sublattice mag- 
netic materials with a modulated magnetic structure of the 
CsCuC13 type? the four-sublattice antiferromagnet La2Cu0 

(see Ref. 9), and magnetic materials with triangular spin 
structure.1° Soliton states in noncollinear magnetic materials 
differ dramatically from solitons in collinear magnetic mate- 
rials: their description is based on dynamical equations for 
variables of a different type (say, a four-dimensional unit 
vector; see below), they differ in their topological classifica- 
tion, etc. 

Although noncollinear magnetic materials can be low- 
dimensional (e.g., the CsCuC13 compound mentioned earlier, 
magnetic materials with a triangular structure, and some mo- 
lybdates of rare-earth and transition metals with a chain-like 
spin structure1'), the thermodynamics of solitons in such sys- 

In analyzing the dynamical properties of a multiple- 
sublattice magnetic material we employ a phenomenological 
approach. Accordingly, the long-wave spin dynamics is de- 
scribed in terms of the angle of rotation of a "rigid" spin 
basis determining the equilibrium directions of the sublat- 
tices of the noncollinear magnetic material.12 The dynarnical 
variable here is the orthogonal rotation matrix Rik(r,t), 
which is specified at each point of the magnetic material and 
describes the rotation of the spins of the nth sublattice S ,  
from its equilibrium direction SIP) 

Following the general ideas of the method of effective 
~ a ~ r a n ~ i a n s ' ~ - ' ~  as applied to ordered media, we describe 
the dynamics of a system by a vector field Q determining a 
parametrization of the SO(3) group. The system Lagrangian 
is then expressed in terms of differential Cartan forms 
4 Q, JQ), 

In the exchange approximation the system Lagrangian is 
quadratic in o ( ~ , d ~ / d t )  and w(Q,~Q/ ax), 

where the dot and prime stand for the time and position 
derivatives, respectively. The symmetry of the tensors Aij 
and Bij is determined by the specific sublattice structure of 
the magnetic material (for details see Ref. 12). Note that in 
view of the non-Abelian nature of the SO(3) group the La- 
grangian (3) proves to be essentially nonlinear, which ex- 
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plains the existence of soliton solutions even for the bilinear- 
in-o Lagrangian (3). The same fact explains the non- 
Euclidean nature of the space of the field variable cp 
determining a parametrization of the SO(3) group, which 
leads to solitons with nontrivial topological properties (see 
below). 

In this paper we examine a simple model. We take a 
one-dimensional magnetic material and assume that both ten- 
sors in the Lagrangian (3), Aij and Bij,  are proportional to 
the unit tensor. In this case 

where x is the magnetic susceptibility, a is the transverse 
size of the system (or order of the lattice constant), g is the 
gyromagnetic ratio, and c is the velocity of spin waves in the 
linear theory. 

The most widespread representation of the field variable 
cp is in the form ~ = n t a n  8/2, where 8 is the value of the 
rotation angle, and n is the unit vector in the direction of 
rotation, n2= 1. With this parametrization the structure of the 
rotation matrix Rij and the Cartan forms w(~,o,dp) is deter- 
mined by the following relationships: 

Rij= Sij+ (1 - cos 8)(ninj- Sij) + gikjnk sin 8, 

wi= nid8+ sin @ani+ (1 -cos 8 ) ~ ~ ~ j n ~ o , d n j ,  (5) 

where sijk is the totally antisymmetric third-rank tensor. 
With another parametrization of the SO(3) group, 

namely via a unit four-dimensional vector 1, nonlinearly re- 
lated to the variable Q, 

the Lagrangian is quadratic in the components of vector I, 
and has the form typical of chiral models: 

and the nonlinearity of the system is determined by the geo- 
metric condition I;= 1. Note that the model is Lorentz- 
invariant (with a characteristic velocity c). For more general 
models of magnetic materials the Lorentz invariance may 
break down. 

