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The discovery in Ref. 5 that the spectrum of scalar radiation by an accelerated mirror in 1 + 1 
space is identical to that of electromagnetic radiation by a charge in 3+ 1 space is 
augmented by a demonstration that the spectrum of spinor radiation by a mirror in 1 + 1 space is 
identical to that of scalar radiation by a scalar charge in 3+ 1 space. No divergences are 
encountered in transforming the energy spectral representations of scalar and spinor radiations by 
a mirror into space-time representations, and the latter process leads to functionally 
identical distributions-the well known energy-momentum tensors of the radiation, which differ 
only by a factor of 112 and represent a local characteristic of the source path. This 
characteristic differs from the force of radiation reaction only by a Doppler factor. At the same 
time, transforming the spectral representations of the average numbers of bosons and 
fermions radiated by the mirror leads to two significantly different space-time distributions, 
which are functionals of the path. Their asymptotic behaviors are characterized by different 
functions of a relativistic invariant-the relative velocity of the source at the ends of the 
path. These functions determine the amplitude for preservation of the vacuum by the sources. It 
is shown that the correlation functions of the energy-momentum tensors of a scalar and a 
spinor field reflect the statistical properties of the fields in the spectral distribution of the energy 
of a pair between its constituent particles; however, it is also shown that they cease to 
disagree when interpreted in terms of the energy of one of the particles. It is argued that it is 
incorrect to consider spectra of sources that radiate infinite energy within a finite proper time. 
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1. INTRODUCTION 

The radiation of an accelerated mirror in vacuum has 
been actively discussed in recent especially in con- 
nection with its analogy to the Hawking mechanism4 for gen- 
eration of particles by the gravitational field created by a 
black hole. The most detailed relativistically invariant char- 
acteristic of the radiation is the spectrum of the number of 
radiated particles. Since this is a functional of the path of the 
source, it depends nontrivially on the momentum and spin of 
the radiated quanta. In Ref. 5 it was shown that the spectrum 
of scalar quanta radiated by an accelerated mirror in 1+1 
space coincides functionally (after a corresponding covariant 
mapping of variables) with the spectrum of photons radiated 
by an electric charge moving in 3+ 1 space along the same 
path as the mirror. Furthermore, the space-time distribution 
of the energy-momentum of a scalar field coincides (once 
more when the necessary covariances properties are in- 
cluded) with the bremsstrahlung force acting on a charge in 
electrodynamics. Analogies of this kind make possible a 
deeper understanding of the physical processes being com- 
pared. 

In this paper it'is shown that the spectrum of quanta of a 
spinor field radiated by an accelerated mirror in 1 + 1 space 
coincides functionally with the spectrum of scalar quanta 
radiated by a scalar charge (i.e., a source of the scalar field) 
moving in 3+ 1 space along the same path as the mirror. 

In Sec. 3 the spectral integral for the total energy- mo- 

mentum of the Bose radiation generated by the accelerated 
mirror is transformed into an integral over space-time (char- 
acteristic) variables of the energy-momentum tensor of the 
radiation field. This transformation recalls the theorem of 
Plancherel in the theory of Fourier integrals6 It can be re- 
garded as a derivation of the energy-momentum tensor of the 
radiation field which in contrast to a direct derivation7" does 
not encounter divergences and does not require a regulariza- 
tion procedure. 

In Sec. 4 an analogous transformation is derived for the 
spectral representation of the total energy-momentum of 
Fermi radiation from an accelerated mirror. Despite the con- 
siderable difference between the spectra of boson and 
fermion radiation, the corresponding characteristic 
distributions-energy-momentum tensors--coincide func- 
tionally, disagreeing only by a factor 112. Unlike the spectra, 
these are not functionals of the path, but rather are repre- 
sented by a local characteristic, namely the Schwartz deriva- 
tive. Nevertheless, irreversible radiation of energy- 
momentum takes place not at a point, but rather within a 
space-time region outside of which the so-called Schott 
energy-momentum disappears. 

In Sec. 5 the spectral integrals for the average numbers 
of bosons and fermions radiated by an accelerated mirror are 
transformed into integrals over the characteristic variable. 
The corresponding distributions with respect to the charac- 
teristic variable (the functions K ( u ) )  possess the prop- 
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erties of path functionals, indicating that the generation of 
particles is significantly nonlocal. In this section the univer- 
sal asymptotic behavior of the function K(u), which deter- 
mines the infrared behavior of the average number N of ra- 
diated quanta, is discussed for paths with nonzero relative 
velocity at their ends. The amplitude eiW for preservation of 
the vacuum by the source of particles is completely recov- 
ered with the help of dispersion relations (with respect to the 
mass of the quanta) that relate the number of radiated par- 
ticles N = 2 Im W to the phase Re W of the vacuum ampli- 
tude. 

Section 6 provides concrete examples of the spectra of 
bosons and fermions radiated by a mirror moving along a 
semihyperbola, and the corresponding space-time distribu- 
tions for energy and number of particles are discussed. 

In Sec. 7, where correlations are discussed between the 
emission and absorption of pairs that transfer energy- mo- 
mentum from one point to another, the statistical properties 
of the field quanta are displayed. In the scalar case, the total 
energy of a pair is distributed for the most part evenly be- 
tween the particles that make it up, whereas in the spinor 
case this distribution is never even. This latter fact is some- 
what unexpected, since the fermion and antifermion are not 
identical due to the difference of their fermionic charges. 

