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An expression is obtained on the basis of kinetic analysis for the energy flux of electromagnetic 
waves in a hot magnetized plasma for quasitransverse propagation with respect to the 
magnetic field. This expression takes account of the effect of electron of kinetic energy transport 
induced by the hf field in the presence of cyclotron absorption. It is shown that the 
influence of dissipation on the ray paths near resonance is of the same order as the diffraction 
corrections. O 1996 American Institute of Physics. [S1063-7761(96)01408-41 

1. INTRODUCTION 

The determination of the energy characteristics of a mac- 
roscopic electromagnetic field in a dissipative medium is tra- 
ditionally considered to be one of the complicated problems 
of the electrodynamics of continuous media. According to 
the current view, in analyzing this problem one cannot use a 
universal phenomenological approach and obtain an expres- 
sion for the energy flux density in the propagating wave 
without adducing a specific model of the dissipative pro- 
cesses (see, e.g., Refs. 1-3). In this study the problem of an 
energy flux of steady electromagnetic radiation is treated to a 
hot, magnetized plasma in the region of a cyclotron reso- 
nance. Its solution is of interest both from the applied and the 
methodological standpoints. 

Energy dissipation and transport of normal waves in a 
zone of cyclotron absorption is characterized by the follow- 
ing f e a t ~ r e s . ~ - ~  The Hermitian and anti-Hermitian compo- 
nents of the permitivity epm(o,k) for the normal mode being 
studied (w and k are its frequency and wave vector) are 
quantities of the same order of magnitude: 

Despite this, the dispersion equation 

for real w has a solution that corresponds to weakly decaying 
waves'' with 

of ray while the vector dDld k is collinear with the 
energy flux density 

where 

is the Poynting vector (the purely electromagnetic compo- 
nent of the energy flux density, and 

is the energy flux density transported by particles of the 
plasma (the kinetic c ~ r n ~ o n e n t ) . ' - ~ ~ ~ ~ ~  Here E={Em) is the 
electric field vector. 

If we directly extend Eq. (5) to the case of electron- 
cyclotron waves and treat the dispersion function D(w,k,r) 
as the ray Hamiltonian, then, when we take account of spa- 
tial dispersion, the ray paths at the center of the absorption 
line, according to (4), will be defined in complex space, 
while the kinetic component of the energy flux density, 
which was identified in (5) as a separate term, loses its physi- 
cal meaning, since it becomes a complex quantity. Most of- 
ten one overcomes these difficulties by using the cold- 
plasma dispersion equation435 to determine the geometric- 
optical rays, directing them parallel to the Poynting vector. 
The correctness of this approach is justified only if the ki- 

Here the imaginary and real parts of the derivatives of the netic part of the energy flux density n, is small in compari- 

dispersion function D(w,k,r) (which in an inhomogeneous son with the electromagnetic component II, (lIIelS-lnp1).5 

plasma depends also on the spatial coordinates r) with re- However, even in this case the "hot" (kinetic) corrections to 

spect to and at the center of the cyclotron absorption line the "cold" dispersion equation are sometimes important, in 

are the same order of magnitude: particular, when electron-cyclotron waves propagate at small 
angles to the resonance layer, in which case the relatively 

dD dD small kinetic effects cause appreciable refle~tion.~,' I R ~ ( %  ~ ) i - i l m ( ~  dk)I. (4) When the influence of kinetic processes on the path of 
propagation are described in terms of the ray Hamiltonian, 

In the case of a Hermitian tensor epm (nonabsorbing me- one commonly chooses the real part of the dispersion func- 
dium), the dispersion function D(o,k,r) is the Hamiltonian tion D(w,k,r) for real values of the wave vector k:6 
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Re ~ = d e t l l ~ k I I  = det 6,,k2- k,k,- I 
The correctness of this procedure near the center of a cyclo- 
tron absorption line requires justification in view of Eq. (4), 
despite the condition of weak dissipation, Eq. (3). 

In the present study, to calculate the energy flux trans- 
ported by particles in electron-cyclotron waves, we use qua- 
silinear plasma theory (Sec. 2). We consider quasitransverse 
(with respect to the constant magnetic field) propagation of 
normal modes. Moreover, we analyze for a plane stratified 
geometry the behavior of a quasioptical wave beam in the 
region of electron-cyclotron resonance (Sec. 3). In the Con- 
clusion we formulate the results of the studies that we have 
conducted. 