To treat for relativistic interactions in the Lagrangian of 
the model we must allow for additional terms, whose various 
types were discussed in Ref. 12. The relativistic term sug- 
gested by Andreev and ~archenko" leads to magnetic an- 
isotropy and can be written in the form 

where wa(cp2)-oip2 for c p 2 9  1. Here wo corresponds to 
the energy of activation of spin waves emerging in such a 
model. According to (6), the ground state of the magnetic 
material corresponds to a well-defined angle cp (cp=O), 
which means that the system's symmetry with respect to 
homogeneous spin rotations can break and that this state con- 

forms to models in which the equilibrium directions of the 
spins are related to selected directions in the crystal. 

A remark is in order. Strictly speaking, such a model 
can be used only to describe amorphous magnetic materials 
of the spin glass type,'' and the results obtained on the basis 
of the Lagrangian (4) can be used only in studies of 1D 
magnetic materials with randomly frozen spins (such mate- 
rials were investigated in Ref. 12). With magnetic materials 
that have a finite number of sublattices (of the U02 and 
YMn03 types), the tensors Aij and Bij in the Lagrangian (3) 
contain a large number of independent components, in view 
of which there emerge two different characteristic velocities 
c, one for longitudinal waves and the other for transverse 
waves.'' Furthermore, with such generalization some inte- 
grals of motion discussed below [see Eqs. (IS)] become in- 
valid. 

On the other hand, for magnetic materials with pro- 
nounced anisotropy in the arrangement of the spins (helical 
magnetic materials and magnetic materials with triangular 
magnetic structure), the different directions of spin rotation 
are nonequivalent, and scalar models that allow for rotation 
only about one, easy-type, axis come into play. Such models 
were discussed in Refs. 8, 10, and 15. What is lost is the 
main feature of noncollinear antiferromagnets caused by the 
need to use a multicomponent dynamic variable that param- 
etrizes the complete SO(3) group. To emphasize this specific 
feature, we restrict our analysis to a model that has the high- 
est symmetry and is described by the Lagrangian (4); we also 
allow for the anisotropy energy in the simplest isotropic form 
(6). We discuss what statements become invalid when the 
model is generalized. 

3. SOLITON SOLUTIONS: GENERAL ANALYSIS AND 
QUASI-CLASSICAL QUANTIZATION 

Putting Q= ncp, we can write the Lagrangian in terms of 
the variables cp and n: 

Clearly, the general equation for the variable Q has a class 
of solutions of the form 

In a soliton of this type the unit vector precesses about an 
arbitrary constant vector a, i.e., i= [on]. 

It is convenient to write the equation for cp(x) in terms 
of the variable 8, with cp= tanOI2: 

The first integral of Eq. (9) is 

c2(g) + Zo2( I - cos 8) - wa( 8) = const, 
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and the structure of the solution can be established in quadra- 
tures for any type of function w,(8). Since in view of (6) 
w,(8)-+ wie2 as 8+0, the desired localized soliton solution 
with an exponentially decreasing function 8(x) exists for 
w2<w;. This condition is completely natural: the soliton 
frequency must be below the edge of the linear magnon 
spectrum. 

The coefficients of Eq. (10) are periodic with a minimum 
period of 2 a  and do not change when 27r- 8 is substituted 
for 8. This suggests two types of behavior of the function 
8(x). One corresponds to the angle 0 being unfolded to 
2 ~ ,  say 

The states with 8 = 0  and 8 = 2 a  correspond to the same 
value of the variable cp and are physically identical in view 
of the continuity of the solution 8= 8(x). In such a soliton 
there is always a point x=xo at which the value 0 = a  is 
attained, which corresponds to a discontinuity in the field cp 
of the form 

where no is an arbitrary unit vector (note that no can even 
vary with time, no= no(t)). Since rotations through an angle 
7r about the axes no and -no are identical, this discontinuity 
in the field cp does not disrupt the continuity of the state of 
the magnetic material. Since such a soliton corresponds to a 
contour that cannot be contracted to a point (see Ref. 5), the 
soliton of the first type has a nonzero topological charge (the 
principles of topological analysis of solitons were developed 
by Volovik and ~ i n e e v  16.17). 

