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Instabilities and waves in multilayered profiled shells for inertial confinement fusion and the 
atmospheres of stars and planets are considered. The paper gives analytical expressions for 
oscillation spectra and growth rates of dynamic instabilities for power-function profiles of 
shells, and for polytropic stars and atmospheres where the pressure is a power function of density 
( P =  c ~ n s t , ~ ( ~ + ' ) ' ~ ) .  The polytropic description is widely used in astrophysics. One can 
prove that in this description the entropy distribution near the free surface of a star is given by a 
power function S= cons&(- Ar)', where Ar is measured with respect to the star surface; 
in this paper the entropy is defined as PIpY, which is, in fact, a function of entropy. In high- 
energy applications the entropy is variable because of both initial conditions and effect of 
X-rays and penetrating fast particles. The polytropic index N, exponent 8, and adiabatic exponent 
y are related through the equation 8= 1 -N( y- 1 ), and the density is proportional to 
(- Ar)N. Previously only the simplest case of uniform density (8= 1 and N= 0) ,  corresponding 
to Pekeris'well-known solution (see Ref. 5, Sec. 17.7 or Ref. 51, Sec. 76), was described 
by analytical expressions. The paper gives a more general solution valid at arbitrary values of N 
and 8. The problem proves to be similar to the Schrodinger equation for the Coulomb 
potential. The spectrum is separated into pairs of acoustic and entropic-rotational modes. Their 
relation means that one acoustic and one entropic-rotational mode correspond to each 
mode number n .  The frequencies and growth rates of these modes are different, while the fields 
of pressure variations in Lagrangian particles are identical. O 1996 American Institute of 
Physics. [ S  1063-7761(96)01508-91 

1. INTRODUCTION 

Instabilities, oscillations, and waves in stratified struc- 
tures in a gravitational field'-9 have been analyzed. In some 
cases the gravitation potential is generated by gravitating 
masses, in others the effective gravitation is due to accelera- 
tion of matter. Gravitating systems are of importance in the 
physics of the atmosphere and oceans, and in astrophysics. 
These are planetary atmospheres, the ocean thermocline, or 
stars. The dynamic behavior of the system near its hydro- 
static equilibrium is interesting not only in studies of natural 
phenomena, but also for technological applications7-9 related 
to the physics of high energy density. 

In geo- and astrophysical applications, the stratification 
profile is derived from measurements of oscillation 
frequencies.4-6 These measurements are related to variations 
in observed parameters, such as brightness and frequency 
Doppler shifts?5 and the generation of forced oscillations 
due to tidal interaction between components of double stars, 
in simulations of star capture, and in calculations of correc- 
tions to Kepler orbits (apsidal rotation etc.)I0-l4 is investi- 
gated. Oscillations and waves conduct energy from the deep 
layers compressed by the weight of the upper layers, which 
results in heating of the surface This is an excep- 
tionally important physical effect closely related to formation 
of the chromosphere and, apparently, probably to enhance- 
ment of the solar wind. 

In applications related to power generation, fuel must be 

compressed to the highest possible degree and heated, while 
the power consumption in the process should be minimized. 
To this end, one needs shells with a high aspect ratio (i.e., 
thin shells with a large radius-to-thickness ratio). Such 
shells, in turn, are very susceptible to the symmetry of the 
~ o m ~ r e s s i o n . ~ ~ - ~ ~  In order to upgrade their stability, first, 
shell materials are "smeared" and profiled structures are 
f a b r i ~ a t e d ; ~ ~ - ~ ~  second, specialized techniques of sputtering 
or deposition of layers for fabricating very smooth, profiled, 
multilayered shell surfaces are Techniques for 
manufacturing smooth, profiled, multilayered shells and 
characterizing their roughness in the nanometer range using 
atomic microscopy are described in these publications. 

In profiled, multilayered shells, the density p usually in- 
creases with the depth from one layer to the next. The outer 
ablated layer is usually fabricated from a material of a very 
low density, such as foam (see Refs. 39-41).') In such sys- 
tems, the susceptibility to inhomogeneities of the compress- 
ing laser beam or particle (electron or ion) beam is lower. 
Besides, the "spread" or moderation of density gradients 
may lead to a lower instability growth rate. Since the insta- 
bility of such systems is exponential, the effect of spread 
may also be strong, namely exponential. Thus, the problem 
is to investigate the stability as a function of the profiles of 
density p or entropy s .  

In addition to the physics of high energy density, another 
very interesting application of the techniques described in 
the paper is helioseismology. This term is applied to the 
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important field of present-day solar physics dedicated to so- 
lar oscillations. This branch of science has been making 
steady progress. This research is closely related to the theory 
of stellar oscillations. Abundant literature on this topic is 
available; several monographs"6 and  review^^^-^' have been 
published. 

Solar oscillations were detected for the first time in the 
1960s .~~ Progress in helioseismology is primarily driven by 
improvements in experimental techniques. Highly sensitive 
and efficient methods of detection are used in this field. Ex- 
perimental data are accumulated for a long time and then 
processed by computers. This research often involves expen- 
sive and sophisticated programs, such as observations in 
Antarctic exploiting the long polar day or space experiments. 
Helioseismology allows us to refine our concepts about solar 
structure. Some problems, naturally, remain unsolved. They 
include the internal differential rotation and effect of mag- 
netic field. There is also the problem of deep internal oscil- 
lations synchronized over many (tens of thousands) periods 
(160-min cycle, etc.). 

Physical theories of solar structure and computer simu- 
lations of its spectra seem to be equally important in heli- 
oseismology. Radiation times for stars (EIE, where E is the 
internal star energy and E is its luminosity) are larger than 
dynamic times by many orders of magnitudes. If the turbu- 
lent viscosity due to convection is neglected, the equations 
describing the dynamics of a nonrotating, nonmagnetic star 
take the form 

pv,+p(vV)v+ grad p-pg=O, (2) 

s,+(v grad s)=O, s=plpY, (3) 

where G is the gravitational constant. Let us linearize these 
equations about the hydrostatic point. The dependent vari- 
ables are written in the form 

where the functions po, V=O, P, and describe the hydro- 
static equilibrium, and p, v, p ,  and cp are perturbations. The 
linearized equations are usually reduced to a system of four 
first-order equations, or to two second-order equations, or to 
one fourth-order equation.4-6 Two derivatives dldr come 
from Eqs. (1)-(3), and another two from Eq. (4). The equa- 
tion system is supplemented with four boundary 
 condition^.^-^ Two of them are defined at the center, and two 
on the free star surface. The resulting equation system is 
usually integrated from the center to the surface. The square 
of the frequency is a real value. Using this frequency as a 
variable parameter, the solution is fitted to the condition on 
the surface by the shooting method. The points at which the 
discrepancy with the surface conditions passes across zero 
define the eigenmodes of the system. 