In the last section, the symmetry of the characteristic 
energy-momentum distributions of Bose and Fermi radiation 
from a mirror under the discrete transformation (96) is dis- 
cussed. This symmetry excludes paths with nonzero Schott 
energy-momentum at their ends, which leads to additional 
considerations regarding the unphysical nature of these 
paths. 

2. SPINOR FIELD AND BOGOLYUBOV COEFFICIENTS 

The discovery in Ref. 5 that the spectra radiated by a 
scalar mirror in 1 + 1 space coincide with those of an electric 
charge in 3 + 1 space prompts the speculation that motion of 
such a mirror in 1 + 1 space creates a spectrum of radiation 
similar to that of radiation of a scalar charge in 3+ 1 space. It 
is well known that such a spectrum is described by the 
expression1) 

where p(k) is the Fourier component of the scalar charge 
density, k and ko are the wave vector and frequency of the 
radiation, and xff(r) is the path of the charge as a function of 
proper time r. 

For a charge moving along the 1 axis, transforming from 
x , t  to the characteristic variables u = t-x, v = t + x ,  we ob- 
tain 

Xexp -(k+u+k-f(u)) [ : (2) 

Here, in place of T we have chosen the variable u=x-(r),  
so that the v-coordinate of the charge, i.e., x+(r) ,  is a func- 
tion of u. As in Ref. 5, it is denoted by 
f ( ~ l = ~ + ( r ) l ~ = 7 ( ~ ) .  

It follows from Eq. (2) that in order for an accelerated 
mirror in 1 + 1 space to reproduce the spectrum, it is neces- 
sary that the Bogolyubov coefficients have the form 

Here, as in Ref. 5,  we denote the u coordinate of the mirror 
(or charge) by g(v) to show that it is a function of the inde- 
pendent variable v. The functions f(u) and g(v) are mutual 
inverses: flg(v)] = v. Their derivatives are positive. Repre- 
sentations (3) and (4) are conveniently referred to as the f- 
and g-representations, respectively. 

It is not difficult to verify that the coefficients (3), (4) 
satisfy the conditions 

with the upper sign. This implies that in 1 + 1 space we are 
dealing with a mirror interacting with a spinor field. The 
lower sign in (5) corresponds to interaction with a scalar 
 field.'^^ 

In order to verify that coefficients (3), (4) apply to a 
spinor field, let us investigate the following in- and out-sets 
of solutions of the Dirac wave equation with spin projection 
s= - 112: 

and with spin projection s = + 112: 

Xexp(- iou) .  (9) 

Here 
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are the usual spinors, so that the bispinors @,, are eigenvec- 
tors of the matrix C 3 ,  i.e., C31jr,= 2 s q S  . 

Each of the in- (out-) solutions given here in the n,t  
plane to the right of the world line of the mirror describes a 
spinor field with definite projection of spin, consisting of a 
monochromatic (nonmonochromatic) wave incident on the 
mirror, and a wave that is nonmonochromatic (monochro- 
matic) reflected from the mirror. 

These solutions are determined unambiguously by speci- 
fying the monochromatic wave on the characteristic 
u=u,-+ - w  in the distant past (on the characteristic 
v = v i +  + w in the distant future), matching the phases of 
the incident and reflected waves on the mirror, and the rela- 
tion j' = i(t) j0 between the spatial and temporal components 
of the current density, where & is the mirror velocity. These 
solutions satisfy the following orthogonality and normaliza- 
tion conditions: 

I + 
dx ~ i n w r s , ( ~ , t ) $ i n o s ( ~ , t ) = 2 ~ 8 ( o t -  w)6,1,. 

(10) 

The condition for the out-solutions is analogous. 
The Bogolyubov coefficients are determined by the sca- 

lar products 

It is not difficult to show that they actually reduce to Eqs. 
(3), (4), which are diagonal with respect to spin projections, 
and do not depend on the latter. Therefore, in the final rep- 
resentations (3), (4) the indices of spin projection are not 
written out. However, in order to emphasize the important 
difference between the Bogolyubov coefficients for Fermi 
and Bose fields, we will attach the indices F and B to them, 
respectively. We recall that 

- 

'* = + J $ C d U  exp[ s i ou  + iolf(u)]  a w l ,  ,P , , ,  

These are the f - and g-representations, respectively. 
We note that along with the solutions $,,, s =  5 112 

with definite spin projections we could also use solutions 
$,, with definite helicity, which are eigenfunctions of the 
matrix y5. These are related to the previous expressions as 
follows: 

which satisfy the same orthogonality and normalization con- 
ditions, and lead to the same Bogolyubov coefficients. 

The spectra d e F  of the average numbers of bosons or 
fermions created by the accelerated mirror are determined 
from the expression 

The physical interpretation of d c F  follows from second 
quantization of the fields c$ and i,b, in which the coefficients 
of the expansion of the fields in plane waves with positive 
and negative frequencies are assigned the meaning of opera- 
tors for absorption of particles and creation of antiparticles. 
As is clear from Eqs. (2), (3) and (16), the spectra d c  and 
dn"," are functionally identical if we identify w, or with 
k+/2 ,  k-12 and ignore the factor e2 which determines the 
force F = - e2/47rr2 of interaction between two identical 
nonrelativistic scalar charges located at a distance r from one 
another. 