For solitons of the second type the values of 8 from left 
and right coincide, 8( - a) = 8( + m) = 0,  and in view of the 
above-mentioned symmetry properties of Eq. (10) the value 
8= a is not reached and the function cp(x) is continuous. 
Such a soliton corresponds to a contour in the space of cp that 
can be contracted to a point, i.e., the topological charge of 
such a soliton is zero. 

A system with the Lagrangian (7) has the usual constants 
of motion: the energy 

and the momentum 

In the exchange approximation the system has two more vec- 
tor constants of motion: the spin angular momentum M and 
an additional integral of motion N, 

related to the symmetry of the O(4) group (Planck's constant 
in the definition of N is added for convenience). If relativistic 
interactions are considered [Eq. (6)], the angular momentum 
ceases to be conserved, but N remains a constant of motion 
of the system (N ceases to be a constant of motion when 
exchange energy of a more general type with nonunit tensors 
Aij and/or Bi j  is taken into account). 

The presence of an additional constant of motion makes 
the existence of dynamic two-parameter solitons possible. In 
the case of uniaxial f e r r~ma~ne t s '~  and antiferromagnets19 an 
additional constant of motion that ensures the stability of 
solitons has the simple meaning of the projection of the total 
magnetization on the preferred axis M, and can be directly 
used for quasi-classical quantization of solitons: the z projec- 
tion of the total spin of a soliton, equal to Mz/2po, where 
po is the Bohr magneton, must have an integral value. The 
meaning assigned to this value may be the number of mag- 
nons bound in a soliton (see, e.g., Ref. 18). Below we show 
that one of the projections of N plays a similar role in the 
quasi-classical quantization of solitons in the model of a 
multiple-sublattice magnetic material considered here. 

To this end it has proved convenient to introduce angular 
variables parametrizing the unit vector n: 

n=(cos a cos P ,  cos a sin P ,  sin a ) .  (16) 

In terms of the variables 8, a ,  and P the system Lagrangian 
assumes the form 

Selecting the constant vector w so that it is directed along the 
Z axis, we find that a soliton corresponding to Eqs. (8) and 
(9) has cp=cp(x), a=O, and p=wt+p , ,  where p, is the 
initial phase. The structure of the moving soliton can be ob- 
tained from (8) by employing the Lorentz transformation, 
i.e., by introducing the following substitutions: 
t - + r = ( t - x ~ / c ~ ) l ~  and x-+c=(x-Vt) l  y, with 
y = ( l  -v2/'.2)-1'2. 

For comparison let us discuss the properties of linear 
spin waves in the model (1). As shown in Ref. 12, in the 
linear approximation the equations of motion for cp describe 
three degenerate spin-wave branches of the form 

q= qoexp[i(kx- or)] (18) 

with a dispersion law w=(wi+c2k2)'", where % is a con- 
stant vector, and cp;-+0. In view of the degeneracy of the 
spectrum, both linearly and circularly polarized waves can be 
taken as the natural waves in the system. For instance, we 
can take a wave linearly polarized along the Z axis, q 

e,cos(kx- wt), and two circularly polarized waves in which 
a l e ,  9 
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which corresponds to a = 0 and P= kx - wt in our notation. 
These circularly polarized waves are the linear limit of the 
soliton (8). 

Let us establish the meaning of the constant of motion N 
for linear spin waves and for solitons. To this end we find the 
momenta that are the canonical conjugates of the angular 
variables a and P: 

Since the Lagrangian (17) is cyclic in the variable P,  the 
integral 

which has the meaning of action, is conserved. Clearly, 
8sin2e=[n~], i.e., according to the definition (15) for N we 
have Jg= hN, . Thus, the quantity N, can be interpreted as a 
quantum number. It is easy to show that for a linear spin 
wave we have E = h w(k) and P = hkN, , with the result that 

coincides with the number of the magnons of the spin wave 
with the circular polarization (19) (since for a delocalized 
wave the integral (22) is proportional to the size of the sys- 
tem, it is better to speak of the magnon density). For a soli- 
ton solution, q(x) rapidly decreases and the number N of 
magnons in the soliton is finite. Here for a localized soliton 
with a given N the energy E is lower than hwoN, so that 
such a soliton can be interpreted as a bound state of many 
magnons in a soliton. Note the marked difference between 
this model and a ferromagnet, in which the finite value of the 
integral N may correspond only to a nontopological localized 
soliton, while an infinite value of N corresponds to a topo- 
logical soliton (what is known as a T-kink). 