Cowling's approximation4-6 is often used in calculations 
because it provides fairly good accuracy when the spherical 
harmonic number 1 is not too large. This approximation ig- 
nores perturbations of the gravitation potential. In this case, 

the system of equations is second order with respect to 
dldr and is supplemented with two boundary conditions. 
The spectrum is again calculated numerically by the shooting 
method. Thus a set of frequencies w, is determined, where 
n = 0,1,2, . . . is the number of nodes of the corresponding 
mode on the r axis. One cannot perform sufficiently accurate 
calculations for n higher than some threshold value deter- 
mined by the approximation error. 

Thus computer simulations use the entropy distribution 
S(r) derived from a model of the Sun, and yield unperturbed 
functions po, P, T, co, and a, where T and co are the un- 
perturbed distributions of temperature and adiabatic speed of 
sound, respectively. The calculation is performed by inte- 
grating the hydrostatic and Poisson equations supplemented 
with the thermodynamic equation of state. Then the spectrum 
is calculated numerically by integrating the linearized system 
of equations and varying w ,  and the calculations are com- 
pared to measurements. If a discrepancy between calculated 
and measured spectra is detected, parameters of the physical 
model are varied. Such procedures have been brought to 
perfe~tion.~-~ The procedure is somewhat inconvenient be- 
cause it is not straightforward, so that the fitting of calcula- 
tions to experimental spectra demands a lot of CPU time. 

In these circumstances, it would be desirable, without 
doubt, to develop an acceptable analytical technique to 
streamline this complicated procedure. To this end, some 
approaches have been developed. One of them relies on the 
quasi-classical description, which is valid for nP 1, whereas 
the other uses exact solutions of the linearized equation sys- 
tem for some specific shapes of the function S(r), which are 
irrelevant to real physical conditions. The cases of (a) a den- 
sity jump, (b) constant unperturbed temperature, 
T(r)= const, and (c) constant unperturbed density, 
po= const, have been studied. The density jump has been 
studied more substantially in the incompressible 
approximation.7.8 This is the only distribution for which the 
analytical theory of nonlinear effects has been deve~oped.~ .~~ 
In an incompressible fluid, the jump may separate uniform 
half spaces. Under nondissipative conditions the problem has 
no length parameter. In the case of a compressible medium, 
there is a length parameter deriving from the weight com- 
pression, namely the scale height H of a homogeneous atmo- 
sphere. Therefore the result depends on the parameter kH 
(k is the wave number) or the Mach number, so short-range 
and long-wave asymptotics can be intr~duced.~' 

In qualitative interpretations and estimates, an isother- 
mal problem is often ~onsidered.~) The linearized system, as 
will be demonstrated below, includes the functions H,(r), 
Hp(r), and ci(r) derived from S(r). The first two functions 
are given by two inverse logarithmic derivatives: 

H,= kdrld In S(r), Hp= kdrld In po(r). ( 5 )  

In the isothermal case, the distributions of S and po are ex- 
ponential, and the functions in Eq. (5) and c i  are constant. 
Therefore we obtain a system with constant coefficients. The 
case (b) is popular with researchers partly because this sys- 
tem is so simple. This model demonstrates separation of 
acoustic and entropic-rotational modes, and a tendency of the 
entropic-rotational modes to the Brunt-Vaisala frequency or 
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growth rate by the short-range limit. An exponential distri- 
bution of po in an incompressible liquid was first introduced 
in a classic paper by ~ a ~ l e i ~ h . ~ ~  Oscillations and instabilities 
in case (b) have been investigated many times both with and 
without compression under conditions of both stable and un- 
stable stratification with graded and stepped profiles.4-698 

The distribution in case (c) presents an interesting ex- 
ample. This problem was solved by ~ekeris?' This statement 
of the problem was reconsidered several times (see Ref. 5 1, 
Sec. 76 and Ref. 5, Sec. 17.7). This interest is quite natural 
since analytical solutions of such problems are rare. 

In this paper we consider power-law stratification pro- 
files. They are often good approximations to real conditions. 
Oscillation frequencies and growth rates of instabilities have 
been determined in the case of an arbitrary polytropic distri- 
bution described by the equation P =  const, p(N+l)'N. We 
assume in this paper that this function describes only the 
hydrostatic, i.e. unpertu~bed, states and derives from a pre- 
scribed entropy distribution. It is known that in the case of 
stars with such distributions the problem of hydrostatic dis- 
tributions is reduced to the well-studied Emden equation, 
whose solutions for a spherical object with inherent gravita- 
tional field was tabulated long ago. This is why the poly- 
tropic model is so popular among the researchers. The ther- 
modynamic functions included in the dynamic equations are 
related to one another through the equation of state and ther- 
modynamic relations, and these relations are not directly af- 
fected by the polytropic equation. To complete the descrip- 
tion of the polytropic model, note that sometimes the 
polytropic dependence is defined as a power relation be- 
tween pressure and density with a coefficient and exponent 
which is constant throughout the studied system. This may 
be the case of an ideal gas with a uniform distribution of 
entropy, or the power-law approximation of a "cold" equa- 
tion of state of a condensed matter, or a degenerate Fermi 
distribution. These cases are discussed separately in Sec. 4. 
They are simpler than the general case since the number of 
unknowns is fewer by one and the energy equation can be 
omitted. 

Near a vacuum interface, the gas-dynamic approach ap- 
plies outside a thin layer whose depth is determined by the 
mean free path l f .  Thus the solutions given in the paper 
apply only to the dynamics of perturbations with long waves, 
A S l f .  