3. TRANSFORMATION OF THE SPECTRAL INTEGRAL FOR 
THE ENERGY OF BOSON RADIATION 

In Ref. 5 a relation was obtained between the T +  + com- 
ponent of the energy-momentum tensor of a scalar field gen- 
erated by an accelerated mirror and the g+  component of the 
bremsstrahlung force in classical electrodynamics: 

More precisely, the component T + +  appearing here is the 
component of the finite part of the average value of the 
energy-momentum tensor operator Tap  in the vacuum state: 

This expression was found by Davies and Fulling 7'8 by ac- 
curately regularizing this average value and separating the 
divergent Pap and finite Tap parts. 

The total energy (more precisely, the total energy- 
momentum) of bosons or fennions radiated by an accelerated 
mirror at infinity is determined by the spectral integral 

Let us try to transform the integral for the energy-momentum 
FB of the bosons into an integral over the characteristic 
variables u or v. For this we substitute the f*g representa- 
tion into (19): 

which follows from (13) and (14), or half the sum of this 
term and its complex-conjugate representation. In the latter 
case, after integrating over the frequencies o ,  w' we obtain 
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Here E and S  are infinitesimal quantities that must be set to 
zero in the final expression. If for fixed real v  we introduce 
u ,  = g ( v )  + i s ,  then E ,  S  can be chosen so that we have 
f ( u , )  = U  + i ~ .  TO first approximation, S = g l ( v ) ~ .  Then it is 
clear that the first term of the function under the integral sign 
has a third-order pole at the point u  = u  = g ( v )  + i  8 .  Analo- 
gously, the second term also has a third-order pole at the 
point u  = u 2 = g ( v )  - i s .  Therefore, as E ,  6 4 0  the integral 
over u  from the first term in square brackets of (21) can be 
written as a contour integral of the function 

which is taken along the real u-axis and passes around the 
third-order pole at the point u  = u o = g ( u )  from below, while 
the integral of the second term becomes a contour integral of 
the same function but taken along the u-axis in the opposite 
direction and passing over the same pole. In this case, the 
integral with respect to u  in (21) reduces to the residue of the 
function F  at the pole u = uo: 

1:- du[  ]=27ri res F(u,v)l , , , ( , )  

Here fo= f  ( u o ) ,  fA= f ' ( u o ) ,  etc. Choosing the variable 
u o = g ( v )  in the final integral with respect to v ,  in place of 
v  we obtain 

In the final expression, the label on the variable uo is omit- 
ted. The dimensional factor hc is written explicitly, in order 
to direct attention to the quantum nature of these quantities; 
u,  v  have the dimensions of length. 

We emphasize that the pole of the function F ( u , v )  is 
located on the path of the mirror, and that its residue or the 
function R ( u )  is a local characteristic of the path. In the 
mathematical this characteristic of a function 
f ( u )  is called its Schwartz derivative and is denoted 

so that 

Let us now discuss the physical meaning of R ( u ) .  As is 
clear from (24), the function R ( u )  coincides with the 
T + + ( u )  component of the energy-momentum tensor of the 
field created by the accelerated mirror. According to Eq. 
(17), we may also treat it as the plus-component of the quan- 
tum bremsstrahlung force acting on the mirror ( h ~ l e ~ ) ~ ,  . 
Finally, differentiating the proper acceleration of the mirror 
a =  f'/2fI3l2 with respect to the proper time T 

( d r =  f l d u ) ,  we can represent R ( u )  in terms of a Lorentz- 
invariant rate of change d a l d r  of the acceleration in the 
proper-time system: 

Generally speaking, the function R ( u )  is not positive 
definite. This means we can no longer identify it with the 
power of irreversible radiation departing to infinity. In other 
words, the quantity ~ ( u ) d u = ~ ( u ) d r l  fl cannot be treated 
as energy radiated to infinity by an element of the path d r  
lying close to the point u ,  v  = f ( u ) .  However, we can intro- 
duce an average power A P l A u  of irreversible radiation of 
energy: 

with the finite interval b u  chosen such that on this interval 
the term with the perfect differential in (26) does not con- 
tribute, i.e., at the ends of which the value of the Schott 
energy-momentum 11.13 

are the same. Of course, the size of the interval A u  and the 
portion of energy A@ radiated from it should satisfy the 
uncertainty relation Au A @> 1. 

Note that if the uncertainty relation holds for some in- 
terval A u  and energy A@ radiated from it, then the mean- 
square value of the Schott energy on such an interval is small 
compared with A@. In fact, because 

it follows from the relation AuA@> 1 that 

from which 

The Schott energy characterizes the magnitude of the change 
in field energy carried along by the mirror and located in the 
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region where the true radiation is generated. Its mean square 
and average radiated power are determined by each other: 

This is the distinctive relation between the fluctuations and 
energy dissipation. 

If j3 denotes the velocity of the mirror, then its Doppler 
factor is 

Therefore, in the proper-time system of the mirror-source, 
the Schott energy equals 

and characterizes the change in mass of the field carried 
along by the source. 