The Lorentz invariance of the system considered makes 
it possible, by starting with solutions of type (8), to easily 
construct a solution corresponding to a moving soliton. It is 
found that the additional integral of motion N=N(w) ex- 
pressed in terms of the frequency of precession in the refer- 
ence frame at rest remains invariant under Lorentz transfor- 
mations, i.e., N(w,V) =N(w,O) = N(w). Hence instead of 
the parameter w (the frequency in the reference frame in 
which the soliton is at rest) we can use N(o) ,  the number of 
magnons bound in the soliton, to classify solitons. 

Plugging (10) into (13) and (14) and using the equations 
of motion, we arrive at the following expressions for the two 
other constants of motion: 

where Eo is the energy of a precessing soliton at rest. Note 
that the relationship between P, V, and E for a soliton is the 
same as for a particle in relativistic mechanics. Furthermore, 
it can be shown that if the soliton energy is considered a 
function of the soliton momentum and the integral N, the 
following relations hold: 

Note that in deriving Eqs. (23) and (24) we did not use 
the specific form of the anisotropy energy w,. The only 
requirement here is that the form of w, allow for the exist- 
ence of soliton solutions with a rapidly decreasing function 
cp(x). 

4. THE SPECIFIC SOLITON STRUCTURE 

To determine the soliton structure we must specify the 
anisotropy energy w, . For the simple model considered here 
(a completely isotropic distribution of spins, as in a spin 
glass), we follow Ref. 12 and write this energy in the form 

where coo corresponds to the activation energy of the linear 
spin waves. Note that the ground state with q=O is stable 
under small perturbations for w;>0, irrespective of the sign 
and value of the parameter 6. Below we restrict our analysis 
to the case with b > 0. 

Proceeding from the Lagrangian (17) and the anisotropy 
energy (25), we arrive at the equations of motion for the 
variables 6, a, and P in the following form: 

6 
c2(nr  sin2 :) ' - (&sin2:) ' +sin a cos a sin2- 2 

A two-parameter soliton, whose general structure has been 
studied above, corresponds to a = 0 ,  P = wt - kx + P, , and 
8 = 8  ( t ) ,  where t=x-Vt,  k=vw/c2, and the function 
6 (5) satisfies the equation 

where we have introduced the notation xo=clwo and 
a = (w/ywo)2. 

A soliton solution exists only for ~ ~ < ( y w ~ ) ~ ,  i.e., 
a< 1. The explicit form of the solution depends on the pa- 
rameter b and the precession frequency w. For f l < b  
(w2< b( y ~ ~ ) ~ ) ,  the values of 6(- 03) and 8(+ w) are sure 
to differ by 2~ and the soliton is a topological one (i.e., has 
a nonzero topological charge). The distribution correspond- 
ing to such a soliton is 

where x, is an integration constant whose meaning is the 
coordinate of the center of the soliton at time t. For b> 1 
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such topological solitons, which can be called kinks, occur at 
all admissible frequencies. But for b< 1 ,  kinks occur only at 
fairly low frequencies, w2< b( yoo)2< ( yoo)2. If the fre- 
quency exceeds b( yoo)2 (b<SZ < 1 ), then the soliton has no 
topological charge, with 

8(- m) = 8(+ m), and the value 8= .rr is not reached. 
For b < 1, the frequency o = wo yb 'I2 is a singular point 

of Eq. (27). At such a frequency the nontrivial solution of 
this equation determines a delocalized "domain wall" sepa- 
rating states with 8 = 0  from the excited state with 8= T. 

Now this wall cannot be considered a localized soliton, since 
it corresponds to an infinitely high soliton energy and an 
infinitely large number N of magnons. If we have b< 1 and 
0 2 = b (  y ~ ~ ) ~ ( l  ?a) ,  8 4 0 ,  the soliton consists of two such 
walls separated by a large distance of order xoln(lll 61). In 
the limit o-i wo, the amplitude of the dynamic soliton tends 
to zero, 8(0) ( o i -  w2)lI2, and the soliton degenerates. 