The paper is organized as follows. Section 2 describes 
the problem statement and approximations used in different 
cases. It is demonstrated that they yield good accuracy when 
the harmonic numbers 1  are not too small. 

In Sec. 3 we will discuss the description of pressure 
perturbations in Lagrangian variables. Important isobaric 
solutions?) in which the pressure in Lagrangian particles re- 
mains unchanged during motion, and the transformation of 
the Rayleigh equation to the equation for through the in- 
version of density po indicate the importance of this descrip- 
tion. 

In the case 0=0,  N= ll(y- 1), with entropy uniform 
distribution, the problem can be formulated in the enthalpy- 
and-potential variables. This topic is discussed in Sec. 4. 

In Sec. 5 equations describing the general polytropic 
case are derived and solved. 

In Sec. 6 the solutions are applied to a description of 
instabilities in multilayered shells. 

2. APPROXIMATIONS USED IN SOLVING THE PROBLEM 

Perturbations of the gravitational potential cp are of mi- 
nor importance as compared to density perturbations. The 
functions cp are spread over the space, since they describe a 
response to a density perturbation averaged over the mass 
localization region: 

where the integral is taken over all of space and p is the 
density perturbation. As a result of integration, spatial fluc- 
tuations of cp are smoothed. It is reasonable, therefore, to 
ignore perturbations of the potential. This approximation is 
called Cowling's approximation.4-6 It rapidly approaches the 
exact solution as 1  and/or n increases. The accuracy of this 
approximation is better in the case of a star with a larger 
fraction of its mass concentrated around its center. 

In this approximation the system of equations describing 
the perturbation dynamics is of second order. It is usually 
assumed that the basic mathematical properties of the spec- 
tral problem are not affected by the approximation (see Ref. 
51, Sec. 79). The approximation is often used in oceanology, 
meteorology, and astrophysics. In this paper we will consider 
only solutions obtained in this approximation. Furthermore, 
since Cowling's approximation applies only when 1 is suffi- 
ciently large, it is natural to consider the planar problem. 
Another natural simplification is the omission of the contri- 
bution to the gravitational field from the peripheral layer. It 
seems justified in Cowling's approximation because, as was 
stated above, the approximation is more accurate in model- 
ling stars with a larger fraction of mass concentrated around 
the center. Therefore the acceleration g may be approxi- 
mately considered as independent of r near the free surface 
of the star. 

3. RAYLEIGH EQUATION 

This section is dedicated to the case of an incompress- 
ible fluid, which is easier to analyze than that of a compress- 
ible fluid. It seems reasonable to start our study with this 
case. In the model described above, we obtain instead of the 
equation system (1)-(4) the following equations: 

pI+ (V grad p) = 0, (6)  

pv,+p(vV)v+ grad p-pg=0, (7) 

div v=O. (8) 

In the unperturbed state the matter is at rest, i.e., all functions 
are constant with time. Under these conditions, Eqs. (6)-(8) 
are reduced to the equation of static balance of forces: 

Hereinafter we denote the coordinates as x and y (the 
y-axis is taken instead of the radius r). The corresponding 
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components of velocity are u and v. The unknown perturba- 
tions p, u, v ,  and p are functions of y. The dependence on 
x and t is described by the factor exp(iot+ikx). 

Let us expand the equation system (6)-(8) in small per- 
turbations about the equilibrium state. After standard trans- 
formations, we obtain a linearized system of the form 

where the prime means differentiation with respect to y. 
Eliminating the unknown functions p and u ,  whose deriva- 
tives are not included in the equations, we obtain 

After eliminating v  from Eq. (lo), we obtain 

Equation (1 1) is inconvenient because it contains the second 
derivative of po but if we eliminate p ,  we obtain the classical 
Rayleigh equation49 

written in dimensional and dimensionless forms. Here we 
have written [= ky , R = o /  m, and the function Hp([) is 
derived from Eq. (5). 

Later we will need the pressure P(a,b,t) expressed in 
terms of the Lagrangian coordinates a and b. We expand this 
pressure in a small perturbation: 

+p(y)exp(iot+ ikx), (13) 

where $%(a, b, t ' )dtl  is the Lagrangian particle displace- 
ment. We assume that this particle with current coordinates 
x(t) = a  and y(t) = b was at the point with coordinates x and 
y at t=  0. To first order in a small perturbation around the 
state of rest, omitting the terms of the second and higher 
orders with respect to the perturbation amplitude, we have 

and also p(a,b,t) =p(x,y , t )  in the same approximation. 
Similar relations are also valid for other physical parameters. 
Hence the P(a ,  b, t) - Po(y) perturbation of the pressure in a 
Lagrangian particle after exp(iot+ikx) is fractured out is 

In deriving Eq. (14) we used Eq. (9). Let us replace p with 
in the system of two equations (10) using Eq. (14). Then 

the system of equations takes the form 

After solving Eqs. (15) with respect to v  and v; we obtain 

We differentiate Eq. (16) with respect to 6 and substitute the 
resulting derivative v ;  into Eq. (17). After collecting and 
canceling out similar terms, we obtain a second-order equa- 
tion for $ in the form 

It is clear that, like Eq. (12) and unlike Eq. ( l l ) ,  it does not 
contain the second derivative of po and differs from the clas- 
sical equation (12) only in the sign of I j ; .  

It turns out that Eqs. (12) and (18) are closely related (it 
will be demonstrated below from the inversion transforma- 
tion). Specifically, let us consider Eq. (12). Assume that the 
density profile po is such that the function po(6) has constant 
asymptotic limits po(+ m) and po(- m) as [-+ Z m. Equa- 
tion (12) includes the derivative (In h); which tends to zero 
as 6-+ ?m.  Under these conditions, a physically acceptable 
spectrum can be found only if the perturbations decay at 
infinity: 

It follows from the Sturm-Liouville spectral theorem, 
which applies to Eqs. (12) and (18),~) that (a) the spectrum of 
the problems are defined by (12) and (19) is discrete; (b) it 
has an infinite, countable set of eigenvalues in the case of 
continuous or piecewise continuous function po; (c) the ei- 
genvalues C12 are real and their signs depend on the sign of 
the derivative namely, if there are sections of both in- 
creasing and decreasing po, there are both positive and nega- 
tive infinite subspectra; if po is a monotonic function, the 
values C12 are either positive or negative, depending on the 
sign of ph ; (d) density jumps generate isolated modes; (e) 
the values R 2  are bounded, namely, there are the maximum 
positive values (R2),, and minimum negative (R2),i, of 
this parameter; there exist strict bounds for these limits: 
(R2),, cannot be larger than unity, and cannot be 
smaller than minus unity; the specific values of these limits 
depend on the variations in po([) on intervals of 5 of the 
order of unity; (a2),, , (R2),i,-+0 in the transition from a 
distribution with a wide spread to a flat distribution; (f) the 
spectrum of R 2  has only one accumulation point, namely 
R 2  = 0. 