We now turn to an important fact. Equation (24) is a new 
integral representation of the total radiated energy @, which 
originally was given by its spectral representation (19). In 
deriving (24), we have implicitly assumed the existence of 
all the integrals encountered in the course of making the 
transformation (19). In particular, the existence of the inte- 
grals over u  of the two functions in the square brackets (21) 
does not impose any requirements on the asymptotic behav- 
ior of f ( u )  as u 4  f- w .  However, if we change the order of 
integration in the integral (21), and first carry out the 
v  -integration, then the convergence of the v  -integrals of the 
two functions in square brackets (21) is assured only when 
the asymptotic increase in the absolute value of g ( v )  is not 
too weak, implying that the increase of f ( u )  is not too 
strong: 

In this case, the integration with respect to v  reduces to the 
residue of the function - F ( u , v )  at the point v  = vo= f ( u ) :  

(1. d v [  ]= - 2 n i  res ~ ( u , v ) l , = ~ ( , )  

Differentiation of the identity g(vo)= u  with respect to u  
gives the derivatives 

As a result, the following representation for @ is obtained: 
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in which the function F ( u )  differs from R ( u )  in having a 
different coefficient in the term with the perfect differential. 
However, the derivation of this representation requires that 
the asymptotic conditions (35), (36) be satisfied, for which 
the Schott energy-momentum behaves like 

as u - t - t ~ ,  and asymptotically vanishes if the exponents 
a, p are bounded by the condition 

which is a stricter condition than (36). In this case, the terms 
with perfect differentials both in F ( u )  and in R ( u )  give no 
contribution to the integral for @, and even if the energy- 
momentum @ itself increases as the interval of integration, 
it does so more slowly than linearly. Thus, both representa- 
tions (24), (39) are equivalent in the integrated sense; how- 
ever, the function i ( u )  no longer has the physical meaning 
that R ( u )  had, according to Eq. (26). 

Note that if we use the gg * representation for I ~,t,1' in 
(19) 

or half the sum of it and its complex-conjugate representa- 
tion, then in place of (21) the following expression appears 

1 
- C.C. 

x [ ( u ' - v - - i e ) 2 ( g ( v ' ) - g ( v ) - i ~ )  I 
The inner integral exists without requirements on g ( u l ) ,  and 
reduces to the residue of the function 

at the third-order pole v  = v  '. As a result, we obtain for @ 
the representation 

which coincides with the representation (24). Specifically, if 
we replace the variable of integration u  by the variable 
u  = g ( v ) ,  so that v  = f ( u ) ,  the expression I ( v ) d v  under the 
integral sign becomes equal to R ( u ) d u ,  and 
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The first equation is the well-known relation between the 
Schwartz derivatives of mutually inverse functions. Physi- 
cally, however, these are different ways of writing the 
Lorentz-invariant quantity - d a l d r ,  the rate of change of the 
acceleration in the proper system, so that 

The latter equation represents I ( v )  in terms of the square of 
the intrinsic acceleration and the derivative of the Schott en- 
ergy with respect to v :  

On the interval Au where the total change of Schott energy 
is A @ = o ,  the average value of I ( v )  may be considered to 
be the average radiated power: 

(compare with classical electr~d~namics'~). 
With regard to the covariance properties of these quan- 

tities, we note that under a Lorentz transformation with ve- 
locity V along the x-axis the frequencies w, w '  become G, 
6' according to the expressions 

The quantities v ,  f ( u ) ,  F ,  8 transform like w, while u ,  
g ( v ) ,  G, transform like w'.  Finally, the functions R ( u ) ,  
f ( u )  transform like m2 and the functions I ( v ) ,  d a l d r ,  the 
left side of the uncertainty relation AuA @, the Bogolyubov 
coefficients, and the spectrum d G ,  are all invariants. Thus, 
the choice of variables of integration u ,  u ,  or r in the repre- 
sentations (24), (45) determines the covariance properties of 
the functions T++ , d a l d r ,  or g +  under the integral sign, 
and their physical meaning. 

4. TRANSFORMATION OF THE SPECTRAL INTEGRAL FOR 
THE ENERGY OF FERMION RADIATION 

Let us turn now to a fermion field radiated by an accel- 
erated mirror. We transform the spectral integral (19) for the 
radiated energy-momentum gF of fermions into an integral 
over the coordinates u  or u .  We emphasize that although 
each fermion is radiated as a pair with an antifermion, Eq. 
(19) for PF is the energy carried away only by the fermions 
or the antifermions, which are experimentally different de- 
pending on their fermionic charge. 

According to (3), (4), the f*g representation for 
lpF,,,,I2 differs from (20) by an additional factor, i.e., - w w .  

- d m ' ,  under the integral. Then this factor 
- \If- appears in Eqs. (21) or (22) for the energy 
FF and the function F F ( u , v ) ,  SO that 

the integral over u ,  as in (23), now reduces to the residue of 
the function F F ( u , v )  at the third-order pole u = g ( v ) .  It is 
not difficult to show that this residue equals half the residue 
of the function F B ( u , v ) .  As a result, we obtain for PF 

Note that the expression given here consists of the energy of 
radiated fermions with definite charge and projection of the 
spin or helicity. If the mirror radiates quanta of a spinor field 
with two spin projections or helicities, then this result should 
be doubled. It is also necessary to double it when taking into 
account the energy of the antifermions. 

It is interesting to note that if we change the order of 
integration with respect to u ,  v  in the double integral under 
discussion for P F ,  and first carry out the integration with 
respect to variable v ,  then in contrast to the boson case (37) 
the integral over v  reduces to the Schwartz derivative 

/yrn d v [  l F =  - 21ri res ~ ~ ( u , u ) l , = ~ ( , )  

Therefore we obtain the same representation (52) for PF. 
This stability of the representation (52) is a consequence of 
the factor Jf- in the function F F ( u , v ) ,  which im- 
proves the convergence of the integrals of this function with 
respect to both u  and v .  Therefore, the asymptotic conditions 
(35), (36) are no longer needed. In particular, if g (u ) -+  
const as v  -+ + m, then the integral with respect to v  of 
F B ( u , u )  diverges, while that of F F ( u , v )  converges since 
m + m .  