For b> 1 ,  a topological soliton solution exists for all 
frequency values that obey the inequality 02< ( y ~ ~ ) ~ .  In 
the limit 0.4 yoo, the solution (28) becomes an algebraic 
soliton: 

8 
tan - = 

X 0 
for w - + y o o ,  b > l .  (30) 

2 y(x-Vt-x,) 

The value of the constant of motion N for solitons speci- 
fied by (28) and (29) is given by the following expression 
(the reader will recall that at a given frequency o this value 
is independent of the soliton velocity V): 

We see that for b< 1 the function N(w) is nonmonotonic: 
for o - + O  and o-i ywo we have N(w)-10, while for 
024 b( yoo)2 the value of N(w) increases indefinitely. But 
if b<  1 holds, the function N(w) monotonically increases 
with w, reaching its maximum value at o= yoo (at the point 
where the soliton becomes algebraic), with d N l d o 4 ~ .  

The value of the soliton energy in all cases can be writ- 
ten as 

(32) 

If b = 1 holds, the topological soliton simplifies consid- 
erably: 

8 y(1 - f l ) 1 1 2 ( ~ - ~ t - ~ , )  
tan - = exp 

4 X 0 

and the expressions for the constants of motion N and E 
assume the form 

In this case, for a soliton at rest (V=O) we can write a 
simple formula for the N-dependence of E: 

Clearly, Eq. (34) shows that the lowest soliton energy 
Eo corresponds to N=O, and the states with N Z 0 can be 
interpreted as excited soliton states. The characteristic value 
of Eo can be estimated by setting 5=3(2p0)2/a3~ and 
c-Jalfi ( J  is the exchange integral), assuming that the 
atomic spin S is unity. With these data we obtain No- 1 and 
Eo- fro, [the latter relationship, which is important for ana- 
lyzing the soliton contribution to the thermodynamic charac- 
teristics of the system, is determined more accurately below, 
in Eq. (47)l. The scaling that No- 1 means that quantum 
effects may play an important role in the dynamics of inter- 
nal modes in a soliton.20 Note that the corresponding value 
for ferromagnets is much larger than unity, with the result 
that the dynamics of internal modes in a soliton is 
quasi-classical.'s A detailed study of the quantum properties 
of solitons can be done along the same line of reasoning as 
for collinear ant iferr~ma~nets .~~ Such analysis, however, lies 
outside the scope of the present investigation. 

5. CALCULATING THE SOLITON DENSITY 

Because the energy of solitons in quasi-one-dimensional 
systems is finite, at finite temperature T the thermodynamic- 
equilibrium density n, of these nonlinear excitations is non- 
zero. Since Eo- h wo, the soliton density is comparable to 
the magnon density in the linear theory (this definitely sets 
antiferromagnets apart from ferromagnets, where we have 
E o P h o o  and n, is small). 

For the case of two-parameter solitons considered in this 
paper, the thermodynamic-equilibrium soliton density n, in 
the approximation of an ideal soliton gas with no soliton- 
magnon interaction is 

where L is the length of the system, and E =  E(p,Jp) is the 
soliton energy written as a function of the generalized mo- 
menta p and Jp , the canonical conjugates of the two gener- 
alized coordinates, x ,  and P, , which determine the soliton's 
coordinate and phase. 

In calculating the integrals in (35) it is convenient to go 
from integration with respect to the momentum Jp= hN to 
integration with respect to E.  This combined with the second 
relationship in (24) yields the following expression for n, in 
the low-temperature limit (T4Eo)  of interest to us: 
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where ~ ~ = f i ~ ~  is the magnon activation energy, and 
p= p(b) is a somewhat cumbersome function of parameter 
b (later we will see that Eq. (36) is valid if a stronger in- 
equality holds: T< .so< Eo). 