Now let us consider the transformation which inverts the 
density: 
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The spectral problem defined by (12) and (19) for the in- 
verted profile has the form 

(In p?); . 
(vinv)h+(In p:Y);(viw);-[l + ( a  . lnV) ] v;nV=O, 

The cases with other interesting boundary conditions were 
discussed in a previous publication.30 Let us perform the 
transformation described by Eq. (20). We should replace 
po-+ Upo, then 5--+ - 6, and again denote the new coordinate 
as 5. As a result, we have 

Let us compare the spectral problems (12), (19), and 
(21). It is surprising that, given an arbitrary distribution po, 
the spectra of these two problems are identical? 

This hidden point symmetry is an example of isospectral 
deformation of the distribution of po described by Eq. (12). It 
is, apparently, similar to the Miura transformation and Back- 
lund transformations in the case of the Schrodinger equation. 
It is possible that, as in the case of the Backlund transforma- 
tions, there is a countable set of various isospectral deforma- 
tions, and Eq. (22) presents one simple example of them. 

The rigorous proof of the theorem expressed by Eq. (22) 
was given in Ref. 52. It is based on cluster expansions and 
transformations of 3-by-3 matrices, and is extremely compli- 
cated and lengthy. Another proof was given in Ref. 8, Sec. 
6.2.3. The property (22) was noted by ~ i k a e l i a n ? ~  who per- 
formed numerical calculations of spectra for stepped distri- 
butions of po. In addition, he gave explicit characteristic 
equations for the cases when the number of steps m was 
small (m=  1, 2, and 3). The hypothesis about the invariance 
described by Eq. (22) was based on these particular charac- 
teristic equations. In connection with the problem of hydro- 
dynamic stability for a laser thermonuclear fusion, 
~ ikae l ian '~  considered the optimization problem of finding 
the distribution with the largest (R2),in under certain limi- 
tations on the shape of po such that po cannot be reduced to 
a ~onstant.~) This problem is based on a particular inverse 
problem of deriving po from properties of the spectrum. The 
property (22) was discovered in the process of solving the 
optimization and inverse problems. 

Equation (18) for the Lagrangian pressure yields a very 
simple and physically clear proof of the existence of hidden 
symmetry which differ from earlier 

Let us formulate the spectral problem in terms of @. We 
derive boundary conditions for Eq. (1 8). From the definition 
of @ [Eq. (14)], the first equation of the system (lo), and the 
definition of the variable 5, we have 

Consider the boundary conditions given by Eq. (19). For 
PO-+ const -t and 5-t + m  the function v(5) decays expo- 
nentially as exp(+n. Therefore v;(+w)=O. Hence we ob- 
tain, with due account of Eqs. (19) and (23), the boundary 
conditions for the Lagrangigan pressure: 

Let us compare the problems (12), (19), (21) and (18), 
(24). The spectrum of the problem (8), (12), and (19) coin- 
cides with that of (18), (24). This is obvious because we 
consider the same problem formulated in terms of the differ- 
ent variables v and @. The problems defined by (12) and (19) 
and by (21) are related to one other through the inversion 
(20). The problems defined by (21) and by (1 8) and (24) are 
identical, so these spectra are also identical, q.e.d. 

The eigenfunctions vhV coincide with those of the per- 
turbation @ of the Lagrange pressure for the direct problem 
and vice versa. This is an interesting corollary of the new 
proof to the theorem. 

We must note another property closely related to the 
Lagrange pressure. Using a direct substitution, one can prove 
that the classical equation (12) has solutions which satisfy 
one of the boundary conditions in (19) and have the form 

These solutions occupy a prominent position in the dynamics 
of heavy liquids and gases. The first of them describes a 
gravitational wave, and the second the Rayleigh-Taylor 
i n ~ t a b i l i t ~ . ~ ~ . ~ ~ ~ ~ ~  The solutions (25) are isobaric. This means 
that during motion the pressure in Lagrangian particles is 
constant ($=O). The latter result is derived from Eqs. (23) 
and (25). The gravitational wave n2= 1 corresponds to the 
fundamental mode in Cowling's classification. 

If follows from the isobaric condition that these solu- 
tions can also be generalized to compressible liquid. In fact, 
the pressure in Lagrange particles is constant, so in the adia- 
batic approximation, when the particles are thermally insu- 
lated, the particle volume is also constant, which implies that 
the solutions (25) exist for an arbitrary distribution of density 
in an incompressible medium or of entropy in a compressible 
one. Moreover, the equations of state may be arbitrary and 
different for different Lagrangian particles. Another conse- 
quence is that div v=O holds for these solutions. The first 
solution in (25) is a linear limit of nonlinear trochoidal 
waves.27929 The trochoidal waves are rotational and can be 
generalized to the case of cylindrical symmetry.27*29*53 A lin- 
ear gravitational wave on a plane interface [Eq. (25)] can be 
generalized for constant g to the case of spherical geometry. 
This is the Kelvin wave with the spectrum 

where g = G MI R ~ ,  M and R are the mass and radius of the 
star, respectively (Ref. 5, p. 237). An important point is that 
the density is uniform and the acceleration is a linear func- 
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tion of radius. In the cylindrical geometry, this dependence 
between the acceleration and radius is related to rotation of 
trochoidal waves. 

It is clear that the solutions (25) do not belong to those 
of Eq. (21) because the inverted equation is transformed to 
that for i ,  and for this problem statement the solutions (25) 
vanish. 

The above reasoning demonstrates the importance of 
stating the problem in terms of the Lagrangian pressure. 