2. THE QUASILINEAR THEORY OF KINETIC PROCESSES IN 
QUASIOPTICAL BEAMS OF ELECTRON-CYCLOTRON 
WAVES 

Consider the cyclotron interaction of electrons in a uni- 
form magnetized plasma with a monochromatic beam of 
electron-cyclotron waves: 

E = ~ ( r ) e x ~ ( i k , r -  io t )  

where k=ko+Ak, e(k), and Ak(k) are the wave vector, the 
polarization unit vector, and the spectral density of the plane 
electron-cyclotron waves of which the beam is composed. 
The spatial spectrum of the field of (6) is assumed to be 
narrow: 

AkL <max[koL ,koll(v T ~ ~ ) " 3 ] ,  

Akl14max[koll , ( u ~ w I c ~ ) ] .  (7) 

Here and below the subscripts ''I" and "II" denote the pro- 
jections perpendicular and parallel to the magnetic field 
H=Hozo (zo is a unit vector along the z axis, Ho=const); 
Ak, and Ak,, are the characteristic widths of the spatial spec- 
trum of the wave beam along the component of the wave 
vector corresponding to the subscript, and uT is the thermal 
velocity of the e~ectrons.~) Taking account of Eq. (7), we can 
represent the field E(r)= (Ex ,E, ,E,) in Eq. (6) in the fol- 
lowing form: 

where 

is the slowly varying amplitude of the field of the beam, and 
the subscripts j and k run through x ,  y,  and z. 

We describe the distribution function of the electrons in 
the magnetoactive plasma by the kinetic equation 

af df df F df -+v-+" -=--- 
dt dr  d@ m dv' (9) 

which takes account, in the weakly relativistic approxima- 
tion, of the dependence of the gyrofrequency w, on the ve- 

2 2 locity v: oH=wHO(l -v /2c ), oHo= eHlmc (e and m are 
the charge and rest mass of an electron). In Eq. (9) we have 
introduced the following notation: 

exp(ikor- iwt) (10) 

is the Lorentz force acting on the electron from the quasiop- 
tical beam of (6); ~+karcsin(v,/v,) is the phase of the elec- 

tron gyrorotation, and uL = 4 5 ; .  
Using the quasilinear approximation (9), we resolve the 

distribution function f into stationary and time-oscillating 
components: 

and find the latter by linearizing Eq. (9) in the field E: 

f i r )  = 1 fk(k)e(k)Ak(k)sik'd3k, (12) 

where the vector fk is defined by the usual relations for the 
Fourier harmonics (Ref. 9).3) 

Taking into account in Eq. (12) the inequality (7), we 
can write f(r) in the form 

The energy flux density transverse to the magnetic field 
transported by electrons, (II,), = $v,(m u 2/2) @ d3v is ob- 
tained from the kinetic equation (9) averaged over time after 
integrating it over phase space with the weight v,(rnv2/2). 
Omitting the small corrections of order rHIL (rH is the elec- 
tron gyroradius, and ~a(d1nAldr l - '  is the characteristic 
scale on which the field varies in the electromagnetic beam), 
after lengthy but uncomplicated mathematical transforma- 
tions we have 

Multiplying the time-averaged kinetic equation by 
mv2/2 and integrating it over phase space, we obtain the 
evident relationship 

where 

is the energy flux density in the direction of the magnetic 
field, and @o=li?T@d(l is the component of the stationary 
distribution function averaged over the gyroangle. 

By using Eqs. (8) and (lo), we bring Eq. (15) into the 
form 
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W d(np)' + div(n,), = Q - div 
dz 

Here and $f are the Hermitian and anti-Hermitian com- 
ponents of the permittivity tensor of the plasma, 

and k=ko+V(argA(r)) is the local wave vector directed 
along the gradient of the phase of the field of the wave beam. 