As noted earlier, Eq. (35) is written without allowing for 
the interaction of the soliton and the linear excitations (mag- 
nons) in the system. As demonstrated in the pioneering paper 
of Krumhansl and ~chrieffer?' such an interaction leads to a 
characteristic interference between solitons and magnons 
and substantial corrections to the kink density. Currie et a1.22 
suggested a phenomenological approach allowing for such 
interference. In this picture, both kinks and magnons are con- 
sidered components of an ideal gas, and the soliton-magnon 
interaction is reduced to renormalizing the kink energy. The 
reason for renormalization is that when the system has a 
kink, (a) localized magnon modes arise, and (b) the number 
of magnon degrees of freedom decreases and the density of 
magnon states diminishes. In the approximation in which the 
kink density is low, the variation of the system's free energy 
is additive, and for this reason Currie et al." suggested con- 
sidering this variation a contribution to the kink energy and 
"forgetting" about the soliton-magnon interaction entirely. 
Here the thermodynamic-equilibrium kink density n, is still 
determined by (35) but E is replaced by E +  Z, where Z is 
the effective kink free energy variation caused by the inter- 
action with magnons. Such an approach became known as 
"soliton phenomenology." 

Thus, to determine the effect of soliton-magnon interac- 
tion on the kink density we must analyze the spectrum of 
linear excitations in the system with a kink and calculate the 
contribution to the free energy related, first, to the variation 
in the density of magnon states and, second, to the emer- 
gence of additional modes localized at the soliton. Hence to 
calculate Z we must analyze the magnon spectrum super- 
posed on the soliton background. It can easily be shown that 
at low temperatures the main contribution to the integral in 
(35) is provided by solitons with low velocities and preces- 
sion frequencies. Consequently, it is sufficient to calculate 
the magnon spectrum superposed on the kink at rest, for 
which w=V=O. 

Setting 8= 8,(x) + 6(x,t) in the equations of motion 
(26), where Bs(x) corresponds to a soliton, and assuming 
that 6 ,  a ,  and p are much smaller than unity, we linearize 
these equations in the functions 6(x,t),  a(x,t), and 
p(x,t). The result is a system of three separate equations: 

Assuming that 6, a , P  - exp(iot) and introducing the 

functions ,u= asin(eJ2) and q =  Psin(8J2) instead of a and 
p, respectively, we amve at Schrijdinger equations for 6, 
p, and 7: 

The equation for 7 coincides with that for p. 
The potentials U l(f?s) and U2(Bs) are determined by the 

soliton's structure and have the form 

By an appropriate change of variable the differential equa- 
tions (38) with the potentials (39) can be reduced to gener- 
alized Lam6 equations with four regular singular points, and 
their solutions can be written in terms of P-symbols, which 
makes them quite complicated.23 Hence in what follows we 
restrict our discussion to the particular case b = 1 .  Then the 
potentials U and U2 simplify considerably and are reduced 
to a simple reflectionless potential: 

The spectrum and wave functions of the Schrodinger 
equation with the potential (40) are well-known: the poten- 
tial has a single discrete level corresponding to the eigen- 
value A o = O  and a localized eigenfunction 
f 0 ( ~ )  - sech(xIxO), and a continuous spectrum with 
A k =  1 + ( k ~ ~ ) ~  and the wave functions 

X 
fk(x) - ( tanh - - ikxo 

Xo 

Thus, in the model of the magnetic material considered 
here with b = 1, there are three degenerate Goldstone modes 
with zero frequency and three degenerate delocalized 
branches of the spectrum with the wave functions (41) and a 
dispersion law w2(k) = o;+ c2k2, which coincides with the 
dispersion law of spin waves in a magnetic material without 
a soliton. However, in the presence of a kink the wave func- 
tion of magnons with the wave vector k becomes distorted 
due to the interaction with the kink, and an asymptotic phase 
shift A(k) occurs, which for the wave functions (41) is equal 
to - 2arctan(kro). This in turn leads to a change in the den- 
sity of magnon states: 
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The variation in the magnon free energy and, hence, in 
the kink energy is in general22 

The first term on the right-hand side of Eq. (43) is caused by 
the variation in the density of states of the continuous spec- 
trum (n labels the various branches of the continuous spec- 
trum), and the second by the emergence of modes localized 
at the kink: Z;, is the partition function of such modes, and 
the prime indicates that the levels are measured from the 
ground state, with the result that zero-frequency modes con- 
tribute nothing to C. 