4. THE CASE OF A POLYTROPE COINCIDENT WITH THE 
ADIABAT 

Let the polytrope exponent (N+ l)IN in the equation 
P cx phN+l)lN coincide with the adiabatic exponent y. In this 
case the entropy distribution over the matter of the star or 
shell is uniform. There are no free parameters. The unper- 
turbed distributions of the thermodynamic parameters is 
uniquely determined. Owing to the isentropic condition, the 
problem of the perturbation dynamics has one thennody- 
namic variable. Any thermodynamic variable may be consid- 
ered as the independent variable. The equations take a sim- 
pler form if enthalpy is selected as an independent variable. 
In Eq. (2), we have (grad p)lp= grad H,  where H is the 
enthalpy. Since the derivable forces in Eq. (2) are from a 
potential, the circulation's conserved and potential theory ap- 
plies. The continuity equation (1) and the Bernoulli equation, 
which is an integral of Eq. (2), are transformed to 

H,+c2Acp+( grad H grad cp)=O, 

cpt+ (grad cp)212+~+gy = 0, 

where v=  grad cp, and H =c21(y- 1). By eliminating H 
from this system of equations, we obtain the following equa- 
tion for the potential: 

The linearized equation system has the form 

where c i  corresponds to the unperturbed distribution, 
c := (~ -  I)(-y)g, Ho=(-y)g, and h and cp are thepertur- 
bations of the enthalpy and potential, respectively. Since the 
unperturbed potential is trivial (uniform), the same symbol 
denotes both unperturbed and perturbed potentials. By elimi- 
nating h from the Eqs. (26) and linearizing the equation for 
the potential, we obtain 

(y-  l)ycp"+cpr-[02/g+(y- 1)k2y]cp=0. (27) 

Let us transform to dimensionless variables and substitute 
cp(()=exp(-Of(5). Then Eq. (27) takes the form 

The solutions of Eq. (28) are expressed in terms of con- 
fluent hypergeometric functions. A brief description of these 
functions is given in the book by Landau and ~ i f s h i t s ~ ~  in 
connection with solutions of the Schriidinger equation in the 
Coulomb field. The general solution with two arbitrary con- 
stants is a sum of a partial solution regular at the origin and 
a singular one. It has the form 

where F ( a ,  y,x) is the confluent hypergeometric function, 

As usual, the spectrum is determined by two boundary 
conditions. One condition determines the ratio of the con- 
stants C , , ~ I C , ~ ~ ~  (a solution of a linear equation is arbitrary to 
within a constant factor), and the second condition can be 
satisfied only by introducing a specific relation (dispersion 
relation) between the frequency and wave number. In this 
problem one condition is defined at (-y)=O (on the free 
surface of the star), the other at a large depth as ( -  y) t w. If 
we compare our problem to the Schrodinger equation for the 
Coulomb potential, the free surface corresponds to the 
atomic center, r = 0.  

Let us analyze the boundary conditions on the free sur- 
face of the star. The familiar kinematic and dynamic bound- 
ary conditions have the form 

where the function 

defines the perturbed free surface, vo= - elk defines the un- 
perturbed position of the surface, and 77 is the small pertur- 
bation. If the star has a boundary with vacuum, then E = 0. 
But it is more convenient to shift the boundary and consider 
the solution in the case when the star has a boundary with a 
region of nonzero constant pressure equal to 
[( y- 1)g/ y k ~ ; ~ ~ ]  yl(y-l)eY'(Y-l), then to let this pressure go 
to zero concurrently with e .  Since the dynamic condition for 
the total pressure ( P + ~ ) [ , =  const yields HI,= const, 
H=H(P+p) ,  the condition ~ ( , = g e  means that the total 
pressure is constant on the boundary y =s(x,t). The value 
HI, equals the unperturbed enthalpy on the boundary. 

Note that on the isobaric boundary we have i =0,  irre- 
spective of the full pressure on this isobaric surface. If the 
pressure on this surface is zero and po(vO) = 0 holds, as in 
the case discussed here, when po(y) = const(- y) " ( Y - l )  

holds, then the Eulerian perturbation of the pressure 
p = i  +peg 7 [Eq. (14)] is zero on the boundary, which is 
also the zero-pressure surface. We will demonstrate below 
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that the perturbations cp, v ,  and 7 are finite everywhere in the 
bounded region, including the boundary with the vacuum. 

Let us linearize the conditions (30) and (31). We obtain 

i ~ ~ - c p ' J _ ~ = O ,  i ~ c p ) - ~ + g ~ = O .  (32) 

Eliminating 17 from Eqs. (32), we obtain 

cp;I-E-fi2cpI-e=~. (33) 

We substitute the general solution described by Eq. (29) 
into Eq. (33) and determine the ratio of the constants. We 
have 

For brevity, the confluent hypergeometric functions of the 
first and second independent solutions in Eq. (29) are de- 
noted as F, and F2, respectively. The values of the functions 
exp(-0, F1 ,  F2, (F1); and (F2); at the point 5= -8, 
where ~4 1, are finite. As & t o ,  the expression in braces in 
Eq. (34) tends to [- (y-2)l(y- 1)]&-"(~-'). The terms of 
Eq. (34) including F1 not included in the braces yield 
~X~(E)[ (F~) ; - (R~+ l)Fl]. We rewrite the latter expression 
taking into account the relation 

As a result, it takes the form [( y- 1) y](R4- 1 ) E ,  which 
retains only the lowest order term of the &-expansion. Finally 
we have 

Note that the factor R4-  1 is related to the isobaric solutions 
given by Eq. (25). 

It follows from Eq. (35) that the singular solution in Eq. 
(29) should be rejected in order to satisfy the condition on 
the boundary with the vacuum. Thus the solution satisfying 
the upper boundary condition is 

Now let us try to satisfy the lower boundary condition 
defined at a large depth inside the star. We fix the wave- 
length A .  For ( - y ) S  llk the relative variation of the func- 
tion c:(~) in Eq. (26) over a length order the wavelength is 
small. Equation (27) is approximated by cp';*-cp=O at 
(-[)a 1. Its general solution (to within algebraic factors 
multiplying the exponential functions) consists of growing 
exponentials and damping and has the form 

It is clear that the perturbation described by Eq. (37) should 
decay with the depth, which implies 

The condition (38) determines the spectrum of the problem. 
In order to find the spectrum, let us calculate the coeffi- 

cients aim, and ad,,, the linearly independent solutions in Eq. 
(37). These functions vary more slowly than exponentials. 
We need the asymptotic expansions of the confluent hyper- 
geometric function F (see Ref. 54): 

where T (a )  is the gamma-function. In evaluating the expo- 
nents, the absolute values of both x and - x must be taken as 
small as possible. The asymptotic series G is 

Substituting the expansion (39) into Eq. (36), we have 

where b= 1/[2(y- I)]. 
The component that grows in the limit 5--, - in Eq. 