The transformation of the spectral integral for PF using 
the gg* or f f  * representations for I /3ffw12 now reduces to 
Eq. (52). In this case, the residue of the function 

which is half the residue of the function G ~ ( U  ' , v )  from ( 4 4 ,  
works for, e.g., the gg* representation. 

Let us now discuss the physical meaning of the function 
R ~ ( u ) .  In the paper by Davies and ~ n r u h ' ~ ,  these authors 
found the tensor operator for the energy-momentum of a 
neutrino field with definite helicity averaged over the 
vacuum. As in the case of a scalar field, it consisted of a sum 
of divergent and finite parts. The single nonzero component 
of the finite part equals 
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i.e., it coincides with G + ( U ) .  Thus, the function RF(u) we 
have found equals half of T: +(u). The difference of a factor 
of 2 is related to the fact that PF consists of the energy- 
momentum of only the fermions or only the antifemions, 
whereas the energy-momentum tensor of the quantized ferm- 
ion field contains contributions from both of these fields.16 
Consequently, by analogy with Eq. (26) for R ~ ( u )  we have 

Here gS,C is the plus component of the bremsstrahlung force 
gS,C acting on a scalar charge, and gS,C= (1/2)gP,'. 

To conclude Secs. 3 and 4, we note that by multiplying 
by e2 the expressions @, @ obtained here for the Bose and 
Fermi radiation by the mirror, we obtain the plus compo- 
nents of the radiative and Schott momenta (1/2)~:, 
(112)~: for electromagnetic and scalar radiation of charges 
in 3+ 1 space (see the comments below Eq. (16) and Section 
6 in Ref. 5). 

5. TRANSFORMATION OF THE SPECTRAL INTEGRALS 
FOR THE AVERAGE NUMBERS OF RADIATED BOSONS 
AND FERMIONS 

Our next task is to transform the spectral integral for the 
average number of radiated particles 

d o  d o '  
N =  l;d";= 1 (2T)2 IPY'Y12 

0 

into an integral over the characteristic variables u or v. This 
makes it possible to say something about the space-time 
region where the particles radiated by the mirror are gener- 
ated. 

Using the half-sum of the f *g representation (20) and its 
complex conjugate for (P:, ,I2, and integrating over frequen- 
cies, we obtain 

We will use the notation v , = f (u) + i s ,  and functionally re- 
late the infinitesimal parameters E , S SO that g(v = u + i S. 
Let us subtract from the integral the following zero-valued 
integral: 

1 

du[g'(vl)(v-VI) 2 + C.C. I =o. 
It is not difficult to see that this subtracted integral differs 
from the original integral over u by the replacement in the 
latter of the function g(v) by the linear part 
g l ( v ) = g ( u l ) + g ' ( v l ) ( u - u l )  of its expansion around the 
point v = u Then in the limit s  , S t 0  we obtain 

where now the function 

and the integral over v is taken in the sense of a principal 
value. 

In contrast to the function RB(u), the function KB(u) is 
a functional of the path; its value at the point u is determined 
by the portion of the path around the point with coordinates 
u, v = f(u) that is important in the integral. Furthermore, the 
integral for KB(u) diverges if g(v) increases more slowly 
than [In(?u)Iff, a> 1 as v - + + w .  In this case the represen- 
tation (60) does not exist. Therefore we will assume that 
g(v) increases more rapidly than In(+.v) as UP+ ?m.  This 
condition coincides with the condition that the Schott 
energy-momentum vanish at infinity. The vanishing of @ at 
infinity in turn implies that the radiation with the largest 
power takes place within a finite region of space-time. 

In order to obtain a similar representation for the total 
number of radiated fermions N ~ ,  it is necessary to multiply 
the function under the integral sign in (58) by 
- d m .  Then after the subtraction procedure, pass- 
ing to the limit E ,  8 4 0  and using (61), we obtain 

In contrast to the boson case, the function under the integral 
sign in the integral for KF(u) is finite at v = f(u), and there- 
fore the principal value symbol is not essential. Furthermore, 
the function KF(u) exists even if g(v)-+ const as u --, 5 w, 
because in this case J m j O .  In other words, the condi- 
tion that g(u) increases as u-+ 2~ more rapidly than 
In(?v) is not necessary for the existence of KF(u). 

If at the initial and final ends of the path the source 
possesses asymptotically constant velocities P I ,  P2, and a 
relative velocity 

that is nonzero, then the average number of radiated zero- 
mass quanta turns out to be infinite (the infrared divergence). 
In fact, in this case it follows from Eqs. (60)-(62) that as 
 UP+^ (more precisely, for ( ~ 1 %  K -  ' ,  i.e., outside the region 
where the source is subject to the characteristic acceleration 
K )  the functions KBpF(u) have the universal asymptotic be- 
havior: 
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8 
KF(~)=+-!(~ -=), 8= Arth PI,. 