Since in our model of a magnetic material with b = 1 all 
three localized modes are of the Goldstone type and have 
zero frequency and all three branches of the continuous spec- 
trum are degenerate, we can write 

where w(k)= (mi+ c'k2)'l2. 
Calculating the integral in (44) with allowance for (42) 

at temperatures that are low (T4co=hoo)  and high 
(TScO)  compared to the magnon energy, we find 

T 
C = 3 l n - - 3 T l n 2  for T S e o  

Eo  
(45) 

and C-0 for T ~ E o .  Clearly, the result for T a c o  is three 
times the contribution in the sine-Gordon model:' where the 
potential generated by the kink for the magnons is also of the 
form (40). 

Hence at low temperatures ( T ~ E ~ )  the thermodynamic- 
equilibrium kink density is determined by a formula of the 
same type as that without soliton-magnon interference [see 
Eq. (36)] and n,-Texp(-EolT), while at temperatures that 
are high compared to the magnon energy ( T S  E ~ )  the power 
to which the temperature is raised in the pre-exponential fac- 
tor changes considerably: 

Note that here we consider only temperatures for which 
the kink density is low, i.e., T4Eo.  But Eq. (46) is valid for 
T S E ~ ,  and hence it is valid in the interval E ~ < T < E ~ .  For 
such an interval to exist the magnon activation energy eo 
must be considerably lower than the soliton energy Eo. Com- 
paring these two energies, we obtain 

In contrast to a ferromagnet, this quantity is independent of 
relativistic constants and is determined solely by the ex- 
change interaction. Using an expression for the magnon ve- 
locity c typical of antiferrornagnets: we find that 
( E ~ I E ~ ) -  1/S, where S is the value of the atomic spin, and 
the expression contains no other small constants. Hence the 

temperature interval in which Eq. (46) is valid exists for 
S S  1, i.e., in the quasi-classical limit. The same situation is 
true for collinear an t i f e r r~ma~ne t s .~ ,~~  

6. THE DYNAMIC STRUCTURE FACTOR OF KINKS 

One of the most important characteristics of a magnetic 
system is the dynamic structure factor Gij(q,v), which de- 
termines the neutron inelastic scattering cross section. This 
factor is the Fourier transform in positions and time of the 
correlation function of the spin density S(x,t): 

Gij(q,v)= 1 I dx dtexp [i(qx- vt)](Si(x,t)~,(O,O)). 

(48) 

Here angle brackets stand for statistical averaging over the 
equilibrium state of the system. Naturally, in the high- 
frequency range the main contribution to the dynamic struc- 
ture factor is determined by linear excitations (magnons). 
However, in the low-frequency range the main contribution 
to the dynamic structure factor is provided by 
thermodynamic-equilibrium topological solitons. In particu- 
lar, as shown in Ref. 24, the latter form the central peak in 
the neutron scattering cross section. For this reason we are 
interested only in the part of the dynamic structure factor 
related to solitons. 

If there is only one soliton in the system, statistical av- 
eraging in (48) presupposes averaging over the soliton's 
phase space (i.e., over the soliton's initial coordinate x, and 
initial phase P, and over the respective momenta p and 
J p )  with the Gibbs distribution function, 

where T is the temperature, E + C  is the soliton energy 
renormalized by the interaction with magnons, and Z is the 
partition function: 