(40) drops out if 

where m = 0,1,2, . . . , or in dimensional variables if 

since the gamma-function r [ ( l -  R2)b] in the denominator 
of the first term on the right-hand side of Eq. (40) tends to 
infinity in this case. Equations (41) and (42) define the de- 
sired eigenvalue spectrum. 

Let us write expressions for the eigenfunctions. Under 
the condition (41), Eq. (36) takes the form 

We employ the useful relation 

derived in the theory of confluent hypergeometric functions. 
The expression for cp can be transformed using this relation 
to 

The series which defines F is finite for negative integer val- 
ues of the first argument [see the expansion of F in Eq. (29)l. 
In this case, it is a polynomial of power m. Given the for- 
mulas for such polynomials~4 we can express the eigenfunc- 
tions corresponding to the interesting values of 5 (&0) as 
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where p= l l ( y -  1 ) .  The polynomial multiplying the expo- 
nential function in Eq. (43) is proportional to the generalized 
Laguerre polynomial L?- ' I ( -  2 5)  since 

(see Ref. 55, p. 806). In the case of the hydrogen atom, the 
upper indices of the Lagueue polynomial incorporated in the 
radial functions are integers depending on the orbital quan- 
tum moment I .  The functions in Eq. (43) are normalized so 
that the perturbation amplitude is unity on the star surface 
[ d o )  = 1 I. 

5. DESCRIPTION OF AN ARBITRARY POLYTROPE 

Let the polytropic exponent (N+ l)IN be a parameter 
independent of the adiabatic exponent y. In this case we 
have a nonzero index 0 of the entropy distribution compen- 
sating for the difference between ( N +  1)IN and y.  Then the 
force in the Euler equation (2) cannot be expressed as the 
gradient of some potential, and the expression v =  Vq is not 
valid, in contrast to the case discussed in the previous sec- 
tion. 

Let us rewrite the equations of continuity, momentum 
and energy conservation (1)-(3) in the form 

dp  -=- 
d d  

d t  
pdivv, -=- 

d t  dt + ( v v ) ,  

p v , + p ( v  V)v= - grad p+pg,  (45) 

Let us find the unperturbed solution. To this end, distribu- 
tions of thermodynamic functions in hydrostatic equilibrium 
must be calculated. We integrate the hydrostatic equation (9)  
with g =  lgl, g= (0,-g) together with the polytrope 
P = constppr+ ''IN and the adiabat P = Sp,Y . As a result, we 
have 

The origin on the vertical y-axis is selected so that the plane 
y=O coincides with the unperturbed boundary with the 
vacuum. In this section we consider the dynamics of pertur- 
bations of the states described by Eqs. (47) and (48). The 
solution of the respective spectral problem should include 
only powers of the distributions of po and S, and the factor 
multiplying (-gy) in the equation for ci .  

Let us start by linearizing the system of equations (44)- 
(46). Following the standard procedure, we obtain 

iwp+phu= div v ,  (49) 

2 imp - pogv = -poco div v ,  (52) 

where the perturbations are denoted, as in the previous sec- 
tions, by p, u,  u ,  and p. In deriving Eq. (52) we have used 
Eq. (9).  

In the derivation of Eqs. (13) and (14), the perturbed 
pressure in a Lagrangian particle was defined by Eq. (14). 
Since the condition of incompressibility was not used in this 
derivation, Eq. (14) is valid in both incompressible and com- 
pressible cases. 

Following Sec. 3, is it interesting to derive a spectral 
equation with 5 as an unknown parameter. To this end, let us 
supplement the equation system (49)-(52) with the equation 
defining b. As a result, we have a system consisting of the 
five equations (49)-(52) and (14) for the five unknown func- 
tions, p, u, v, p ,  and b. This system has the form 

Equation (53) is the mass conservation equation (49) with 
the right-hand side transformed according to Eqs. (14) and 
(52). Equations (54) and (55) describe conservation of the 
momentum components. Equation (56) is identical to Eq. 
(14), and Eq. (57) is a combination of Eqs. (14) and (52). If 
we disregard the physical meaning of the parameter b, Eq. 
(56) can be considered as a formal definition of the addi- 
tional unknown b. 

Let us start eliminating the unknowns. First of all, we 
eliminate u and p, which are included in the equation system 
in algebraic form. We can express p in all the equations in 
terms of $ through Eq. (56), which is algebraic, i.e., does not 
include derivatives. After these transformations, we obtain a 
system of two equations for the unknowns v and 5 similar to 
Eq. (15) for incompressible media 

By solving the linear system (58) for the unknowns v 
and v ' , we obtain expressions for v and v ' in terms of $ and 
6' similar into Eqs. (16) and (17). After substituting the 
expression for v into that for v ', we obtain a second-order 
equation with respect to b similar to Eq. (18), whose coeffi- 
cient includes only first derivatives of po and S with respect 
to y or t = k y .  After some manipulation, this equation as- 
sumes the form 
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where the local relative scale parameters H ,  and H p  are 

as was stated above. 
Let us substitute the expressions for H ,  and H p  associ- 

ated with the equilibrium polytropic distribution described 
by Eqs. (47) and (48) into Eq. (59). After simple calcula- 
tions, we obtain 

We compare this with the equation for the confluent hyper- 
geometric function54 

One can see that Eq. (60) can be transformed into Eq. 
(61) if the &dependence of the factor multliplying $ is elimi- 
nated. In order to cancel out the term and transform Eq. 
(60) into Eq. (61), we introduce the variables, 6 = exp(0f 
and 5= - 212. The equation for f takes the form of Eq. (61) 
with the coefficients 