Since the transformation properties and dimensions of 
the function K(u) and variable u-' coincide, the coefficients 
for up '  are Lorentz-invariant and dimensionless, and are de- 
termined by a single Lorentz-invariant parameter - the rela- 
tive velocity of the ends P12. Dimensional parameters simi- 
lar to the characteristic acceleration K enter into the next 
terms of the expansion in inverse powers of u. According to 
(64), (65), at the ends of the path the signs of K~ are oppo- 
site, while K~ > 0. AS a result, the average number of quanta 
radiated by a portion of the path enclosing the region of 
acceleration increases logarithmically as the length 2L of this 
portion increases: 

1 e 
Na=-(-- 273- tanh 0 l ) l n  Lx+2ba(0), 

The terms 2bB,F do not depend on L for L K S  1. When 
multiplied by e2= 4 ~ a ,  these expressions coincide with the 
average numbers N ,  and No of photons and scalar quanta 
radiated by electric and scalar charges as they move along 
analogous paths in 3 + 1 space. 12,17 

As is well known," classical radiation sources are char- 
acterized by an amplitude exp(iAW,) for maintaining the 
vacuum, or by the change in self-action A W, whose doubled 
imaginary part coincides with the average number of radi- 
ated particles with spin s: 

The real part of AW, appears automatically if we use for 
Aw,(,u2) the well-known expression containing a causal 
function for propagation of quanta with nonzero mass 
,u.18.19 In this case the very small mass of the quanta 
(p< K) may be considered as a convenient relativistically 
invariant parameter that allows us to avoid the infrared di- 
vergence of N, . We can also recover R ~ A  w,(,u2) from the 
imaginary part of A w,(,x2) by using the dispersion relations 
obtained in Ref. 20 for the latter: 

Here Im ,u-+ - 0. Exactly these relations for AW appear in 
problems that involve a charge whose massless field satisfies 
the boundary conditions on a mirror." In this case, the modi- 
fication of the field of a charge by a mirror located at large 
but finite distances L from the charge avoids the infrared 
divergence, and the role of the quantum mass is played by 
the realistic parameter L- ' . 

It is natural to assume that the amplitude eiW for preser- 
vation of the vacuum will also enter in problems of radiation 
by an accelerated mirror in 1+ 1 space if we set 2 Im W 

=N, while Re W is found from the dispersion relations (68). 
Then if in accordance with (66), (67), and Refs. 22, 23, we 
write 

we find that 

Note that the functions aBvF( 8) have the following inter- 
esting integral representations due to Legendre: 

1 dx sin x 
aBvP(e)= I0 -. 

It is difficult to interpret these physically, even if we assume 
the path of the source on the accelerated segment between 
velocities PI, P2 is hyperbolic. In this case the parameter 
B= ~ ( 7 ~  - TI), where 27= 72- 7, is the proper time of the 
acceleration, and if we set x = w r ,  then (7 1) can perhaps be 
regarded as spectral representations of the functions 
a B . F ( 2 ~ ~ )  that depend on the duration of the acceleration. 
The contribution of frequency w is given by the Bose- or 
Fermi-distribution with a "temperature" 2 ~ l  T. 

However, in 3+ 1 space the same functions multiplied by 
e2 determine the change in self-energy of the electric and 
scalar charges-sources only for Bose fields with spins 1 and 
0, respectively. The appearance of a Fermi distribution in the 
latter case is difficult to explain. 

6. RADIATION OF BOSONS AND FERMIONS BY A MIRROR 
DURING SEMIHYPERBOLIC MOTION 

The motion of a mirror is said to be semihyperbolic5 if 
before time t = 0 it is at rest (at the point x=  0 for example), 
and then proceeds to move along the hyperbolic path 
x=  e(t) = B - I/-. In u, v variables, this path is speci- 
fied by the function f(u) = u  for u s 0  and 
f(u)=Bu(B+u)- '  for u 2  0, or by g(v)=u for v S  0 and 
g ( u ) = ~ v ( ~ - v ) - l  for 0 s v  < B. 

The spectrum of the average number of radiated bosons 
was found in Ref. 5 and is given by the expression 

where z=wB, and Ei(x) is the exponential integral 
function.24 Its behavior in the infrared and ultraviolet regions 
is as follows: 

289 JETP 83 (2), August 1996 V. I. Ritus 289 



It is interesting that the functions RB(u)  and l B ( u )  in the 
representations (24), (45) reduce to S-functions: 

which reflects the discontinuous jump in the proper accelera- 
tion a= j ' '12f'~'~ from a value a = 0 for u < 0 to a value 
a= - K < 0 for u > 0. The Schott energy also changes 
discontinuously, jumping from zero for u < 0 to 8 
= ( ~ / 1 2 7 r ) ( l +  K U ) - '  for u > 0. The energy radiated by the 
mirror according to Eqs. (24),  (75) is finite, equals 
@= ~1127r ,  and coincides with the jump in 8 at zero. This 
value was obtained in Ref. 5 by a roundabout path. 

As we already discussed above, the function R ( u )  is not 
the irreversible radiated power. Therefore, despite the 
8-like behavior of RB in this example, we cannot assume that 
all the radiated energy t?? comes from an arbitrarily small 
interval around u = 0. In reality this energy is generated on 
that interval Au which satisfies the uncertainty relation 
AuAt?? > 1 and for which the change in Schott energy is 
small compared to its characteristic value inside Au. In our 
case 

and the uncertainty relation is fulfilled for Au> l27rB. 
Since the radiated energy is carried by quanta, it is in- 

teresting to trace how the considerations discussed above re- 
garding the length over which the energy is created agree 
with the picture of particle generation. 