As already noted in the Introduction, in principle $, and 
$f can be quantities of the same order of magnitude. In a 
two-dimensional wave beam, where we have dAldy =0, in 
the case in which the anti-Hermitian part of the dielectric 
permittivity tensor is small (i.e., when I IE$'I), by using 
an expansion in the small parameter (koL)-I, we can obtain 
a standard expression for (n,), : 

But if I - I holds, one cannot obtain any single 
J ". 

analytical representation of (n,), analogous to Eq. (18) for 
an arbitrary relationship between koll and k,. In what fol- 
lows we will consider only with cases of quasitransverse 
propagation4) (kollGkol) of an 0-mode with a frequency 
close to W, and an X-mode with frequency close to 2wH, 
when the condition for the dipole approximation is satisfied 
(k,rHGl). For both of these examples, upon taking account 
of their intrinsic character of the polarization of the field E 
(EIIS>E, for the 0-mode and Eu=SEl for the X-mode), we 
find from (14)') that 

W deaH (n,),= - 16n ]A12(qe*e J " -- dk, Yoi-lefen --?l). 
dk, 

The distribution of the energy contribution in the plane 
perpendicular to the magnetic field is conveniently character- 
ized by the following function: 

Using Eqs. (19) and (16) in (20), we obtain the following 
expression: 

We see from Eq. (21) that the transport of particle en- 
ergy along the axis perpendicular to the plane of the vectors 
ko and Ho shifts the profile of the energy contribution with 
respect to the intensity profile of the hf field. The physical 
cause of the appearance of this additional transport of par- 

ticle kinetic energy is that the electrons are bunched in phase 
with a rotating component of the force exerted by the wave 
field. It is just this bunching which creates the anti-Hermitian 
component of the pennitivity tensor $f in a collisionless 
plasma; when we take account of the spatial variation of the 
hf field (for finite k,), the oscillations of the electron bunches 
give lead rist to an additional energy flux. Interestingly, for 
this case one can write the Poynting theorem in standard 
form with an arbitrary relationship between and $',H. Us- 
ing Eq. (16) and the conservation of total energy flux of the 
plasma and of the electromagnetic field, we can easily derive 
the following relationship: 

div S+ Q = 0. (22) 

where 

is the total energy flux density; in the expression for the 
density of ohmic losses, Q takes account of their dependence 
on the local wave vector (see Eq. (16)).@ 

The direction in which the hf field is transported coin- 
cides with that of the vector S. The vector S is collinear with 
the k derivative of the real part of the ray Hamiltonian if we 
define the polarization vector that enters into (23) by the 
approximate relationship 

instead of the exact relationship 

This approximation is justified if the correction to the polar- 
ization of the normal fields associated with the thermal mo- 
tion of the particles alters the energy flux much less than 
does the nonelectromagnetic (due to motion of the particles) 
component of the energy flux. In the case of perpendicular 
propagation of the waves in a weakly relativistic plasma near 
a cyclotron resonance line, we can easily prove this state- 
ment and, despite Eq. (4), we can use the standard scheme of 
geometric optics, while defining the trajectories of transport 
of the intensity of radiation by using the real ray Hamiltonian 

To find where the energy is contributed, however, we must 
take account of the additional (stimulated by the field of the 
wave) transport of kinetic energy by particles of the plasma 
associated with the anti-Hermitian component of the dielec- 
tric permittivity tensor $f. 

The standard expression for the field intensity in the ray 
t ~ b e ~ - ~  has the form 

I=Io exp - - [ 27 cOS a d l  

( a  is the angle between the vectors S and Re k, while the 
differential of the path d l  is taken along the vector S). It is 
valid for a wave beam only in the absence of appreciable 
distortions of the phase front caused by the dependence of 
the optical losses on the propagation wave vector Re k (see 
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Eq. (16)). Yet one can estimate the distortions of the phase 
front in the beam at the center of the electron-cyclotron reso- 
nance line only by taking account of absorption. Let us ana- 
lyze these problems for the following example. 

3. QUASIOPTICAL BEAMS OF ELECTRON-CYCLOTRON 
WAVES IN A PLANE-LAYER PLASMA 

The representation (29) is suitable only under the condi- 
tion that the diffraction parameter d is small: 

Consider the quasi-transverse propagation of a beam of 
electron-cyclotron waves with ordinary polarization in a 
plane-layer plasma. The magnetic field is along the z axis, 
and the field strength varies along the x axis. In the dipole 
approximation (k ,rH<l) ,  the dispersion equation for the 
O-mode can be represented in the following form: i.e., for propagation over moderate distances. 