The general solution of Eq. (61) is54 

Therefore the desired general solution of Eq. (60) has the 
form 

where a is defined by Eq. (62). 
The dispersion relation is derived from the boundary 

conditions. Let us proceed to the analysis of these conditions. 
We start with the boundary condition on the free boundary. 
Assume that this is the boundary with vacuum. Then the 
unperturbed boundary coincides with the plane t = O ,  as fol- 
lows from Eqs. (47) and (48). The perturbed pressure in La- 
grangian particles vanishes on the free boundary because it is 
an isobaric surface. Since the free boundary is at 5=0 ,  we 
should impose the condition 

It is clear that this condition (64) implies that the param- 
eter of the general solution (63) satisfies 

c 1 = 0 .  (65) 

In fact, we have F ( a , ~ , 0 ) =  1 ,  and ( - 5 ) N + 1  vanishes at 
( - 5)  = 0 since, as will be demonstrated below, N+ 1 > 0 .  

Let us investigate the internal boundary condition. Inside 
the system, the solution given by Eq. (63), as in the case 
considered in Sec. 4 [Eqs. (37) and (38)], is a sum of the 

growing and decaying exponentials because the speed of 
sound increases with the depth, the medium becomes asymp- 
totically incompressible, and relative changes in the coeffi- 
cients of Eq. (60) over a length of order X are small far from 
the vacuum boundary. The necessary condition is that the 
solution should decay as ( - 5 )  --la. 

Let us find the factor at the exponent that increases with 
( -  5 ) .  We derive the asymptotic form of the solution (63) 
with the condition (65) using Eq. (39). After this substitution 
we have 

The factor multiplying e - t  must vanish so the function 
T ( a + N +  1 )  must be infinite. This implies the condition 

After substituting the expression for a in Eq. (62) into 
Eq. (67), we have the desired dispersion relation: 

The solution of Eq. (68) is 

This spectrum should be supplemented with the fundamental 
mode 1 (see below). 

The physical meaning of the roots R: and R: in Eq. 
(69) is clear if we consider the asymptotic forms in the limit 
m 4 w .  The expansion of the right-hand side of Eq. (69) at 
large m yields 

It follows from the expansion (70) that the first root cor- 
responding to high frequencies is associated with acoustic 
waves, and the second with entropic-rotational modes. The 
frequencies of the latter go to zero in the isentropic case, 
when $ = 0 .  For $<0 (stability) we have O;>O in Eq. (69) 
and for $>0 we have f l ;<0,  which corresponds to the un- 
stable condition. We see that the spectrum splits into pairs of 
acoustic and entropic-rotational or gravitational modes. Ac- 
cording to the terminology suggested by Cowling, the former 
are called p-modes and the latter g-modes (p means pressure 
and g gravitation). These pairs have identical eigenfunctions 
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The expressions for the other unknown function described by 
Eqs. (53)-(57) contain frequency, so the functions describ- 
ing acoustic and entropic-rotational modes are different. 

Let us express the functions in Eq. (71) in terms of the 
Laguerre polynomials: 

To compare the spectrum defined by Eq. (69) with that 
derived in Sec. 4, we take 6= 1 - N( y- 1 )  = 0 .  One can eas- 
ily check that in this case the spectrum of acoustic or 
p-modes 0; [Eq. (69)] is identical to that determined in Sec. 
4 [Eq. (42)l. The only difference is the presence of the fun- 
damental or f-mode. According to Cowling's 
cla~sification,4-~ p- and g-modes are separated by the 
f-mode. The spectrum defined by Eq. (42) consists of a 
countable set of acoustic modes with m a  1 and the first 
gravitational mode. It corresponds to rn = 0 in Eq. (42). This 
mode is called fundamental. The frequency of the acoustic 
modes becomes infinite in the incompressible limit y-+m 
[Eqs. (42) and (69)], while the frequencies of the gravita- 
tional modes remain finite. 

The fundamental mode is not included in the spectrum 
defined by Eq. (69) because this spectrum was derived from 
Eq. (59) for the perturbation of in Lagrangian particles, 
whereas in the case of the f-mode this pressure is identically 
equal to zero because the isobaric surfaces are "frozen."" 
Therefore the respective eigenfunction cannot be derived 
from Eq. (59). 

Let us check our results using measurements of solar 
oscillations. The comparison is shown in Fig. 1. The solid 
curves of R(1) were plotted by converting experimental data 
from Refs. 56 and 57. We assumed R = w/  m, where g is 
the acceleration on the surface, k = \I-/R, and R  is the 
star radius. The variables R and I are more convenient than 
o and I because the functions R(1) are nearly flat. The cal- 
culations are shown in Fig. l by lines of circles. Figure 1 
shows calculations in the isentropic case, 6=0.  Varying 0 
by + 0.1 has little effect on the spectrum of R .  

We can see the satisfactory agreement between the 
theory and experiment. The fundamental mode is not suscep- 
tible to the thermodynamic state of the Lagrangian particles27 
because the isobars are "frozen." Therefore its frequency 
0 equals unity with good accuracy throughout the range of 

FIG. 1 .  Comparison of calculations (circles) with experimental data on solar 
oscillations (solid curves). Curves of fl versus the harmonic number I are 
given for the f-mode and the first seven p-modes. The left line of circles 
corresponds to y=5/3, the right line to y= 1.3. 

1 .  The frequency R of the p-modes decreases with 1 in the 
case of the mode concentrated near the surface, probably 
owing to a drop in the effective adiabatic exponent due to 
ionization, which is important near the surface. 

6. INSTABILITY OF SHELLS WITH POWER-LAW PROFILES 

It is well known that in the case of shells used in inertial 
confinement experiments the artificial gravitation is due to 
the acceleration of the reference frame connected to the shell 
material. Typical curves of the power of a compressing beam 
versus time, P , ( t ) ,  power released due to fusion, P  b ( t ) ,  and 
shell radius, R ( t ) ,  are given in Fig. 2. The duration and 
sometimes the shape of the compressing pulse are predeter- 
mined by the target hydrodynamics. The short pulse of re- 
leased power is centered around the point of maximum shell 
compression. 