Calculating the partition function is in many respects 
similar to calculating the equilibrium soliton density, which 
we did in Sec. 5. In the low-temperature limit we are inter- 
ested in (T4Eo) we arrive at the following expression: 
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The spin density S(x,t) is a linear combination of sub- 
lattice spins S,(x,t), with the result that the system acquires 
a large set of dynamic structure factors related to the corr- 
elators of the various components of the magnetization vec- 
tors of the different sublattices. However, in accordance with 
the idea of the method of effective Lagrangians as applied to 
magnetically ordered media, in a phenomenological descrip- 
tion of long-wave excitations we can introduce no more than 
three mutually orthogonal unit vectors l,, a= 1,2,3, instead 
of analyzing the complex sublattice structure, and consider 
rotation operations of the form (1) on these vectors." Here, 
in the neutron scattering problem, we must deal with the 
correlators of the components of the three vectors I, and the 
correlators related to the magnetization vector m. The corr- 
elators of the vectors m determine the central peak for a zero 
wave vector of the neutrons, and the correlators of the vec- 
tors I,, which act as distinctive antiferromagnetism vectors, 
cause the appearance of the central peak near the reciprocal 
lattice vector QB= d a ,  with a the lattice constant (see, e.g., 
Ref. 3 and 25). 

We start with the correlator of the (mi(x,t)mj(O,O)) 
type. For a two-sublattice antiferromagnet the corresponding 
dynamic structure factor was calculated in Ref. 26. In accor- 
dance with (15), the magnetic moment density is 

X 
m= -{ne+;l sin 6 + ( l  -cos 0)[nn]), 

g 

and the class of soliton solutions (8) with a= 0 (n,=O) 
considered above corresponds to 

X .  
m,=-(8 cos p - o  sin P sin 0), 

g 

X 
my=-(e sin p+w cos p  sin O), 

g 
(53) 

Clearly, the nonzero dynamic structure factors are G::) and 
Gf,m) - where ~ ( ,~ )= (m+m-) , , ,  , with m .  =m,+ im, . 

Plugging the distribution of magnetization in a soliton 
[Eq. (28)] into (53) and the correlator (49) and calculating 
the Fourier transforms, we amve at the following expression 
for the dynamic structure factor G ~ ~ ) ( q , v )  at low tempera- 
tures ( T 4  E,): 

where y= ( I  - v2/q2~2)  -IJ2. In many respects the structure 
of ~ ( , ~ ) ( q , v )  is similar to that of (54) but is much more 
involved, so that we do not give it here. 

If the system contains N, solitons instead of one but the 
soliton density n,= N, lL is low, the corresponding structure 
factor can be obtained from (54) by replacing the factor 
1/L with n, . 

What is important is that all the dynamic structure fac- 
tors determined by correlators of the (mimi) type are small 
since they are proportional to the susceptibility x of the mag- 
netic material, ~4 1 ,  with the result that the amplitude of the 
central peak near the zero wave vector, the amplitude pro- 
portional to these dynamic structure factors, is fairly low. 

The dynamic structure factors related to the correlators 
of the vectors 1, are expressed, in accordance with (I) ,  in 
terms of the correlators of the different components 
Rij(x,t) of the rotation matrix as follows: 

~ ! $ ~ ( q  + Q ~ ,  v) = I I dx d t  exdi(qx- vt)} 

These dynamic structure factors contain no such small 
factor as x and hence the amplitude of the magnetic Bragg 
peak is much higher than the amplitude of the peak near 
q = 0. The general structure of G;;kI is similar to that of (54), 
but the temperature dependence is somewhat different: 

G ~ ~ ~ ~ - T ~ / ~  exp - -(y- 1) . [ :  I 
Summing up, we can say that the properties of the soli- 

ton gas in multiple-sublattice noncollinear antiferromagnets 
differ considerably from the corresponding properties of 
magnetic materials with a collinear structure, both ferromag- 
nets and antiferromagnets. These differences manifest them- 
selves in a number of observable characteristics of quasi- 
one-dimensional magnetic materials, and not only in the 
dynamic structure factors but also in such a statistical char- 
acteristic observed in neutron scattering experiments as the 
correlation radius 6 of the soliton gas, 6= 1/2n,. Clearly, for 
T< Eo the main (exponential) temperature dependence of 6 
is universal for both collinear and noncollinear magnetic ma- 
terials, [- TPexp(EolT), but the temperature dependences of 
the pre-exponential factor for these types of magnetic mate- 
rials are different: p = 2 for the noncollinear magnetic mate- 
rials considered here [see Eq. (46)], but p =  1 for collinear 
antiferromagnets (see Refs. 4, 20, and 25). 
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