For paths with a horizon v = B ,  the function K B ( u )  is 
written in the form 

which for the semihyperbolic path under discussion equals 

It is not difficult to see that this function is negative for u 
< eB= 2.7188, and positive for il > eB ,  and at the point 
u = 0 has an integrable logarithmic singularity: 

(79) 

gives a representation of the number of bosons radiated from 
this interval and having a wavelength smaller than L.  In this 
expression we have written v=LIB,  and L,(x)  is the Euler 
dilogarithm? In accordance with the arguments given for the 
energy, this interval should be large compared to the value of 
the inverse acceleration B .  In this case 

The spectrum of the average number of fermions radi- 
ated by the mirror for a semihyperbolic path is found in this 
paper and given by the expression 

It possesses the following behavior in the infrared and ultra- 
violet regions: 

It is clear that the fermion and boson spectra differ sig- 
nificantly, and that they have a common behavior only in the 
ultraviolet region. The spectral density of the average num- 
ber of bosons is always larger than the analogous density of 
fermions: 

and this inequality is strengthened as the frequency de- 
creases. 

On the other hand, the functions RF and zF in the repre- 
sentations for the energies FF functionally coincide with 
the boson functions ( 7 9 ,  differing from them only by the 
additional factor of 112. 

Conditions are otherwise for the function K F ( u )  in the 
representation for the number of radiated fermions. For the 
path under discussion here it equals 

The integral for the average number of radiated particles di- 
verges, because the nonzero change in the velocity of the 
mirror over an arbitrarily large interval of the path gives rise 
to the radiation of an arbitrarily large number of quanta. 
However, for a finite interval - L < u < L the integral 
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In contrast to K B ( u )  this function is everywhere positive and 
finite at u = 0 ,  although here too there is a jump: 

The average number of radiated fermions NF is infinite for 
the same reason as the number NB is. However, the integral 

for V =  LIB% 1 may be regarded as the average number of 
fermions emitted on the interval - L < u  < L and having a 
wavelength smaller than L.  

To conclude this section we give the functions 

for a mirror path that is semiexponential, for which 
f ( u ) = u  for u d  0  and f ( u ) =  K - I -  K - I  e  - K U  for u a  0 ,  or 
g ( u ) = v  for U S  0  and g ( v ) =  - ~ - ' l n ( l -  K U )  for O S U  < 
K - l .  This path, like the semihyperbolic one, has a horizon, 
but is characterized by a proper acceleration that is not con- 
stant but rather exponentially growing: a =  - ( ~ 1 2 ) e ~ ' " ~  for 
u 2  0 ,  which leads to infinite radiated energy. For a finite 
interval Au 

The uncertainty relation is satisfied for Au > ~GK-' .  In 
this case we can introduce the average radiated power 
A Z R / A ~ =  ~ ~ 1 4 8 ~ ~  and the Schott energy @= ~ 1 2 4 ~  is de- 
termined by extrapolating the linear law (89) to zero. Note 
that for t% K - the coordinate of the mirror u  = 2t - K -  I .  On 
the other hand, we may write this coordinate as a function of 
the proper time r in the form 

From this it is clear that infinite energy is radiated over a 
finite proper time. Because infinite energy and power are 
meaningless, the exponentially growing acceleration should 
be replaced by something more moderate. Paths on which a 
source radiates inifinite energy within a finite proper time are 
physically unrealizable, since they extend beyond any finite 
region of space-time, and the theory of the spectra of such 
sources conceals a contradiction. 

7. CORRELATION FUNCTIONS OF BOSON AND FERMION 
FIELDS 

A 

where T,, is the operator for the energy-momentum tensor 
of the field. Then for boson and fermion fields that are in 
contact with the accelerated mirror we obtain 

where 

For brevity we use the notations f ,=  f ( u , ) ,  f i  = f r ( u l ) ,  etc., 
and by x l  and x2 we mean pairs of characteristic coordinates 
U I ,  U I  and u2. u2. 

Let us turn our attention to the following fact: the spec- 
tral correlation function C2CTw depends on the spin of the 
field only through the functior w ,  which does not depend on 
coordinates or Lorentz-transform labels, and therefore does 
not feel the effect of the mirror. The function C2CT that 
depends on these variables is factorized and is the same for 
scalar and spinor fields. Furthermore, it depends on the sum 
o + of ,  and not on o and o' individually. This is related to 
the fact that it describes a correlation between the energy 
(and momentum) emitted at point x l  and absorbed at a point 
x2,  and the particle + antiparticle pair that is transferred. The 
function w  describes the distribution of total energy of the 
pair fl between particles that make it up. It is clear that in the 
scalar case this energy is distributed on the whole evenly, 
while in the spinor case the distribution is always distinctly 
uneven. The latter fact implies that the fermion and antifer- 
mion, regardless of their opposite fermionic charges, here 
appear as identical particles that are subject to Fermi statis- 
tics. This is a consequence of charge symmetry of the 
energy-momentum tensor (see §19 in Ref. 17). 

After integrating over one of the frequencies w, of for 
fixed fl the dependence on the spin of the field disappears: 

Let us define the correlation function by the relation 
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This latter expression is in agreement with the correlation 
function obtained in Ref. 25 for a scalar field. We note that if 
we regard the spinor field as having not a single spin projec- 
tion or helicity but rather two, the result (95) must be 
doubled. 

8. DISCUSSION 

Although the representations (24), (39) are equivalent if 
the Schott energy-momentum at the ends of the path disap- 
pears, it is interesting to understand the cause of the differ- 
ence between the functions R and K. For this we turn to the 
double integral in (21) and denote the function in square 
brackets under the integral sign by A ( u , v ) .  