The process includes a brief stage 1-2 (Fig. 2b) in which 
the shell is set in motion and the stage of shell acceleration 
towards the center, when its velocity increases. There is an 

FIG. 2. (a) Power of the compressing pulse, 
P,(r), and released power Pb(f); (b) radial co- 
ordinate R(r) of the shell driven by the com- 
pressing pulse. 
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FIG. 3. Comparison between (I) narrow and (2) spread-out profiles for the 
case (a) p ( - a )  # 0 and (b) p ( - ~ ) = 0 .  The latter corresponds to a Free 
lower boundary. 

FIG. 4. Stepped distribution of density in a multilayered shell and its con- 
tinuous approximation. 

inflection point 3 at which the acceleration changes its sign. 
Then the shell is decelerated by the thrust generated by the 
fuel (stage 3-4), stopped (point 4) ,  and flies apart. 

In the acceleration stage the external pressure is higher 
than the internal pressure. Therefore the points a and d to 
which the accelerating pa and decelerating pd pressures are 
applied are located outside and inside the shell, respectively 
(Fig. 2b). In the deceleration stage these points exchange 
their locations. The instability develops in the outside layers 
of the shell in the acceleration stage and in the outside layers 
in the deceleration stage. In the stage 2-3 the instability can 
disrupt the shell, which ends the compression. In the decel- 
eration stage instability causes mixing of the hot fuel with 
the cold shell material, which results in a lower efficiency of 
the power generation. 

Let us discuss the instability in the acceleration stage. Is 
it worthwhile to coat the shell with layers of gradually de- 
creasing density on the outside surface in order to reduce the 
growth rate of unstable modes? On one hand, it seems that a 
decrease in the gradients of po or S should lead to a decrease 
in the instability growth rate at fixed A.  But on the other 
hand, if an arbitrarily stratified shell is bounded below by a 
free surface, then an additional isobaric mode with the 
growth rate r2 = - f12 = - 1 It has the maxi- 
mum possible growth rate.7' It seems that spreading out the 
density profile is useless, at least in the case of laser com- 
pression, when the boundary conditions on the ablation front 
are close to those on a free boundary. Given this reasoning, 
investigators usually analyze the instability damping taking 
stepped profiles with a finite ratio ln[p,,(cf~)lp~(-cf~)]=l as 
shown in Fig. 3a, when there is no unstable f-mode and the 
effect of profiling is self-evident. 

But the situation may be quite different. Consider a 
deep, spread-out distribution of the density po. It may be 

either stepped or continuous (Fig. 4). The steps 1, 2, . . . 
correspond to the shell compressing the fuel (step 1) the shell 
2 protecting the fuel from preheat by superthermal electrons 
and x-rays, and the transitional layer 3 between the ablation 
layer 4 and the high-density layers 1 and 2. The function 
shown in Fig. 4 is normalized to the minimum length-the 
thickness dmi, of layer I-and its density p,, (the subscript 
0 of the density function indicating that the function de- 
scribes the unperturbed hydrostatic distribution is omitted 
here and below). We consider a model of a real multilayered 
shell fairly adequate from the dynamical viewpoint. The 
model distribution is composed of one material, whose en- 
tropy is discontinuous on the boundaries between layers. The 
masses of the layers are comparable, and their structure is 
similar to that of typical multilayered shells designed for the 
National Ignition ~ a c i l i t ~ . ~ ~ , ~ ~  The ratios In(p,lpn) and 
In(dnld,) are much larger than unity (here d l  ,d2, . . . ,dn and 
p1 ,p2, . . . ,pn are the thicknesses and densities of consecu- 
tive layers, respectively). This distribution has been defined 
above as spread-out and strongly profiled. 

The stepped distribution can be approximated by a con- 
tinuous one. If the approximating curve is approximately lin- 
ear in the In(-y), In(p) plane, as shown in Fig. 4, the corre- 
sponding profile is approximately described by a power law. 

The arrows i and a in Fig. 4 indicate the initial position 
of the outside boundary of the shell and the current position 
of the ablation front, which propagates through the ablated 
material. The point (- y) = 0 is on the inside surface of the 
shell. Let us denote the current coordinate of the ablation 
front by (-yo). It was said above that (-y,) is notably 
larger than the thicknesses of first high-density shells. In the 
acceleration stage the modes with wavelengths smaller than 

309 JETP 83 (Z), August 1996 



the large scale (-y,) are more important because a large- 
scale mode takes a long time to develop. 

An important point is that the modes I related to the 
ablation front and modes 2 due to the wide spread of the 
profile are separated in space. The modes I are concentrated 
near the ablation front, and the modes 2 are near the bound- 
ary ( -  y )  = 0. The development of the dangerous modes 2, 
which can disrupt the high-density shell, is independent of 
the situation on the ablation front, which is far from the 
region of the modes 2. 

The growth rate r2= -R2 of the modes 2 are deter- 
mined by Eq. (69) with the minus sign. Our interest is in the 
fastest growing mode of the countable set of the modes 2. Its 
squared growth rate is calculated by taking m =0: 

The analysis of Eq. (72) indicates that the squared growth 
rate r2 can be scaled down by taking a broader profile (Fig. 
5). The instability exists in the region 

In the case of incompressible media ( y = m) the instabil- 
ity condition is N<O. The value N =  - 1 defines a natural 
physical limit for the class of possible power-function distri- 
butions. In the limit N-, - 1 ,or 8 4  y the temperature gradi- 
ent becomes infinite. This case corresponds to a profile in 
which the masses of the consecutive layers are equal to each 
other. It follows from Eq. (72) that in this case the squared 
growth rate satisfies r2-+ 1 (see also Fig. 5). Thus, in order 
to reduce the squared growth rate, one must create a distri- 
bution of mass among layers such that the integral Spdy 
diverges at the low-density boundary. This statement is illus- 
trated by Fig. 5. 

FIG. 5. Damping of instability in profiled shells with masses of the 
outside layers larger than those of inside layers. In such shells we 
have N>  - 1. The square of the instability growth rate K divided 
by the classical limiting growth rate a is plotted against N. The 
curves 1, 2, and 3 correspond to the indices y=20, 513, and 1.2, 
respectively. The extreme values of y are close to those in the 
incompressible and isothermal cases. 
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