By analyzing the dispersion relationship (24),  we can 
derive the following estimation formulas: 

dk, k;, d2kx koY 
ldn,l-lE. G 1 2 ~ l ~  

where k2 = k2 + k:, cos 6 =k,lk, and 

k0zc2 IZl=/&I $ when iKlrl, 

In Eq. (25) the distribution function Qo averaged over time 
and over the gyroangle is normalized to unity, while the 
singularity in the integrand is traversed according to the Lan- 
dau rule.9 

We assume a Gaussian field distribution in the plane 
x=o: 

We see from (31)-(35) that the parameter d reaches its 
maximum value when 

where a = y o y + z g ,  and ko=yok,+zokz. 
We represent the solution of the dispersion equation (24) 

in the form 

kx= kx(koz + Akz ,key + Aky , ~ ; ( x )  , H O ( ~ ) ) .  (27) 

In the limit IAkl<lkol we can expand Eq. (27) in powers of 
Ak. Within the projector zone where diffraction effects are 
insubstantial, it suffices to retain the first two terms of this 
series: 

Here the quantity E1;0' equals 

Using (31)-(35), we find that, as the beam propagates 
through the gyroresonance layer, the diffraction parameter d 
satisfies the inequality 

d 
k ,=kx(ko ,x )+Ak  - k, (k ,  , x ) .  

dko 
(28) 

Note that, in the resonance region where /Re Ef;O'llIm 
holds, owing to the narrowness of the cyclotron absorption 
line, usually varies the quantity k,(ko,x). Upon using the 
WKB solution for each Fourier harmonic, in the case of the 
Gaussian beam of (26) we have 

where r is the optical thickness of the absorbing layer. 
In comparison with the standard solution obtained in the 

geometric-optics approximation, in which 11m p l < l ~ e  
holds, Eq. (29) contains additional factors responsible for the 
change in both the amplitude and the phase of the field, 
described by the coefficient exp(G-icp). For the case in 
which the electron-cyclotron waves pass through the zone of 
an absorption line where Eq. (36) holds, we can easily derive 
the estimates 

ikoa- iw t+  i kx (x )dx+  G- icp 
lox 

where 
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In other words, the inaccuracies in the standard solution 
due to the anti-Hermitian component of the permitivity ten- 
sor, like the diffraction corrections, are of the first order in d. 
They can be substantial only when the beam passes through 
a resonance layer with a sufficiently large optical thickness 
in which practically all the incident hf power is absorbed. 

4. CONCLUSION 

Let us formulate the conclusions from this study. 
a) At the center of the cyclotron resonance line, the hf 

field stimulates additional energy transport by particles of the 
plasma perpendicular to the plane of the vectors of the ex- 
ternal magnetic field and the phase velocity of the propagat- 
ing electron-cyclotron wave. This transport is absent in the 
approximation of a purely Hermitian dielectric permittivity 
tensor. 

b) One can apply the real ray Hamiltonian to find the 
trajectory of the wave beam in the region of a cyclotron 
absorption line only for propagation distances that are not 
too long. The corrections to the field due to the anti- 
Hermitian components of the permitivity tensor calculated in 
the ray-optics approximation are of the same order of mag- 
nitude as the diffraction effects. 

The authors are grateful to the Russian Foundation for 
Fundamental Research for financial support (Grants No. 95- 
02-04999-a and No. 96-02- 17473). 

')This involves polarization of normal electromagnetic waves for propaga- 
tion perpendicular to the magnetic field.4-6 

')The dependence of the conditions of (7) on the parameter uTlc arises from 
the specifics of the propagation of waves in a magnetoactive plasma? 

')~n Ref. 9 the corresponding expressions contain errors; the c o m t e d  for- 
mulas can be found, e.g., in Ref. 10. 

"These cases are most important for the theory of electron-cyclotron heating 
of a thermonuclear p~asma."~ 

''we assume, e,,,O, for an 0-mode, and e,O, for an X-mode. 
6 ) ~  relation analogous to (22) was also obtained in Ref. 5. However, by 

using an expansion in the normal modes, we were able to substantially 
simplifi the expression for the density of ohmic losses Q. 
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