Let us transform from the integration variables u ,  v  to 
variables iZ Fgiven by the relation 

u=g(17), v = f ( q  or F = f ( u ) ,  C = g ( u ) .  (96) 

It is not difficult to see that the function A  is form-invariant 
with respect to the transformation (96), i.e., 

Therefore, 

where the tilde on the variables on the right side can be 
dropped. The change in order of integration we have made is 
accompanied by appearance in the function A  of a factor 
f l ( u ) g l ( v ) ,  which in general does not equal unity. The inner 
integral on the right side of (98) reduces to the residue of the 
function - g r ( v ) F ( u , v )  at the pole v = v o =  f ( u ) :  

I:wdv g l ( v ) A ( u . u ) =  - 2 n i  res g ' ( u ) F ( u , ~ ) l ~ . ~ ~ .  

(99) 
If this pole were first-order, then the function g t ( v )  

could be taken outside the integration sign in the form of its 
value at the pole v  = v o ,  and (99) would acquire the form 

In this case the right side of (98) would differ from the left 
only by changing the order of integration, because 
f r ( u ) g ' ( v o ) =  1 (see (38)) .  However, the functions A and 
F have poles that are not first but rather third order, and we 
are not allowed to carry out this procedure. 

The difference between the original integral and the in- 
tegral with changed order of integration, according to (98), 
can be written in the form 

Once more using the transformation (96), it is not difficult to 
verify that the right side of ( l oo ) ,  like the left side, changes 
sign when the order of integration is changed. Its inner inte- 
gral reduces to the residue 

at the second-order pole v = v o .  As a result, taking into ac- 
count the factor ( l / 8 n 2 i )  we obtain in accordance with (24),  
(39) that the difference between the two representations for 
the energy @, which differ by the order of integration with 
respect to u and v ,  equals three times the difference of the 
Schott energies at the ends of the path: 

The natural requirement that such an ambiguity be absent 
selects paths with zero Schott energy (i.e., constant velocity) 
at their ends. 

Paths with nonzero Schott energy at infinity are equiva- 
lent sources that radiate infinite energy outside any finite 
region of space-time. Furthermore, in the case of a semiex- 
ponential path with proper acceleration a = - K (  2  - K 7 )  - ' , o 
6 6 2 ~ -  infinite energy is radiated within a finite proper 
time. Similar paths arise in the classical electrodynamics of a 
charge when radiation reaction is taken into account, and are 
considered In contrast to these paths, the 
physical paths are described by those solutions to the 
Abraham-Lorentz-Dirac equation for which a charge pos- 
sesses zero acceleration far from the region where the exter- 
nal force acts. The equation of motion of a charge with such 
boundary conditions is equivalent to an integrodifferential 
equation29-32 

in which the Schott term disappears from the expression for 
the force 

but its action becomes washed out over a region determined 
by the classical electron radius ro .  

In this case, as long as the force of radiation reaction in 
the proper-time system of the charge is small compared with 
the external force, i.e., e2almc44 1 ,  the radiation can be 
treated as a perturbation. Summing the corresponding series, 
we can find an exact solution that is analytic in e2 near 
e2= 0. However, for accelerations a?mc3/ h the motion of 
the charge ceases to be classical due to quantum effects, 
although the parameter mentioned above can nevertheless be 
small. 

Analogously, for very large accelerations of the mirror 
we cannot describe the quantum nature of the radiation 
mechanism using classical boundary conditions. 

For hyperbolic paths the Schott energy is 
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i.e., at the end in the past. In this case the representation (24) 
is found to be inconsistent, because its left side is 
@= + m ,  according to (19), while the right side is at the 
very least undetermined, if not equal to zero, since R ( u )  = 0. 
The contradiction disappears if we treat the hyperbolic path 
as the limit of a quasihyperbolic path at whose end the 
source has subluminous velocities +P and zero Schott en- 
ergy, and which reduces to hyperbolic as P-+ 1 over every 
large portion around the turning point. Similar discussions 
were given in Ref. 5. 

These arguments show that sources of radiation with 
nonzero Schott energy at infinity are in reality unrealizable, 
because they consume infinite energy in the course of radia- 
tion; the spectra of this radiation, at least in the long- 
wavelength region, do not allow us to distinguish real from 
virtual quanta, since this can be done only outside the region 
where the radiation is generated. 

Turning to the fermion case, we note that the function 
A ~ ( u , v )  differs from the boson function by an additional 
factor - d-, which when multiplied by dvdu  
forms a surface element that is invariant with respect to the 
transformation (96): 

d v  d u d ~ = d i Z d ~ ~ ~ .  (103) 

Therefore, the integral over the u,  u variables of the function 
A ~ ( u , v )  becomes an integral of the same function with re- 
versed order of integration under the transformation (96). 
Thus, for PF only one representation (52) appears with a 
function R ~ =  ( 112)~: + , and a representation similar to (39) 
does not arise. 

In this connection, the appearance in the boson case (and 
consequently in electrodynamics as well) of an anomalous 
representation of gffB in addition to the normal one, with 
function FB # T:+ , once more compels us to examine the 
physical meaning of the Schott energy-momentum. Does the 
acceleration of a source in the field carried along by it create 
other modes of excitation? 
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')The natural system of units is used here, with Heaviside units for charge 
and a metric with trace +2, so that h = c =  1, ez14.n= 11137, k&" 
=kx-kOxO, k,= kO?k', t=xO, x=x1.  
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